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Abstract. We study the limiting spectral measure of large symmetric random
matrices of linear algebraic structure.

For Hankel and Toeplitz matrices generated by i.i.d. random variables
{Xk} of unit variance, and for symmetric Markov matrices generated by i.i.d.
random variables {Xij}j>i of zero mean and unit variance, scaling the eigen-
values by

√
n we prove the almost sure, weak convergence of the spectral

measures to universal, non-random, symmetric distributions γH , γM , and γT

of unbounded support. The moments of γH and γT are the sum of volumes of
solids related to Eulerian numbers, whereas γM has a bounded smooth density
given by the free convolution of the semi-circle and normal densities.

For symmetric Markov matrices generated by i.i.d. random variables
{Xij}j>i of mean m and finite variance, scaling the eigenvalues by n we prove
the almost sure, weak convergence of the spectral measures to the atomic
measure at −m. If m = 0, and the fourth moment is finite, we prove that the
spectral norm of Mn scaled by

√
2n log n converges almost surely to one.

1. Introduction and main results

For a symmetric n × n matrix A, let λj(A), 1 ≤ j ≤ n denote the eigenvalues
of the matrix A, written in a non-increasing order. The spectral measure of A,
denoted µ̂(A), is the empirical distribution of its eigenvalues, namely

µ̂(A) =
1
n

n∑

j=1

δλj(A)

(so when A is a random matrix, µ̂(A) is a random measure on (R,B)).
Large dimensional random matrices are of much interest in statistics, where

they play a pivotal role in multivariate analysis. In his seminal paper, Wigner
(Wigner 1958) proved that the spectral measure of a wide class of symmetric random
matrices of dimension n converges, as n →∞, to the semi-circle law (also called the
Sato-Tate measure, see (Serre 1997) and the references therein). Much work has
since been done on related random matrix ensembles, either composed of (nearly)
independent entries, or drawn according to weighted Haar measures on classical (e.g.
orthogonal, unitary, simplectic) groups. The limiting behavior of the spectrum of
such matrices and their compositions is of considerable interest for mathematical
physics (see (Pastur & Vasilchuk 2000) and the references therein). In addition,
such random matrices play an important role in operator algebras studies initiated
by Voiculescu, known now as the free (non-commutative) probability theory (see,
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(Hiai & Petz 2000) and the many references therein). The study of large random
matrices is also related to interesting questions of combinatorics, geometry and
algebra (see the review (Fulton 2000), or for example (Speicher 1997)). In his
recent review paper (Bai 1999), Bai proposes the study of large random matrix
ensembles with certain additional linear structure. In particular, the properties
of the spectral measures of random Hankel, Markov and Toeplitz matrices with
independent entries are listed among the unsolved random matrix problems posed
in (Bai 1999, Section 6). We shall provide here the solution for these three problems.

We note in passing that Hankel matrices arise for example in polynomial regres-
sion, as the covariance for the least squares parameter estimation for the model∑p−1

i=0 bix
i, observed at x = x1, . . . , xn in the presence of additive noise (see (Sen &

Srivastava 1990, page 36)). Toeplitz matrices appear as the covariance of stationary
processes, in shift-invariant linear filtering, and in many aspects of combinatorics,
time series and harmonic analysis. See (Grenander & Szegő 1984) for classical
results on deterministic Toeplitz matrices, or (Diaconis 2003) and the references
therein, for their applications to certain random matrices. The infinitesimal gen-
erators of continuous time Markov processes on finite state spaces are given by
matrices with row-sums zero (which we call Markov matrices). Such matrices also
play an important role in graph theory, as the Laplacian matrix of each graph is
of this form, with its eigenvalues related to numerous graph invariants, see (Mohar
1991).

We next specify the corresponding ensembles of random matrices studied here.
Let {Xk : k = 0, 1, 2 . . . } be a sequence of i.i.d. real-valued random variables. For
n ∈ N, define a random n× n Hankel matrix Hn = [Xi+j−1]1≤i,j≤n,

Hn =




X1 X2 . . . . . . Xn−1 Xn

X2 X3 Xn Xn+1

... . .
.

Xn+1 Xn+2

Xn−2 Xn−1 . .
. ...

Xn−1 Xn X2n−3 X2n−2

Xn Xn+1 . . . . . . X2n−2 X2n−1




,(1.1)

and a random n× n Toeplitz matrix Tn = [X|i−j|]1≤i,j≤n,

Tn =




X0 X1 X2 . . . Xn−2 Xn−1

X1 X0 X1 Xn−2

X2 X1 X0
. . .

...
...

. . . X2

Xn−2 X0 X1

Xn−1 Xn−2 . . . X2 X1 X0




.(1.2)

The limiting spectral distribution for a Toeplitz matrix Tn is as follows.

Theorem 1.1. Let {Xk : k = 0, 1, 2, . . . } be a sequence of i.i.d. real-valued random
variables with Var(X1) = 1. Then with probability one, µ̂(Tn/

√
n) converges weakly

as n → ∞ to a non-random symmetric probability measure γT which does not
depend on the distribution of X1, and has unbounded support.

The spectrum of non-random Toeplitz matrices, the rows of which are typically
absolutely summable, is well approximated by its counterpart for circulant matrices
(c.f. (Grenander & Szegő 1984, page 84)). In contrast, note that the limiting
distribution γT is not normal as the calculation shows that the fourth moment is
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m4 = 8/3. This differs from the analogous results for random circulant matrices, see
(Bose & Mitra 2002), a fact that has been independently noticed also in references
(Bose, Chatterjee & Gangopadhyay 2003) and (Hammond & Miller 2003).

Our next result gives the limiting spectral distribution for a Hankel matrix Hn.

Theorem 1.2. Let {Xk : k = 0, 1, 2, . . . } be a sequence of i.i.d. real-valued random
variables with Var(X1) = 1. Then with probability one, µ̂(Hn/

√
n) converges weakly

as n → ∞ to a non-random symmetric probability measure γH which does not
depend on the distribution of X1, has unbounded support, and is not unimodal.

(Recall that a symmetric distribution ν is said to be unimodal, if the function
x 7→ ν((−∞, x]) is convex for x < 0.)

Remark 1.1. Theorems 1.1 and 1.2 fall short of establishing that the limiting dis-
tributions have smooth densities and that the density of γH is bimodal. Simulations
suggest that these properties are likely to be true, see Figure 1.

Remark 1.2. Consider the empirical distribution of singular values of the non-
symmetric random n × n Toeplitz matrix Rn = [Xi−j ]1≤i,j≤n. It follows from
Theorem 1.2 that as n → ∞, with probability one µ̂((RnRT

n )1/2/
√

n) → ν weakly,
where ν([0, x]) = γH([−x, x]), x > 0. Indeed, let Jn = [1i+j=n+1]1≤i,j≤n, noting
that Jn×RT

n is the Hankel matrix Hn for {Xk−n : k = 0, 1, . . . } to which Theorem
1.2 applies. Since J2

n = In, and both Jn and Jn × RT
n are symmetric, we have

RnRT
n = (RnJn)T JnRT

n = H2
n. Thus the singular values of matrix Rn are the

absolute values of the (real) eigenvalues of the symmetric Hankel matrix Hn.

We now turn to the Markov matrices Mn. Let {Xij : j ≥ i ≥ 1} be an infinite
upper triangular array of i.i.d. random variables and define Xji = Xij for j > i ≥ 1.
Let Mn be a random n× n symmetric matrix given by

Mn = Xn −Dn ,(1.3)

where Xn = [Xij ]1≤i,j≤n and Dn = diag(
∑n

j=1 Xij)1≤i≤n is a diagonal matrix, so
each of the rows of Mn has a zero sum (note that the values of Xii are irrelevant
for Mn), that is

Mn =




−∑n
j=2 X1j X12 X13 . . . X1n

X21 −∑n
j 6=2 X2j X23 . . . X2n

...
. . .

...
Xk1 Xk2 . . . −∑n

j 6=k Xkj . . . Xkn

...
...

. . .
...

Xn1 Xn2 . . . −∑n−1
j=1 Xnj




.

