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1 Introduction

All modern block and stream ciphers have one or more nonlinear elements. S-box is

one of the most used nonlinear cornerstones of modern ciphers.

The problems of S-boxes design with strong properties were considered in many papers

(for example [1-6, 8, 9, 11-19, 22, 26-28, 30-42, 45-48]).

Cryptographic properties deal with the application of attacks on ciphers. The basic

cryptographic properties are: linear and differential properties, nonlinearity degree, the

minimum degree of polynomial relations between components of input and output vectors.

In this paper we introduce new methods for generating S-boxes. These methods involve

a process of iterative improvements of given pseudo-random S-boxes. We also introduce

two algorithms implementing these methods. By means of these algorithms we construct

many new substitutions with stronger properties than was known previously.

This paper is organized as follows. In Section 2 we give necessary definitions. In Section

3 we describe the known methods of constructing S-boxes and empirical distribution of

cryptographic properties of random substitutions. We present spectral-linear and spectral-

differential methods in Section 4. Section 5 contains new substitutions with stronger

properties. We summarize the results in Section 6.



2 Our definitions

Let Vn (2) = Vn be n-dimensional vector space over the field GF (2). Suppose that

V ×
n = Vn\ {0}. Let S (Vn) be the symmetric group on set of 2n elements. The cardinality

of a set A is usually denoted |A|.

Definition 1. The pg-parameter of an S-box g is defined as

pg = max
α,β∈V

×

n

p
g
α,β ,

where

p
g
α,β = 2−n · |{x ∈ Vn |g (x⊕ α)⊕ g (x) = β }| .

The nonlinear order of f , denoted by deg (f), is the maximum order of terms appeared

in its algebraic normal form. A linear Boolean function is a Boolean function of nonlinear

order 1, i.e. its algebraic normal form involves only isolated arguments. Given α ∈ Vn, we

denote by lα : Vn → V1 the linear Boolean function equal to the sum of bits of argument

selected by bits of α:

lα (x) =
n−1
⊕
i=0

αi · xi.

The correlation c (f1, f2) between two Boolean function f1 and f2 is defined as

c (f1, f2) = 21−n · |{x |f1 (x) = f2 (x)}| − 1.

The extreme value of the correlation between linear functions of input bits and linear

functions of output bits of g is called the bias of g.

Definition 2. The δg-parameter of an S-box g is defined as the absolute value of the

bias:

δg = max
α,β∈V

×

n

δ
g
α,β ,

where

δ
g
α,β = |c (lα, lβ ◦ g)| .

Definition 3. The nonlinear order of an S-box g, denoted by λg, is the minimum non-

linear order over all linear combinations of the components of g:

λg = min
α∈V

×

n

{deg (lα ◦ g (x))} .

The generalized nonlinear order of S-boxes g and g−1, denoted by λg, is the minimum

of the nonlinear orders of g and g−1:

λg = min
{

λg, λg−1

}

.
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Some S-boxes may be described by the system of polynomial equations.

Definition 4. For i > 0 the r
(i)
g -parameter of an S-box g is defined as

r(i)g = dimH(i)
g ,

where

H(i)
g =

{

h ∈ GF (2) [z1, ..., z2n]

∣

∣

∣

∣

∀x ∈ Vn, h (x, g(x)) = 0,
0 < deg h ≤ i

}

.

Definition 5. The rg-parameter of an S-box g is defined as

rg = min
{

i
∣

∣

∣
r(i)g > 0

}

Remark 1. For substitution g ∈ S (V8) we have rg ≤ 3.

The Difference Distribution Table (DDT) of an S-box g is a 2n × 2n matrix T1, where

T1 [α, β] = |{x ∈ Vn |g (x⊕ α)⊕ g (x) = β }| .

The Linear Approximation Table (LAT) of an S-box g is a 2n × 2n matrix T2, where

T2 [α, β] = |{x ∈ Vn |α ◦ x = β ◦ g (x)}| − 2n−1.

The distribution of the coefficients in both the DDT and the LAT is the most impor-

tant parameter of our methods. According to [26] we define the linear and the differential

spectra of permutation g.