Wigner’s classical result says that µ̂(Xn/
√

n) converges weakly as n →∞ to the
(standard) semi-circle law with the density

√
4− x2/(2π) on (−2, 2). For normal

Xn and normal i.i.d. diagonal D̃n independent of Xn, the weak limit of µ̂((Xn −
D̃n)/

√
n) is the free convolution of the semi-circle and standard normal measures,

see (Pastur & Vasilchuk 2000) and the references therein (see also (Biane 1997) for
the definition and properties of the free convolution). This predicted result holds
also for the Markov matrix Mn, but the problem is non-trivial because Dn strongly
depends on Xn.

Theorem 1.3. Let {Xij : j ≥ i ≥ 1} be a collection of i.i.d. random variables
with IEX12 = 0, and Var(X12) = 1. With probability one, µ̂(Mn/

√
n) converges



4 WÃLODZIMIERZ BRYC, AMIR DEMBO, AND TIEFENG JIANG

weakly as n → ∞ to the free convolution γM of the semi-circle and standard nor-
mal measures. This measure γM is a non-random symmetric probability measure
with smooth bounded density, does not depend on the distribution of X12, and has
unbounded support.

If the mean of Xij is not zero, the following result is relevant.

Theorem 1.4. Let {Xij : i, j ∈ N, j ≥ i ≥ 1} be a collection of i.i.d. random
variables with IEX12 = m and IEX2

12 < ∞. Then µ̂(Mn/n) converge weakly to δ−m

as n →∞.

Turning to the asymptotic of the spectral norm |||Mn||| := max{λ1(Mn),−λn(Mn)}
of the symmetric matrix Mn, that is, the largest absolute value of its eigenvalues,
we have that

Theorem 1.5. Let {Xij : i, j ∈ N, j ≥ i ≥ 1} be a collection of i.i.d. random
variables with IEX12 = 0, Var(X12) = 1, and IEX4

12 < ∞. Then

lim
n→∞

|||Mn|||√
2n log n

= 1 a.s.

If the mean of Xij is not zero, the following result is relevant.

Corollary 1.6. Suppose IEX12 = m and IEX4
12 < ∞. Then

lim
n→∞

|||Mn|||
n

= |m| a.s.

Theorem 1.5 reveals a scaling in n that differs from that of the spectral norm of
Wigner’s ensemble, where under the same conditions, almost surely,

lim
n→∞

|||Xn|||√
n

= 2(1.4)

(c.f. (Bai 1999, Theorem 2.12)). As shown in Section 2 en-route to proving Theo-
rems 1.4, 1.5 and Corollary 1.6, this is due to the domination of the diagonal terms
of Mn in determining its spectral norm.

Remark 1.3. The asymptotic of the spectral norm of random Toeplitz Tn and
Hankel Hn matrices is not addressed in this work.

Theorems 1.4, 1.5 and Corollary 1.6 are proved in Section 2. The proofs of
Theorems 1.1 and 1.2, which are similar to each other, ultimately rely on the
method of moments and the well known relation∫

xkµ̂(A)(dx) =
1
n

trAk

for a n×n symmetric matrix A. We begin in Section 3 by introducing the combina-
torial structures which describe the moments of the limiting distributions. (Proofs
of the properties of the limiting distributions are postponed to the Appendix.) Then
in Section 4.1 we use truncation arguments to reduce the theorems to the case when
the expected values of the moments of the spectral measures are finite. In Section
4.2 we show that under suitable integrability assumptions the expected values of
moments of the spectral measures converge to the corresponding expressions from
Section 3 as the size of the matrix n → ∞. Representing the moments as traces,
we use independence of the entries and combinatorial arguments to discard the
irrelevant terms in the expansions (4.7) and (4.12). In Section 4.4 we show that
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the moments of the spectral measures are concentrated around their means, which
allows us to conclude the proofs in Section 4.5.

The proof of Theorem 1.3 follows a similar plan, with truncation argument in
Section 4.1, followed by combinatorial analysis of expansion (4.17) for the traces
and concentration of moments in Section 4.6.

2. Proofs of Theorems 1.4, 1.5 and Corollary 1.6

We need the following result, which follows by Chebyshev’s inequality from
Sakhanenko (Sakhanenko 1985, Section 6, Theorem 5), or (Sakhanenko 1991, Sec-
tion 5, Corollary 5).

Lemma 2.1 (Sakhanenko). Let {ξi; i = 1, 2, . . . } be a sequence of independent
random variables with mean zero and IEξ2

i = σ2
i . If IE|ξi|p < ∞ for some p > 2,

then there exists a constant C > 0 and {ηi, i = 1, 2, . . . }, a sequence of independent
normally distributed random variables with ηi ∼ N(0, σ2

i ) such that

IP( max
1≤k≤n

|Sk − Tk| > x) ≤ C

1 + |x|p
n∑

i=1

IE|ξi|p

for any n and x > 0, where Sk =
∑k

i=1 ξi and Tk =
∑k

i=1 ηi.

Proof of Theorem 1.5. Hereafter let b(n) =
√

2n log n denote the normalization
function for Theorem 1.5.

It follows from (1.3) that ||||Mn|||−|||Dn|||| ≤ |||Xn|||. So, by (1.4) and the definition
of Dn, it suffices to show that as n →∞,

Wn :=
1

b(n)
n

max
i=1

{ |
n∑

j=1

Xij | } → 1 a.s.(2.1)

We first show the upper bound, that is,

lim sup
n→∞

Wn ≤ 1 a.s.(2.2)

Note that {Xij ; j ≥ 1} is a sequence of i.i.d. random variables for each i ≥ 1.
By Lemma 2.1 and the condition that IE|X12|4 < ∞, for each i ≥ 1, there exists a
sequence of independent standard normals {Yij ; j ≥ 1} such that

n
max
i=1

IP
(

n
max
k=1

∣∣
k∑

j=1

(Xij − Yij)
∣∣ > x

)
≤ Cn

x4
(2.3)

for all x > 0 and n ≥ 1, where C is a constant which does not depend on n and x
(note that two sequences {Yij ; j ≥ 1} for different values of i are not independent
of each other). We claim that

Un :=
1

b(n)
n

max
i=1

{|
n∑

j=1

(Xij − Yij)|} → 0 a.s.(2.4)

as n →∞. First,

2m+1

max
k=2m

Uk ≤ 1
b(2m)

2m+1

max
i=1

2m+1

max
k=1

{|
k∑

j=1

(Xij − Yij)|}.
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By (2.3), for any ε > 0,

IP
(

2m+1

max
k=2m

Uk ≥ ε
)
≤ 2m+1IP

(
2m+1

max
k=1

|
k∑

j=1

(Xij − Yij)| ≥ εb(2m)
)
≤ Cε

m2

for some constant Cε depending only on ε. Since ε > 0 is arbitrary, by the Borel-
Cantelli lemma, max2m+1

k=2m Uk → 0 a.s. as m →∞, which implies (2.4). Let

Vn =
1

b(n)
n

max
i=1

|
n∑

j=1

Yij |.

By the definitions in (2.1) and (2.4), we have that Wn ≤ Un + Vn, so by (2.4) we
get (2.2) as soon as we show that lim supn→∞ Vn ≤ 1. To this end, fix δ > 0 and
α > 1/δ. Then,

IP
(

(m+1)α

max
n=mα

Vn ≥ 1 + δ
)

≤ (m + 1)αIP
(

(m+1)α

max
n=1

|
n∑

j=1

Y1j | ≥ (1 + δ)b(mα)
)

≤ 2(m + 1)αIP
(
|
(m+1)α∑

j=1

Y1j | ≥ (1 + δ)b(mα)
)

,(2.5)

where Levy’s inequality is used in the second step. Since Yij ’s are independent
standard normals, ξ := (m + 1)−α/2

∑(m+1)α

j=1 Y1j is a standard normal random
variable. Thus, by the well known normal tail estimate

1√
2π

x

1 + x2
e−x2/2 ≤ IP(ξ > x) ≤ 1√

2π

1
x

e−x2/2 for x > 0,(2.6)

we see that
IP

(
|ξ| ≥ (1 + δ)(m + 1)−α/2b(mα)

)
≤ Ĉδm

−α(1+δ)

for some constant Ĉδ > 0. Consequently, for some C ′δ > 0 and all m, by (2.5),

IP
(

(m+1)α

max
n=mα

Vn ≥ 1 + δ
)
≤ C ′δm

−αδ .

With αδ > 1, we have by the Borel-Cantelli lemma that,

lim sup
m→∞

{
(m+1)α

max
n=mα

Vn

}
≤ 1 + δ a.s.

It follows that lim supn→∞ Vn ≤ 1 + δ a.s. and taking δ ↓ 0 we obtain (2.2).
We next prove that

lim inf
n→∞

Wn ≥ 1 a.s.(2.7)

To this end, fixing 1/3 > ε > δ > 0, let nε := [n1−ε] + 1. Then,

Wn ≥ 1
b(n)

nεmax
i=1

|
n∑

j=1

Xij |

≥ 1
b(n)

nεmax
i=1

|
n∑

j=nε+1

Xij | − 1
b(n)

nεmax
i=1

|
nε∑

j=1

Xij | =: Vn,1 − Vn,2 .(2.8)
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By (2.2), lim supn→∞Wnε ≤ 1 a.s. Thus, with b(nε)/b(n) → 0 as n →∞, we have
that

Vn,2 = Wnε

b(nε)
b(n)

→ 0 a.s.(2.9)

Since {Xij ; 1 ≤ i ≤ nε, nε < j ≤ n} are i.i.d. for any n ≥ 1, it follows that

IP(Vn,1 ≤ 1− 3δ) = IP
(
|
n−nε∑

j=1

X1j | ≤ (1− 3δ)b(n)
)nε

.(2.10)

With b(n) ≥ √
n, by Lemma 2.1 there exists a sequence of independent standard

normals {Yj} such that for some C = C(δ) < ∞ and all n

IP
(
|
n−nε∑

j=1

X1j −
n−nε∑

j=1

Yj | ≥ δb(n)
)
≤ Cn−1 .(2.11)

Further, by the left inequality of (2.6) we have that for all n sufficiently large,

IP
(|

n−nε∑

j=1

Yj | ≤ (1− 2δ)b(n)
) ≤ IP(|Y1| ≤ (1− δ)

√
2 log n) ≤ 1− 2n−(1−δ) .

Combining this bound with (2.11) and (2.10) we get that for all n large enough

IP(Vn,1 ≤ 1− 3δ) ≤ (
1− 2n−(1−δ) + Cn−1

)nε ≤ (
1− n−(1−δ)

)n1−ε

≤ e−nε−δ

.

Recall that ε > δ, implying that
∑

n≥1 IP(Vn,1 ≤ 1−3δ) < ∞. By the Borel-Cantelli
lemma,

lim inf
n→∞

Vn,1 ≥ 1− 3δ a.s.

This together with (2.8) and (2.9) implies that almost surely lim infn→∞Wn ≥
1− 3δ, and the lower bound (2.7) follows by taking δ ↓ 0. ¤

Proof of Corollary 1.6. Let M̃n denote the Markov matrix obtained when X̃ij =
Xij − IEXij replace Xij in (1.3). Obviously,

Mn = M̃n + Yn,(2.12)

where Yn = [Yij ] is the n×n matrix with Yij = m−nm1i=j . Clearly, λ1(Yn) = 0,
λ2(Yn) = · · · = λn(Yn) = −nm, so |||Yn||| = n|m|. By (2.12) and Theorem 1.5, we
have that ∣∣∣∣

|||Mn|||
n

− |||Yn|||
n

∣∣∣∣ ≤
|||M̃n|||

n
→ 0

as n →∞. This implies that |||Mn|||/n → |m| a.s. ¤
In the context of this paper, the next lemma is very handy for truncation pur-

poses.

Lemma 2.2. Let {Xij : j > i ≥ 1} be an infinite triangular array of i.i.d. random
variables with IEX12 = 0 and Var(X12) = σ2. Let Xji = Xij for i < j and set
Xii = 0 for all i ≥ 1. Then,

1
n2

n∑

i=1

(
n∑

j=1

Xij)2 → σ2 a.s.

as n →∞.
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Proof. Define

Un :=
n∑

i=1

∑

1≤j<k≤n

XijXik.(2.13)

Then

1
n2

n∑

i=1

(
n∑

j=1

Xij)2 =
1
n2

n∑

i=1

n∑

j=1

X2
ij +

2
n2

Un.

By the strong Law of Large Numbers, the first term on the right hand side converges
almost surely to σ2, so it suffices to show that

Un

n2
→ 0 a.s.(2.14)

To this end, denote by Fk the σ-algebra generated by the random variables
{Xij , 1 ≤ i, j ≤ k}. Noting that

Un+1 − Un =
∑

1≤j<k≤n

X(n+1)jX(n+1)k +
n∑

i=1

n∑

j=1

XijXi(n+1),

it is easy to verify that {Un : n ≥ 1} is a martingale for the filtration {Fn : n ≥ 1}.
Further, the n2(n− 1)/2 terms in the sum (2.13) are uncorrelated. Indeed, if i 6= i′

and j < k, j′ < k′ then IE(XijXikXi′j′Xi′k′) = 0 as at least one of the four variables
in this product must be independent of the others. Thus, IE(U2

n) ≤ σ4n2(n− 1)/2
for any n ≥ 2, and by Doob’s sub-martingale inequality

IP( max
1≤i≤m2

|Ui| ≥ m4ε) ≤ IE(U2
m2)

m8ε2
≤ σ4

m2ε2
.

It follows by the Borel-Cantelli Lemma, that almost surely

Zm := m−4 max
1≤i≤m2

|Ui| → 0,

as m → ∞. Since n−2|Un| ≤ (m/(m − 1))4Zm whenever (m − 1)2 ≤ n ≤ m2,
m ≥ 2, we thus get (2.14). ¤

Let dBL denote the bounded Lipschitz metric

dBL(µ, ν) = sup{
∫

fdµ−
∫

fdν : ‖f‖∞ + ‖f‖L ≤ 1},(2.15)

where ‖f‖∞ = supb |f(x)|, ‖f‖L = supx 6=y |f(x) − f(y)|/|x − y|. It is well known,
see(Dudley 2002, Section 11.3), that dBL is a metric for the weak convergence of
measures. For the spectral measures of n×n symmetric real matrices A,B we have

dBL(µ̂(A), µ̂(B)) ≤ sup{ 1
n

n∑

j=1

|f(λj(A))− f(λj(B))| : ‖f‖L ≤ 1}

≤ 1
n

n∑

j=1

|λj(A)− λj(B)|.

By Lidskii’s theorem (Lidskĭı 1950), see also (Bai 1999, Lemma 2.3),
n∑

j=1

|λj(A)− λj(B)|2 ≤ tr((B−A)2),
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so

d2
BL(µ̂(A), µ̂(B)) ≤ 1

n
tr((B−A)2).(2.16)

Proof of Theorem 1.4. We use the notation from the proof of Corollary 1.6 and
write σ2 = Var(X11). By (2.12) and (2.16) the bounded Lipschitz metric (2.15)
satisfies

dBL(µ̂(Mn/n), µ̂(Yn/n)) ≤
(
n−3tr(M̃2

n)
)1/2

.(2.17)

Note that {X̃ij ; 1 ≤ i ≤ j} are i.i.d. random variables with mean zero and finite
variance. By the classical strong Law of Large Numbers and Lemma 2.2

n−2tr(M̃2
n) =


 2

n2

∑

1≤i<j≤n

X̃2
ij +

1
n2

n∑

i=1

(
n∑

j 6=i

X̃ij)2


 → 2σ2 a.s.(2.18)

as n → ∞. Recall that all but one of the eigenvalues of Yn are −nm, hence
µ̂(Yn/n) converges weakly to δ−m. Combining this with (2.17) and (2.18), we have
that almost surely, µ̂(Mn/n) converges weakly to δ−m. ¤

3. The limiting distributions γH , γM , and γT

3.1. Moments. For a probability measure γ on (R,B), denote its moments by

mk(γ) =
∫

xkγ(dx).

The probability measures γH , γM , and γT will be determined from their mo-
ments. It turns out that the odd moments are zero, and the even moments are the
sums of numbers labeled by the pair partitions of {1, . . . , 2k}.