For g ∈ S (Vn) and for elements p ∈ Pn−1 and δ ∈ Pn−2,

Pj =

{

i

2j
∣

∣i = 0, 1, ..., 2j
}

, |Pj | = 2j + 1, j ∈ {n− 2, n− 1}

we define the sets

D (g, p) =
{

(α, β) ∈ V ×
n × Vn

∣

∣

∣
p
g
α,β = p

}

;

L (g, δ) =
{

(α, β) ∈ Vn × V ×
n

∣

∣

∣
δ
g
α,β = δ

}

.

Definition 6. The differential spectrum of an S-box g is defined as

D (g) = {(p, |D (g, p)|) |p ∈ Pn−1 } , |D (g)| = 2n−1 + 1.

Definition 7. The linear spectrum of an S-box g is defined as

L (g) = {(δ, |L (g, δ)|) |δ ∈ Pn−2 } , |L (g)| = 2n−2 + 1.
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3 Basic approaches to the construction of S-boxes and

distribution of cryptographic parameters of random

substitutions

3.1 Known approaches to the construction of S-boxes

The available techniques for S-box generation may be divided into three main classes:

explicit algebraic constructions, pseudo-random generation and heuristic techniques.

The first approach is based on some known algebraic constructions (for example,

exponential [1, 23, 37], logarithmic [42], piecewise linear [8, 47] or polynomial [48] substi-

tution boxes) and their affine transformation. This is the most popular approach, because

S-boxes from the known classes are often optimized for all the desired criteria.

The second approach uses heuristic techniques involving the hill climbing method, the

simulated annealing method, the genetic algorithm or a combination of these [19, 22, 24,

30].

The third approach uses some pseudo-random generation [25] to construct the entries

in the S-box and then test whether the S-box is good or not. This approach takes a great

effort to find a good S-box because of the small number of good S-boxes among all in the

whole space.

There are also some other approaches for the construction of S-box [2, 34].

3.2 Empirical distribution of cryptographic properties of random

substitutions

Empirical distribution is considered in many papers (see for example, [3, 4, 9, 13]).

This subsection includes empirical results of cryptographic properties. We have generated

pseudo-random substitutions using "Mersenne twister" [29] and "Present-80" algorithm

of block cipher [10].

Table 1 and Table 2 (see Appendix) present joint empirical distribution of basic crypto-

graphic properties constructed by means of large number of pseudo-random substitutions

(n = 1010). All pseudo-random substitutions generated don’t have quadratic equation.

Table 3 and Table 4 (see Appendix) present joint empirical distribution of basic cryp-

tographic properties constructed by means of large number of pseudo-random involutory

substitutions without fixed points (n = 1010) All pseudo-random involutory substitutions

generated don’t have quadratic equation.
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4 New methods

New proposed methods are based on using linear L (gi) and differential D (gi) spectra

to improve iteratively given S-box with respect to all properties. We multiply given S-box

on some special permutations.

Algorithms implementing these methods operate with the following objects:

(a, b, c, d, e) ∈ S (Vn)×Q× Z×Q× V k
n .

On the set of these objects we have an order relation

(a′, b′, c′, d′, e′) ≤ (a, b, c, d, e) , if

{

b′ < b, d′ ≤ d or
b′ = b, c′ ≤ c, d′ ≤ d

(1)

4.1 The algorithm implementing a spectral-differential method

of S-boxes generation

Let w1 ∈ N be the size of list I.

Algorithm 1.

Input: substitution g0 ∈ S (Vn), parameter w1 ∈ N.

Step 1. For substitution g0 calculate values

pg0 , D (g0) , δg0 , Xg0 ,

where Xg0 = {x ∈ Vn |g0 (x+ α) + g0 (x) = β, ∃ (α, β) ∈ D (g0, pg0)}.

Initialize list I:

I = {(g0, pg0 , |D (g0, pg0)| , δg0 , Xg0)} , |I| = 1.

Step 2. Using the list

I = {(gi, pgi , |D (gi, pgi)| , δgi , Xgi) , i = 0, ..., |I| − 1}

construct the new list

I ′ =
{(

g′i,j , pg′

i,j
,
∣

∣

∣
D

(

g′i,j , pg′

i,j

)
∣

∣

∣
, δg′

i,j
, Xg′

i,j

)}

,

|I ′| ≤

|I|−1
∑

i=0

|Xgi | · (|Xgi | − 1)

2
.

Substitutions g′i,j are elements of list I ′, and g′i,j is equal to substitution gi multiplied

by transpositions from the set Xgi with special properties:

g′i,j = (x, x′) · gi,
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where x, x′ ∈ Xgi , x ≤ x′, i = 0, ..., |I| − 1, j = j (x, x′) is an injective mapping,

pg′

i,j
≤ pgi , δg′

i,j
≤ δgi ,

and
∣

∣D
(

g′i,j , pg′

i,j

)
∣

∣ <
∣

∣D
(

gi, pgi
)
∣

∣ if pg′

i,j
= pgi .

Step 3.

3.1. Remove repetitions from the list I ′.

3.2. Calculate the size |I ′| of list I ′.

3.3. Sort the elements of list I ′ in the ascending order according to

the order relation (1).

3.4. Numerate the sorted list elements by indexes i = 0, . . .,|I ′| − 1.

3.5. Calculate values

m1=min{|I|−1, |I ′|−1} and m2=min{w1−1, |I ′|−1}.

Step 4. Compare the first elements of list I ′ and list I:

– If
∑m1

i=0 pg′

i
<

∑m1

i=0 pgi

or
∑m1

i=0 pg′

i
=

∑m1

i=0 pgi and
∑m1

i=0

∣

∣D
(

g′i, pg′

i

)∣

∣ <
∑m1

i=0 |D (gi, pgi)|,

then

4.1 Clean list I.

4.2 Copy elements from list I ′ with indexes i = 0, ...,m2 to list I.

4.3 Assign |I| = m2 + 1.

4.4 Go to Step 2.

– Otherwise, the algorithm stops.

Output: the list

I ′ = {(gi, pgi , |D (gi, pgi)| , δgi , Xgi) , i = 0, ..., |I ′| − 1} , |I ′| ≤ w1.

Let us denote by t1 the computational complexity of algorithm 1.

Proposition 1. For n → ∞ we have

t1 = O
(

n2 · 26n−1
)

.

Proof. We divide the proof in two stages. In the first stage we compute the maximum

number of iterations of step 2 of the algorithm. In the second stage we find the complexity

of step 2.

1. Let g ∈ S (Vn). For elements of a differential spectrum D (g) we have

|D (g, p)| ≤ (2n − 1) ·
1

p
, p ∈ Pn−1\ {0} .
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Thus, we obtain the following expressions:

∑

p∈Pn−1\{0}

(2n − 1) ·
1

p
= (2n − 1) ·

∑

p∈Pn−1\{0}

1

p
=

= (2n − 1) ·
2n−1

∑

i=1

2n−1

i
= (2n − 1) · 2n−1 ·

2n−1

∑

i=1

1

i
≤

≤ (2n − 1) · 2n−1 ·
(

ln 2n−1 + 1
)

≤ (2n − 1) · 2n−1 ·
(

log2 2
n−1 + 1

)

=

= n · 2n−1 · (2n − 1) .

2. The estimate of the complexity of step 2 is the product of the following values:

(a) the parameter w1,

(b) the estimate of the number of all transpositions from the set Xgi

C2

|Xgi |
≤ C2

|Vn|
=

2n · (2n − 1)

2
,

(c) the complexity of computing δgi -parameter, which is equal to

c · 22n · n,where c = const.

The computation of other parameters is not so difficult as just described. Thus, the

complexity of step 2 is smaller than

w1 · 2 ·
2n · (2n − 1)

2
· c · 22n · n.

Finally, for the total complexity of the algorithm we have

t1 ≤ w1 · c · n
2 ·

(

26n−1 − 25n + 24n−1
)

≤ w1 · c · n
2 · 26n−1.

The proposition is proved.

4.2 The algorithm implementing a spectral-linear method

of S-boxes construction

Let w2 ∈ N be the size of list I.

Algorithm 2.

Input: substitution g0, parameter w2.