It is convenient to index the pair partitions by the partition words w; these are
words of length |w| = 2k with k pairs of letters such that the first occurrences of
each of the k letters are in alphabetic order. In the case k = 2 we have 1× 3 such
partition words

aabb abba abab,

which correspond to the pair partitions

{1, 2} ∪ {3, 4} {1, 4} ∪ {2, 3} {1, 3} ∪ {2, 4}
of {1, 2, 3, 4}. Recall that the number of pair partitions of {1, . . . , 2k} is 1 × 3 ×
· · · × (2k − 1).

Definition 3.1. For a partition word w, we define its height h(w) as the number
of encapsulated partition sub-words, i. e., substrings of the form xw1x, where x is a
single letter, and w1 is either a partition word, or the empty word.

For example, h(abcabc) = 0, h(abcbca) = h(abccab) = 1, while h(aabbcc) =
h(abccba) = 3 (the encapsulating pairs of letters are underlined).

In the terminology of (Bożejko & Speicher 1996), h assigns to a pair partition
the number of connected blocks which are of cardinality 2. These connected blocks
of cardinality 2 are the pairs of letters underlined in the previous examples.
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In Proposition B.2 we show that the even moments of the free convolution γM

of the semi-circle and standard normal measures are given by

m2k(γM ) =
∑

w:|w|=2k

2h(w) .(3.1)

For the Toeplitz and Hankel case, with each partition word w we associate a
system of linear equation which determine the cross-section of the unit hypercube,
and define the corresponding volume p(w). We have to consider these two cases
separately.

3.2. Toeplitz volumes. Let w[j] denote the letter in position j of the word w.
For example, if w = abab then w[1] = a,w[2] = b, w[3] = a,w[4] = b.

To every partition word w we associate the following system of equations in
unknowns x0, x1, . . . , x2k.





x1 − x0 + xm1 − xm1−1 = 0 if m1 > 1 is such that w[1] = w[m1]
x2 − x1 + xm2 − xm2−1 = 0 if there is m2 > 2 such that w[2] = w[m2]

...
xi − xi−1 + xmi − xmi−1 = 0 if there is mi > i such that w[i] = w[mi]

...
x2k−1 − x2k−2 + x2k − x2k−1 = 0 if w[2k − 1] = w[2k].

(3.2)

Although we list 2k − 1 equations, in fact k − 1 of them are empty. Informally,
the left hand-sides of the equations are formed by adding the differences over the
same letter when the variables are written in the space “between the letters”. For
example, writing the variables between the letters of the word w = ababc..c.. we get

x0ax1bx2ax3bx4cx5 . . .xn cxn+1 . . . .(3.3)

The corresponding system of equations is



x1 − x0 + x3 − x2 = 0
x2 − x1 + x4 − x3 = 0
x5 − x4 + xn+1 − xn = 0
...

.(3.4)

Since in every partition word w of length 2k there are exactly k distinct letters,
this is the system of k equations in 2k + 1 unknowns. We solve it for the variables
that follow the last occurrence of a letter, leaving us with k + 1 undetermined
variables: x0, and the k variables that follow the first occurrence of each letter.

We then require that the dependent variables lie in the interval I = [0, 1]. This
determines a cross-section of the cube Ik+1 in the remaining undetermined k + 1
coordinates, the volume of which we denote by pT (w). For example, if w = abab,
solving the first pair of equations (3.4) for x3 = x0 − x1 + x2, x4 = x0, defines the
solid

{x0 − x1 + x2 ∈ I} ∩ {x0 ∈ I} ⊂ I3,

which has the (Eulerian) volume pT (abab) = 4/3! = 2/3.
We define measure γT as a symmetric measure with even moments

m2k(γT ) =
∑

w:|w|=2k

pT (w).(3.5)
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¿From Proposition 4.5 below it follows that (3.5) indeed defines a positive definite
sequence of numbers so that these are indeed the even moments of a probability
measure. Since m2k is at most the number (2k − 1)!! of words of length 2k, these
moments determine the limiting distribution γT uniquely.

3.3. Hankel volumes. We proceed similarly to the Toeplitz case. With each
partition word w we associate the following system of equations in unknowns
x0, x1, . . . , x2k.





x1 + x0 = xm1 + xm1−1 if m1 > 1 is such that w[1] = w[m1]
x2 + x1 = xm2 + xm2−1 if there is m2 > 2 such that w[2] = w[m2]

...
xi + xi−1 = xmi

+ xmi−1 if there is mi > i such that w[i] = w[mj ]
...

x2k−1 + x2k−2 = x2k + x2k−1 if w[2k − 1] = w[2k].

(3.6)

Informally, the equations are formed by equating the sums of the variables at
the same letter. For example, the word abab with the variables written as in (3.3)
gives rise to the system of equations

{
x1 + x0 = x3 + x2

x2 + x1 = x4 + x3
.(3.7)

As in the Toeplitz case, since there are exactly k distinct letters in the word, this
is the system of k equations in 2k + 1 unknowns. We solve it for the variables that
precede the first occurrence of a letter, leaving us with k undetermined variables
. . . , xα1 , . . . , xαk

= x2k−1 that precede the second occurrence of each letter, and
with the (k + 1)-th undetermined variable x2k. We add to the system (3.6) one
more equation:

x0 = x2k.

As previously, we require that the dependent variables are in the interval I =
[0, 1]. This determines a cross-section of the cube Ik+1 in the remaining k + 1
coordinates with the volume which we denote by pH(w).

Due to the additional constraint x2k = x0, this volume might be zero. For
example, equations (3.7) have solutions x0 = 2x2 − x4, x1 = x3 − x2 + x4 with
undetermined variables x2, x3, x4. Equation x0 = x4 gives additional relation x4 =
x2, and reduces the dimension of the solid {2x2−x4 ∈ I}∩{x3−x2+x4 ∈ I}∩{x4 =
x2} ⊂ I3 to 2. Thus the corresponding volume is pH(abab) = 0.

We define measure γH as a symmetric measure with even moments

m2k(γH) =
∑

w:|w|=2k

pH(w).(3.8)

¿From Proposition 4.7 below it follows that (3.8) indeed defines a positive definite
sequence of numbers so that these are indeed the even moments of a probability
measure. Since m2k is at most the number (2k − 1)!! of words of length 2k, these
moments determine the limiting distribution γH uniquely.
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3.4. Relation to Eulerian numbers. The Eulerian numbers An,m are often
defined by their generating function or by the combinatorial description as the
number of permutations σ of {1, . . . , n} with σi > σi−1 for exactly m choices of
i = 1, 2, . . . , n (taking σ0 = 0). The geometric interpretation is that An,m/n! is the
volume of a solid cut out of the cube In by the set {x1 + · · · + xn ∈ [m − 1,m]},
see (Tanny 1973). Converting any m− 1 of the coordinates x to 1− x, we get that
An,m/n! is the volume of a solid cut out of the cube In by the set

{(x1, . . . , xn) ∈ Rn : x1 + x2 + · · ·+ xn−m − (xn−m+1 + · · ·+ xn) ∈ I} .

The solids we encountered in the formula for the 2k-th moments are the intersections
of solids of this latter form, with odd values of n, each having m = (n− 1)/2, and
with various subsets of the coordinates entering the expression.

Another interesting representation is

Vol
(
{(x1, . . . , xn) ∈ In : x1 + x2 + · · ·+ xn−m − (xn−m+1 + · · ·+ xn) ∈ I}

)

=
2
π

∫ ∞

0

(
sin t

t

)n+1

cos((n + 1− 2m)t) dt.

This follows from the integral representation of Eulerian numbers in (Nicolas 1992).

Remark 3.1. One can verify that the probabilities pT (w) and pH(w) are rational
numbers, and hence so are m2k(γT ) and m2k(γH), defined by formulas (3.5) and
(3.8) (for details, c.f. (Bryc, Dembo & Jiang 2003)).

4. Proofs of Theorems 1.1, 1.2 and 1.3

4.1. Truncation and centering. We first reduce Theorems 1.1, 1.2 and 1.3 to
the case of bounded i.i.d. random variables, and in case of Theorems 1.1 and 1.2,
also allow for centering of these variables.

Proposition 4.1. (i) If Theorem 1.1 or Theorem 1.2 holds true for all
bounded independent i.i.d. sequences {Xj} with mean zero and variance
1, then it holds true for all square-integrable i.i.d. sequences {Xj} with
variance 1.

(ii) If Theorem 1.3 holds true for all bounded independent i.i.d. collections
{Xij} with mean zero and variance 1, then it holds true for all square-
integrable i.i.d. collections {Xij} with mean zero and variance 1.

Proof. Without loss of generality, we may assume that IE(X1) = 0 in Theorems 1.1
and 1.2. Indeed, from the rank inequality, (Bai 1999, Lemma 2.2) it follows that
subtracting a rank 1 matrix of the means IE(X1) from matrices Tn and Hn does
not affect the asymptotic distribution of the eigenvalues.

For a fixed u > 0, denote

m(u) = IEX1I{|X1|>u},

and let
σ2(u) = IEX2

1I{|X1|≤u} −m2(u).

Clearly, σ2(u) ≤ 1 and since IE(X1) = 0, IE(X2
1 ) = 1, we have m(u) → 0 and

σ(u) → 1 as u →∞.
Let

X̃1 = X1I{|X1|>u} −m(u).
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Notice that σ2(u) = IE(X1 − X̃1)2, therefore the bounded random variable

X ′
1 =

X1 − X̃1

σ(u)

has mean zero and variance 1. Denote by T′n,H′
n the corresponding Toeplitz and

Hankel matrices constructed from the independent bounded random variables

X ′
j :=

Xj − X̃j

σ(u)

distributed as X ′
1. By the triangle inequality for dBL(·, ·) and (2.16),

d2
BL(µ̂(Tn/

√
n), µ̂(T′n/

√
n))

≤ 2d2
BL(µ̂(Tn/

√
n), µ̂(σ(u)T′n/

√
n)) + 2d2

BL(µ̂(T′n/
√

n), µ̂(σ(u)T′n/
√

n))

≤ 2
n2

tr((Tn − σ(u)T′n)2) +
2
n2

(1− σ(u))2tr((T′n)2) .

It is easy to verify that IE(X̃2
1 ) = 1−σ2(u)− 2m(u)2 and that with probability one

1
n2

tr((Tn − σ(u)T′n)2) =
1
n

X̃2
0 +

2
n

n∑

j=1

(
1− j

n

)
X̃2

j → IE(X̃2
1 ) ,(4.1)

as n → ∞ (for example, sandwiching the coefficients j/n between the piecewise
constant `−1b`j/nc and `−1d`j/ne allows for applying the strong Law of Large
Numbers, with the resulting non-random bounds converging to IE(X̃2

1 ) as ` →∞).
Similarly,

1
n2

tr((T′n)2) =
1
n

(X ′
0)

2 +
2
n

n∑

j=1

(
1− j

n

)
(X ′

j)
2 → IE((X ′

1)
2).(4.2)

For large u, both m(u) and 1− σ(u) are arbitrarily small. So, in view of (4.1) and
(4.2), with probability one the limiting distance in the bounded Lipschitz metric
dBL between µ̂(Tn/

√
n) and µ̂(T′n/

√
n) is arbitrarily small, for all u sufficiently

large. Thus, if the conclusion of Theorem 1.1 holds true for all sequences of inde-
pendent bounded random variables {X ′

j}, with the same limiting distribution γT ,
then µ̂(Tn/

√
n) must have the same weak limit with probability one.

Similarly, we have

d2
BL(µ̂(Hn/

√
n), µ̂(H′

n/
√

n)) ≤ 2
n2

tr((Hn − σ(u)H′
n)2) +

2
n2

(1− σ(u))2tr((H′
n)2) .

By the same argument as before, with probability one

1
n2

tr((Hn − σ(u)H′
n)2) =

1
n

2n∑

j=0

(
1− |j − n|

n

)
X̃2

j → IE(X̃2
1 ) ,

and n−2tr((H′
n)2) → IE((X ′

1)
2). Therefore, with probability one the limiting dBL-

distance between µ̂(Hn/
√

n) and µ̂(H′
n/
√

n) is arbitrarily small for large enough
u.

Similarly, denoting by M̃n,M′
n the corresponding Markov matrices constructed

from the independent bounded random variables X̃ij and X ′
ij := Xij−X̃ij

σ(u) , we have

d2
BL(µ̂(Mn/

√
n), µ̂(M′

n/
√

n)) ≤ 2
n2

tr(M̃2
n) +

2
n2

(1− σ(u))2tr((M′
n)2) .
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By (2.18), with probability one n−2tr((M′
n)2) → 2 and n−2tr(M̃2

n) → 2IE(X̃2
12).

Therefore, with probability one, the limiting dBL-distance between µ̂(Mn/
√

n) and
µ̂(M′

n/
√

n) is arbitrarily small for large enough u. ¤

4.2. Combinatorics for Hankel and Toeplitz cases. For k, n ∈ N, consider
circuits in {1, . . . , n} of length L(π) = k, i.e., mappings π : {0, 1, . . . , k} →
{1, 2, . . . , n}, such that π(0) = π(k).

Let s : N2 → N be one of the following two functions: sT (x, y) = |x − y|, or
sH(x, y) = x + y. We will use s to match (i.e. pair) the edges (π(i− 1), π(i)) of a
circuit π. The main property of the symmetric function s is that for a fixed value
of s(m, n), every initial point m of an edge determines uniquely a finite number
(here, at most 2) of the other end-points: if k, m ∈ N, then

#{y ∈ N : s(m, y) = k} ≤ 2.(4.3)

For a fixed s as above, we will say that circuit π is s-matched, or has self-
matched edges, if for every 1 ≤ i ≤ L(π) there is j 6= i such that s(π(i− 1), π(i)) =
s(π(j − 1), π(j)).

We will say that a circuit π has an edge of order 3, if there are at least three
different edges in π with the same s-value.

The following proposition says that generically self-matched circuits have only
pair-matches.

Proposition 4.2. Fix r ∈ N. Let N denote the number of s-matched circuits in
{1, . . . , n} of length r with at least one edge of order 3. Then there is a constant
Cr such that

N ≤ Crn
b(r+1)/2c.

In particular, as n →∞ we have N
n1+r/2 → 0.

Proof. Either r = 2k is an even number, or r = 2k − 1 is an odd number. In
both cases, if an s-matched circuit has an edge of order 3, then the total number
of distinct s-values

{s(π(i− 1), π(i)) : 1 ≤ i ≤ L(π)}
is at most k−1. We can think of constructing each such circuit from the left to the
right. First, we choose the locations for the s-matches along {1, . . . , r}. This can
be done in at most r! ways. Once these locations are fixed, we proceed along the
circuit. There are n possible choices for the initial point π(0). There are at most
n choices for each new s-value, and there are at most 2 ways to complete the edge
for each repeat of the already encountered s-value. Therefore there are at most
r!× n× nk−12r+1−k ≤ Crn

k such circuits. ¤

We say that a set of circuits π1, π2, π3, π4 is matched if each edge of any one of
these circuits is either self-matched i.e., there is another edge of the same circuit
with equal s-value, or is cross-matched, i.e., there is an edge of the other circuit
with the same s-value (or both).

The following bound will be used to prove almost sure convergence of moments.

Proposition 4.3. Fix r ∈ N. Let N denote the number of matched quadruples
of circuits in {1, . . . , n} of length r such that none of them is self-matched. Then
there is a constant Cr such that

N ≤ Crn
2r+2.
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Proof. First observe that there are at most 2r distinct s-values in the 4r edges of
a matched quadruples of circuits of length r. Further, the number of quadruples
of such circuits for which there are exactly u distinct s-values is at most Cr,unu+4.
Indeed, order the edges (πj(i−1), πj(i)), of such quadruples starting at j = 1, i = 1,
then i = 2, . . . , r, followed by j = 2, i = 1 and then i = 2, . . . , r, etc. There are at
most u4r possible allocations of the distinct s-values to these 4r edges, at most n4

choices for the starting points π1(0), π2(0), π3(0), and π4(0) of the circuits and at
most nu for the values of πj(i) at those (j, i) for which (πj(i− 1), πj(i)) is the left-
most occurrence of one of the distinct s-values. Once these choices are made, we
proceed to sequentially determine the mapping π1(i) from i = 0 to i = r, followed
by the mappings π2, π3, π4, noting that by (4.3) at most 24r−u−4 quadruples can
be produced per such choice.