Step 1. For substitution g0 calculate values

δg0 , L (g0) , pg0 , Yg0 ,
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where Yg0 = {y ∈ Vn |y ◦ α = g0 (y) ◦ β; ∃ (α, β) ∈ L (g0, δg0)}.

Initialize list I:

I = {(g0, δg0 , |L (g0, δg0)| , pg0 , Yg0)} , |I| = 1.

Step 2. Using the list

I = {(gi, δgi , |L (gi, δgi)| , pgi , Ygi) , i = 0, ..., |I| − 1}

construct the new list

I ′ =
{(

g′i,j , δg′

i,j
,
∣

∣

∣
L
(

g′i,j , δg′

i,j

)∣

∣

∣
, pg′

i,j
, Yg′

i,j

)}

,

|I ′| ≤

|I|−1
∑

i=0

|Ygi | (|Ygi | − 1)

2
.

Substitutions g′i,j are elements of list I ′, and g′i,j is equal to substitution gi multiplied by

transpositions from the set Ygi with special properties:

g′i,j = (y, y′) · gi,

where y, y′ ∈ Ygi , y ≤ y′, i = 0, ..., |I| − 1, j = j (y, y′) is injective mapping,

δg′

i,j
≤ δgi , pg′

i,j
≤ pgi ,

and
∣

∣L
(

g′i,j , pg′

i,j

)
∣

∣ <
∣

∣L
(

gi, pgi
)
∣

∣ if δg′

i,j
= δgi .

Step 3.

3.1. Remove repetitions from the list I ′.

3.2. Calculate the size |I ′| of list I ′.

3.3. Sort the elements of list I ′ in the ascending order according to

the order relation (1).

3.4. Numerate the sorted list elements by indexes i = 0, . . .,|I ′| − 1.

3.5. Calculate values

m1=min{|I|−1, |I ′|−1} and m2=min{w2−1, |I ′|−1}.

Step 4. Compare the first elements of list I ′ and list I:

– If
∑m1

i=0 δg′

i
<

∑m1

i=0 δgi

or
∑m1

i=0 δg′

i
=

∑m1

i=0 δgi and
∑m1

i=0

∣

∣L
(

g′i, δg′

i

)∣

∣ <
∑m1

i=0 |L (gi, δgi)|,

then

4.1. Clean list I.
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4.2. Copy elements from list I ′ with indexes i = 0, ...,m2 to list I.

4.3. Assign |I| = m2 + 1.

4.4. Go to Step 2.

– Otherwise, the algorithm stops.

Output: the list

I ′ = {(gi, δgi , |L (gi, δgi)| , pgi , Ygi) , i = 0, ..., |I ′| − 1} .

Let us denote by t2 the computational complexity of algorithm 2.

Proposition 2. For n → ∞ we have

t2 = O
(

n · 27n−4
)

.

Proof. We divide the proof in two stages. In the first stage we compute the maximum

number of iterations of step 2 of the algorithm. On the second stage we find the complexity

of step 2 .

1. Let g ∈ S (Vn). For elements of a linear spectrum L (g) we have

|L (g, δ)| ≤ (2n − 1) ·
1

δ2
, δ ∈ Pn−2\ {0} .

Thus, we obtain the following expressions:

∑

δ∈Pn−2\{0}

(2n − 1) ·
1

δ2
= (2n − 1) ·

∑

δ∈Pn−2\{0}

1

δ2
=

= (2n − 1) ·

2n−2

∑

i=1

22n−4

i2
= (2n − 1) · 22n−4 ·

2n−2

∑

i=1

1

i2
≤ (2n − 1) · 22n−4 ·

π2

6
.

2. The complexity of step 2 is the product of the following values:

(a) the parameter w2,

(b) the estimate of the number of all transpositions from the set Ygi

C2

|Ygi |
≤ C2

|Vn|
=

2n · (2n − 1)

2
,

(c) the complexity of computing δgi -parameter, which is equal to

c · 22n · n,where c = const.
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The computation of other parameters is not so difficult as just described. Thus, the

complexity of step 2 is smaller than

w2 · 2 ·
2n · (2n − 1)

2
· c · 22n · n.