Recall that the number of possible partitions P of the 4r edges of our quadruple
of circuits into |P| distinct groups of s-matching edges, with at least two edges in
each group, is independent of n. Thus, by the preceding bound it suffices to show
that for each partition P with |P| ∈ {2r − 1, 2r} such that each circuit shares at
least one s-value with some other circuit, there correspond at most Cn2r+2 matched
quadruples of circuits in {1, . . . , n}. To this end, note that |P| = 2r implies that
each s-value is shared by exactly two edges, while when |P| = 2r − 1 we also have
either two s-values shared by three edges each or one s-value shared by four edges
(but not both).

Fixing hereafter a specific partition P of this type, it is not hard to check that
upon re-ordering our four circuits we have an s-value that is assigned to exactly one
edge of the circuit π1, denoted hereafter (π1(i∗ − 1), π1(i∗)), and in case |P| = 2r,
we also have another s-value that does not appear in π1 and is assigned to exactly
one edge of π2, denoted hereafter (π2(j∗ − 1), π2(j∗)). (Though this property may
not hold for all ordering of the four circuits, an inspection of all possible graphs of
cross-matches shows that it must hold for some order).

We are now ready to improve our counting bound for the case of |P| = 2r − 1,
by the following dynamic construction of π1:

First choose one of the n possible values for the initial value π1(0), and continue
filling in the values of π1(i), i = 1, 2, . . . , i∗ − 1. Then, starting at π1(r) = π1(0),
sequentially choose the values of π1(r − 1), π1(r − 2), . . . , π1(i∗), thus completing
the entire circuit π1. This is done in accordance with the s-matches determined
by P, so there are n ways to complete an edge that has no s-match among the
edges already constructed, while by (4.3) if an edge is matching one of the edges
already available, then it can be completed in at most 2 ways. Since this procedure
determines uniquely the edge (π1(i∗ − 1), π1(i∗)) and hence the s-value assigned to
it, it reduces to 2r−2 the number of s-matches that can each independently assume
O(n) values. Consequently, the number of quadruples of circuits corresponding to
P is at most Cn2r+2.

In case |P| = 2r, we first construct π1 by the preceding dynamic construction
while determining the s-value for the edge (π1(i∗ − 1), π1(i∗)) out of the circuit
condition for π1. Then, we repeat the dynamic construction for π2, keeping it
in accordance with the s-values determined already by edges of π1 and uniquely
determining the edge (π2(j∗−1), π2(j∗)) and hence the s-value assigned to it, by the
circuit condition for π2. Thus, we have again reduced the total number of s-matches



16 WÃLODZIMIERZ BRYC, AMIR DEMBO, AND TIEFENG JIANG

that can each independently assume O(n) values to 2r − 2, and consequently, the
number of quadruples of circuits corresponding to P is again at most Cn2r+2. ¤

The next result deals only with the slope matching function sT (x, y) = |x− y|.
Proposition 4.4. Fix k ∈ N. Let N be the number of sT -matched circuits π in
{1, . . . , n} of length 2k with at least one pair of sT -matched edges (π(i − 1), π(i))
and (π(j−1), π(j)) such that π(i)−π(i−1)+π(j)−π(j−1) 6= 0. Then, as n →∞
we have

n−(k+1)N → 0.

Proof. By Proposition 4.2, we may and shall consider throughout path π in
{1, . . . , n} of length 2k for which the absolute values of the slopes π(i) − π(i − 1)
take exactly k distinct non-zero values and, for π to be a circuit, the sum of all
2k slopes is zero. Let P denote a partition of the 2k slopes to sT -matching pairs,
indicating also whether each slope is negative or positive, with m(P) denoting the
number of such pairs for which both slopes are positive. Observe that if under
P both slopes of some sT -matching pair are negative, then necessarily m(P) ≥ 1,
for otherwise the sum of all slopes will not be zero for any path corresponding to
P. Thus, it suffices to show that at most nk circuits π correspond to each P with
m = m(P) ≥ 1. Indeed, fixing such P, there are at most n ways to choose π(0) and
nk−m ways to choose the k −m pairs of slopes for which at least one slope in each
pair is negative. The remaining m pairs of sT -matching positive slopes are to be
chosen among {1, . . . , n} subject to a specified sum (due to the circuit condition).
Since there are at most nm−1 ways for doing so, the proof is complete. ¤

4.3. Moments of the average spectral measure.

Proposition 4.5. Suppose {Xj} is a sequence of bounded i.i.d. random variables
such that IE(X1) = 0, IE(X2

1 ) = 1. Then for k ∈ N

lim
n→∞

1
nk+1

IEtr(T2k
n ) =

∑

w:|w|=2k

pT (w),(4.4)

and

lim
n→∞

1
nk+1/2

IEtr(T2k−1
n ) = 0.(4.5)

Proof. For a circuit π : {0, 1, . . . , r} → {1, 2, . . . , n} write

Xπ =
r∏

i=1

Xπ(i)−π(i−1).(4.6)

Then

IEtr(Tr
n) =

∑
π

IEXπ,(4.7)

where the sum is over all circuits in {1, . . . , n} of length r.
By Hölder’s inequality, for any finite set Π of circuits of length r

|
∑

π∈Π

IEXπ| ≤ IE(|X|r)#Π.(4.8)

Since |X|r is bounded, we can use the bound (4.8) to discard the “non-generic”
circuits from the sum in (4.7). To this end, note that since the random variables
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{Xj} are independent and have mean zero, the term IEXπ vanishes for every circuit
π with at least one unpaired Xj . Since Tn is a symmetric matrix, by (4.6) paired
variables correspond to the slopes of the circuit π which are equal in absolute value.
Hence, the only circuits that make a non-zero contribution to (4.7) are those with
matched absolute values of the slopes. This fits the formalism of Section 4.2 with
the matching function sT (x, y) = |x− y|.

If r = 2k − 1 > 0 is odd then each sT -matched circuit π of length r must have
an edge of order 3. From (4.8) and Proposition 4.2 we get |IEtr(T2k−1

n )| ≤ Cnk,
proving (4.5).

When r = 2k is an even number, let Π be the set of all circuits π :
{0, 1, . . . , 2k} → {1, . . . , n} with the set of slopes {π(i) − π(i − 1) : i = 1, . . . , 2k}
consisting of k distinct non-negative integers s1, . . . , sk and their counterparts
−s1, . . . ,−sk. From (4.8) and Proposition 4.4 it follows that

lim
n→∞

1
nk+1

|IEtr(Tr
n)−

∑

π∈Π

IEXπ| = 0.

Moreover, for every circuit π ∈ Π, if Xj enters the product Xπ then it occurs in it
exactly twice, resulting with IEXπ = 1, and consequently with

∑
π∈Π IEXπ = #Π.

Therefore, the following lemma completes the proof of (4.4), and with it, that of
Proposition 4.5. ¤

Lemma 4.6.

lim
n→∞

1
nk+1

#Π =
∑
w

pT (w),

where the sum is over the finite set of partition words w of length 2k.

Proof. The circuits in Π can be labeled by the partition words w of length 2k which
list the positions of the pairs of sT -matches along {1, . . . , 2k}. This generates the
partition Π =

⋃
w Π(w) into the corresponding equivalence classes.

To every such partition word w we can assign nk+1 paths π(i) = xi, i = 0, . . . , 2k
obtained by solving the system of equations (3.2), with values 1, 2, . . . , n for each
of the k + 1 undetermined variables, and the remaining k values computed from
the equations (which represent the relevant sT -matches for any π ∈ Π(w)). Some
of these paths will fail to be in the admissible range {1, . . . , n}. Let pn(w) be the
fraction of the nk+1 paths that stay within the admissible range {1, . . . , n}, noting
that by Proposition 4.2, pn(w)− n−(k+1)#Π(w) → 0.

Interpreting the undetermined variables xj as the discrete uniform independent
random variables with values {1, 2, . . . , n}, pn(w) becomes the probability that
the computed values stay within the prescribed range. As n → ∞, the k + 1
undetermined variables xj/n converge in law to independent uniform U [0, 1] random
variables Uj . Since pn(w) is the probability of the (independent of n) event Aw that
the solution of (3.2) starting with xj/n ∈ {1/n, 2/n, . . . , 1} has all the dependent
variables in (0, 1], it follows that pn(w) converges to pT (w), the probability of
the event Aw that the corresponding sums of independent uniform U [0, 1] random
variables take their values in the interval [0, 1]. ¤

Next we give the Hankel version of Proposition 4.5.
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Proposition 4.7. Let {Xj} be a sequence of bounded i.i.d. random variables such
that IE(X1) = 0, IE(X2

1 ) = 1. For k ∈ N,

lim
n→∞

1
nk+1

IEtr(H2k
n ) =

∑

w:|w|=2k

pH(w),(4.9)

and

lim
n→∞

1
nk+1/2

IEtr(H2k−1
n ) = 0.(4.10)

Proof. We mimic the procedure for the Toeplitz case. For a circuit π :
{0, 1, . . . , r} → {1, 2, . . . , n} write

Xπ =
r∏

i=1

Xπ(i)+π(i−1).(4.11)

As previously,

IEtr(Hr
n) =

∑
π

IEXπ ,(4.12)

where the sum is over all circuits in {1, . . . , n} of length r, and by Hölder’s inequal-
ity, we again have the bound (4.8), which for bounded |X|r we use to discard the
“non-generic” circuits from the sum in (4.12). To this end, with the random vari-
ables Xj independent and of mean zero, the term IEXπ vanishes for every circuit
π with at least one unpaired Xj . By (4.11), in the current setting paired variables
correspond to an sH -matching in the circuit π. Hence, only sH -matched circuits
(in the formalism of Section 4.2) can make a non-zero contribution to (4.12).

If r = 2k − 1 > 0 is odd then each sH -matched circuit π of length r must have
an edge of order 3. From (4.8) and Proposition 4.2 we get |IEtr(H2k−1

n )| ≤ Cnk,
proving (4.10).

When r = 2k is an even number, let Π be the set of all circuits π :
{0, 1, . . . , 2k} → {1, . . . , n} with the sH -values consisting of k distinct numbers.
Recall that IEXπ = 1 for any π ∈ Π (see (4.11)). Further, with any sH -matched
circuit not in Π having an edge of order 3, it follows from (4.8) and Proposition 4.2
that

lim
n→∞

1
nk+1

|IEtr(Hr
n)−#Π| = 0.

Therefore, the following lemma completes the proof of (4.9), and with it, that of
Proposition 4.7. ¤
Lemma 4.8.

lim
n→∞

1
nk+1

#Π =
∑

w:|w|=2k

pH(w).

Proof. Similarly to the proof of Lemma 4.6, label the circuits in Π by the partition
words w which list the positions of the pairs of sH -matches along {1, . . . , 2k}, with
the corresponding partition Π =

⋃
w Π(w) into equivalence classes. To every such

partition word w we can assign nk+1 paths π(i) = xi, i = 0, . . . , 2k obtained by solv-
ing the system of equations (3.6), with values 1, 2, . . . , n for each of the k+1 undeter-
mined variables, and the remaining k values computed from the equations. Some of
these paths will fail to be a circuit, and some will fail to stay in the admissible range
{1, . . . , n}. Let pn(w) denote the fraction of the paths that stay within the admis-
sible range {1, . . . , n} and are circuits, noting that pn(w)− n−(k+1)#Π(w) → 0 by
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Proposition 4.2. Thus, pn(w) is the probability of the event Aw that the solution
of (3.6) starting with the undetermined variables xj that are independent discrete
uniform random variables on the set {1/n, 2/n, . . . , 1}, stays within (0, 1] and sat-
isfies the additional condition x0 = x2k. It follows that as n →∞, the probabilities
pn(w) converge to pH(w), the probability of the event Aw with the undetermined
variables now being independent and uniformly distributed on [0, 1]. ¤

4.4. Concentration of moments of the spectral measure.

Proposition 4.9. Let {Xj} be a sequence of bounded i.i.d. random variables such
that IE(X1) = 0 and IE(X2

1 ) = 1. Fix r ∈ N. Then there is Cr < ∞ such that for
all n ∈ N we have

IE[(tr(Tr
n)− IEtr(Tr

n))4] ≤ Crn
2r+2 and IE[(tr(Hr

n)− IEtr(Hr
n))4] ≤ Crn

2r+2.

Proof. The argument again relies on the enumeration of paths. Since both proofs
are very similar, we analyze only the Hankel case.

Using the circuit notation of (4.11) we have that

IE[(tr(Hr
n)− IEtr(Hr

n))4] =
∑

π1,π2,π3,π4

IE[
4∏

j=1

(Xπj
− IE(Xπj

))],(4.13)

where the sum is taken over all circuits πj , j = 1, . . . , 4 on {1, . . . , n} of length r
each. With the random variables Xj independent and of mean zero, any circuit πk

which is not matched together with the remaining three circuits has IE(Xπk
) = 0

and

IE[
4∏

j=1

(Xπj − IE(Xπj ))] = IE[Xπk

∏

j 6=k

(
Xπj − IE(Xπj )

)
] = 0.

Further, if one of the circuits, say π1, is only self-matched, i.e., has no cross-matched
edge, then obviously

IE[
4∏

j=1

(Xπj − IE(Xπj ))] = IE[Xπ1 − IE(Xπj )]IE[
4∏

j=2

(
Xπj − IE(Xπj )

)
] = 0.

Therefore, it suffices to take the sum in (4.13) over all sH -matched quadruples of
circuits on {1, . . . , n}, such that none of them is self-matched. By Proposition 4.3,
there are at most Crn

2r+2 such quadruples of circuits, and with |X| (hence |Xπ|)
bounded, this completes the proof. ¤

4.5. Proofs of the Hankel and Toeplitz cases.

Proof of Theorem 1.1. Proposition 4.1(i) implies that without loss of generality we
may assume that the random variables {Xj} are centered and bounded.

By Proposition 4.5 the odd moments of the average measure IE(µ̂(Tn/
√

n))
converge to 0, and the even moments converge to m2k of (3.5). By Chebyshev’s
inequality we have from Proposition 4.9 that for any δ > 0 and k, n ∈ N,

IP
[∣∣

∫
xkdµ̂(Tn/

√
n)−

∫
xkdIE(µ̂(Tn/

√
n))

∣∣ > δ
]
≤ Ckδ−4n−2 .

Thus, by the Borel-Cantelli lemma, with probability one
∫

xkdµ̂(Tn/
√

n) →∫
xkdγT as n → ∞, for every k ∈ N. In particular, with probability one, the

random measures {µ̂(Tn/
√

n)} are tight, and since the moments determine γT

uniquely, we have the weak convergence of µ̂(Tn/
√

n) to γT .
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Since the moments do not depend on the distribution of the i.i.d. sequence {Xj},
the limiting distribution γT does not depend on the distribution of X either, and is
symmetric as all its odd moments are zero. By Proposition A.1, it has unbounded
support. ¤

Proof of Theorem 1.2. We follow the same line of reasoning as in the proof of The-
orem 1.1, starting by assuming without loss of generality that {Xj} is a sequence
of centered and bounded random variables, in view of Proposition 4.1(i). Then, by
Proposition 4.7, as n →∞ the odd moments of the average measure IE(µ̂(Hn/

√
n))

converge to 0, and the even moments converge to m2k of (3.8), whereas from Propo-
sition 4.9 we conclude that with probability one the same applies to the moments of
µ̂(Hn/

√
n). The almost surely convergence

∫
xkdµ̂(Hn/

√
n) → ∫

xkdγH as n →∞,
for all k ∈ N, implies tightness of µ̂(Hn/

√
n) and its weak convergence to the non-

random measure γH . Since its moments do not depend on the distribution of the
i.i.d. sequence {Xj}, so does the limiting distribution γH , which is symmetric since
all its odd moments are zero. By Proposition A.2 it has unbounded support, and
is not unimodal. ¤

4.6. Markov matrices with centered entries. In view of Proposition 4.1(iii) we
may and shall assume hereafter without loss of generality that the random variables
Xij are bounded. Our proof of Theorem 1.3 follows a similar outline as that used
in proving Theorems 1.1 and 1.2, where the combinatorial arguments used here rely
on matrix decomposition.