Finally, for the total complexity of the algorithm we have

t2 ≤ w2 · c ·
π2

6
· n ·

(

27n−4 − 26n−3 + 25n−4
)

≤ w2 · c ·
π2

6
· n · 27n−4.

This completes the proof of Proposition 2.

Remark 2. The parameters w1, w2 ∈ N should be chosen according to available com-

puting resources (the number of processor cores).

Remark 3. The best results we have obtained by means of both our algorithms.

Remark 4. The set Ygi , i = 1, ..., |I|, may be defined as Ygi = Vn\Xgi , where

Xgi = {x ∈ Vn |gi (x+ α) + gi (x) = β; ∃ (α, β) ∈ D (gi, pgi)} .

5 Experimental results

Algorithms 1 and 2 have been applied to S-boxes, used in modern block ciphers. Some

of the results are presented in this Section.

Table 6 (see Appendix) includes the original S-box of the national standards of the

Russian Federation GOST R 34.11-2015 [20] and GOST R 34.12-2012 [21] and one of

the new S-boxes that we have constructed starting from the original S-box using our

algorithms. It is obvious that the new S-box is stronger.

Table 7 (see Appendix) includes the original S-box of the State standard of the Re-

public of Belarus «BelT» [2, 44] and one of the new S-boxes that we have constructed

from the original S-box using our algorithms. This table shows that the new S-box has

better properties.

Table 8 (see Appendix) includes the original S-box of block cipher «Skipjack» [7, 43]

developed by the NSA of US and one of the new S-boxes that we have constructed from

the original S-box using our algorithms. As it may be seen from the table our S-box again

demonstrates better properties.

Construction of modern ciphers deals with software-hardware implementation. This

is one of the reasons why involutions are used in cryptography. In fact they are the

most popular constructions. We apply the new spectral-linear and spectral-differential
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methods to generate involutive and efficiently-implemented S-boxes without fixed points

using pairs of transposition (x, x′) · (g (x) , g (x′)).

Table 9 (see Appendix) presents the original S-box of block cipher "Khazad-0" and

one of the new involutive S-boxes that we have constructed from the original S-box using

our algorithms.

Table 10 (see Appendix) presents the original S-box of block ciphers "Khazad" and

"Anubis" [5, 6] and one of the new efficiently-implemented S-boxes that we have con-

structed from the original S-box using our algorithms.

Our methods have been applied to a large number of random substitutions g ∈ S (V8).

As a result we have a lot of new affine nonequivalent substitutions g′ ∈ S (V8) with the

following cryptographic parameters

δg′ = 24/128, pg′ = 6/256, λg′ = 7, rg′ = 3, r
(3)
g′ = 441.

Table 5 (see Appendix) presents the numbers of constructed substitutions with given

values of parameters.

6 Conclusions

The results allow us to come to the following conclusions.

1. In this paper we present two universal methods. Nowadays these methods are the

most efficient for generating S-boxes. Each substitution g ∈ S (V8) used in modern

block ciphers, except g (x) = x2n−2 and affine equivalent to it [14], may be optimized

by our methods.

2. Our methods allow to construct a lot of new affine nonequivalent S-boxes with

strong cryptographic properties.

3. Algorithms 1 and 2 have acceptable complexity.

4. Algorithms 1 and 2 presented in this paper are deterministic.

5. A large number of substitutions g′ ∈ S (V8), having the parameters

δg′ = 24/128, pg′ = 6/256, λg′ = 7, rg′ = 3, r
(3)
g′ = 441

are the reality of nowadays.

Remark 5. The methods may be used for generate non-bijective substitutions.
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Appendix

Table 1. The joint distribution of parameters pg and δg

for large number (n = 1010) of random substitutions

Table 2. Empirical distribution of parameter λg

for large number (n = 1010) of random substitutions
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Table 3. The joint distribution of parameters pg and δg

for large number (n = 1010) of random involutive substitutions g ∈ S (V8)

without fixed points

Table 4. Empirical distribution of parameter λg

for large number (n = 1010) of random involutive substitutions g ∈ S (V8)

without fixed points

Table 5. The number n of constructed substitutions with parameters pg and δg
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Table 6.

Table 7.
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Table 8.

Table 9.
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Table 10.
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