Starting with some notation we shall use throughout the proof, let Γn be a graph
whose vertices are two-element subsets of {1, . . . , n} with the edges between vertices
a and b if the sets overlap, a ∩ b 6= ∅. We indicate that (a, b) is an edge of Γn by
writing a ∼ b, and for a ∈ Γn let a = {a−, a+} with 1 ≤ a− < a+ ≤ n.

The main tool in the Markov case is the following decomposition

Mn =
∑

a∈Γn

XaQa,a,

where Xa := Xa+,a− and Qa,b is the n× n matrix defined for vertices a, b of Γn by

Qa,b[i, j] =




−1 if i = a+, j = b+, or i = a−, j = b−,

1 if i = a+, j = b−, or i = a−, j = b+,
0 otherwise.

Let ta,b = tr(Qa,b). It is straightforward to check that

ta,b =





−2 if a = b,
−1 if a 6= b and a− = b− or a+ = b+,

1 if a− = b+ or a+ = b−,
0 otherwise.

From this, we see that ta,b = tb,a. Since it is easy to check that Qa,b × Qc,d =
tb,cQa,d, we get

tr (Qa1,a1 ×Qa2,a2 × · · · ×Qar,ar ) =
r∏

j=1

taj ,aj+1 ,(4.14)

where for convenience we identified ar+1 with a1.
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For a circuit π = (a1 ∼ · · · ∼ ar ∼ a1) of length r in Γn let

Xπ =
r∏

j=1

taj ,aj+1

r∏

j=1

Xaj .(4.15)

It follows from (4.14) and (4.15) that

tr(Mr
n) =

∑
π

Xπ ,(4.16)

where the sum is over all circuits of length r in Γn, leading to the Markov analog
of the path expansion (4.7),

IEtr(Mr
n) =

∑
π

IEXπ.(4.17)

We say that a circuit π = (a1 ∼ · · · ∼ ar ∼ a1) of length r in Γn is vertex-
matched if for each i = 1, . . . , r there exists some j 6= i such that ai = aj , and
that it has a match of order 3 if some value is repeated at least three times among
(aj , j = 1, . . . , r). Note that the only non-vanishing terms in (4.17) come from
vertex-matched circuits.

In analogy with Proposition 4.2, we show next that generically vertex-
matched circuits have only double repeats, and consequently, the odd moments
of IEµ̂(Mn/

√
n) converge to zero as n →∞.

Proposition 4.10. Fix r ∈ N. Let N denote the number of vertex-matched circuits
in Γn with r vertices which have at least one match of order 3. Then there is a
constant Cr such that for all n ∈ N

N ≤ Crn
b(r+1)/2c.

Proof. Either r = 2k is even, or r = 2k − 1 is odd. In both cases, the total
number of different vertices per path is at most k − 1. Since a1 ∼ a2 ∼ · · · ∼ ar,
there are at most n2/2 choices for a1, and then at most 4n choices for each of the
remaining k − 2 distinct values of aj , and 1 choice for each repeated value. Thus
N ≤ 4rn2 × nk−2 = Cnk. ¤

Corollary 4.11. Suppose {Xij ; j ≥ i ≥ 1} are bounded i.i.d. random variables
such that IE(X12) = 0, IE(X2

12) = 1. Then,

lim
n→∞

1
nk+1/2

IEtr(M2k−1
n ) = 0.(4.18)

Proof. If IEXπ is non-zero, then all the vertices of the path a1 ∼ a2 ∼ · · · ∼ a2k−1

must be repeated at least twice. So for an odd number of vertices, there must be
a vertex which is repeated at least 3 times. Thus, by Proposition 4.10 and the
boundedness of |Xij | and of ta,b,∣∣IEtr(M2k−1

n )
∣∣ ≤ Cknk,

and (4.18) follows. ¤

Let Wn = n1/2Zn + Xn + ξIn, where Xn is a symmetric n × n matrix with
i.i.d. standard normal random variables (except for the symmetry constraint),
Zn = diag(Zii)1≤i≤n, with i.i.d. standard normal variables Zii that are independent
of Xn and ξ is a standard normal, independent of all other variables. A direct
combinatorial evaluation of the even moments of IEµ̂(Mn/

√
n) is provided in (Bryc,
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Dembo & Jiang 2003). We follow here an alternative, shorter proof, proposed to
us by O. Zeitouni. The key step, provided by our next lemma, replaces the even
moments by those of the better understood matrix ensemble Wn.

Lemma 4.12. Suppose {Xij ; j ≥ i ≥ 1} is a collection of bounded i.i.d. random
variables such that IE(X12) = 0, IE(X2

12) = 1. Then, for every k ∈ N,

lim
n→∞

n−(k+1)[IEtr(M2k
n )− IEtr(W2k

n )] = 0 .(4.19)

Proof. First observe that by Proposition 4.10, we may and shall assume without
loss of generality that {Xij} is a collection of i.i.d standard normal random vari-
ables, subject to the symmetry constraint Xij = Xji (as such a change affects
n−(k+1)IEtr(M2k

n ) by at most Ckn−1). Recall the representation Mn = Xn −Dn

of (1.3) and let M̃n = Xn− D̃(n)
n+1 where D̃(n)

n+1 is obtained by omitting the last row
and column of the diagonal matrix D̃n+1 which is an independent copy of Dn+1

that is independent of Xn. Observe that the diagonal entries of −D̃(n)
n+1 are jointly

normal, of zero mean, variance n + 1 and such that the covariance of each pair is
1. Therefore, with −D̃(n)

n+1 independent of Xn, for each n, the distribution of M̃n

is exactly the same as that of Wn. Consequently, (4.19) is equivalent to

lim
n→∞

n−(k+1)IE[tr(M2k
n )− tr(M̃2k

n )] = 0 .(4.20)

The first step in proving (4.20) is to note that by a path expansion similar to (4.17)
we have that

IE[tr(M2k
n )− tr(M̃2k

n )] =
∑

π

[IEMπ − IEM̃π] ,(4.21)

where now the sum is over all circuits π : {0, . . . , 2k} → {1, . . . , n}, and

Mπ =
2k∏

i=1

Mπ(i−1),π(i)

with the corresponding expression for M̃π. Set each word w of length 2k to be
a circuit by assigning w[0] = w[2k] and let Π(w) denote the collection of circuits
π such that the distinct letters of w are in a one to one correspondence with the
distinct values of π. Let v = v(w) be the number of distinct letters in the word
w, noting that #Π(w) ≤ nv(w) and that IEMπ − IEM̃π = fn(w) is independent
of the specific choice of π ∈ Π(w). Hence, taking the letters of w to be from the
set of numbers {1, 2, . . . , 2k} with the convention that w(i) = w[i], we identify w
as a representative of π ∈ Π(w) (recall w[0] = w[2k]). For example, w = abbc
of v(w) = 3 distinct letters becomes w = 1223 which we identify with the circuit
π ∈ Π(w) of length 4 consisting of the edges {1, 2}, {2, 2}, {2, 3} and {3, 1}. In
view of (4.21), we thus establish (4.20) by showing that for any w, some Cw < ∞
and all n,

|fn(w)| = |IEMw − IEM̃w| ≤ Cwnk−v(w)+1/2 .(4.22)

Let q = q(w) be the number of indices 1 ≤ i ≤ 2k for which w[i] = w[i − 1]
(for example, q(1223) = 1). It is clear from the definition of Mn and M̃n that
fn(w) 6= 0 only if q(w) ≥ 1. Let u = u(w) count the number of edges of distinct
endpoints in w, namely, with {w[i−1], w[i]} ∈ Γn, which appear exactly once along
the circuit w (for example, u(1223) = 3). Then, by independence and centering we
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have that IEM̃w = 0 as soon as u(w) ≥ 1, whereas it is not hard to check that if
u(w) > q(w) then also IEMw = 0. Thus, suffices to consider in (4.22) only circuits
w with q(w) ≥ u(w).

It is not hard to check that excluding the q loop-edges (each connecting some
vertex to itself), there are at most k+b(u−q)/2c distinct edges in w. These distinct
edges form a connected path through v(w) vertices, which for u ≥ 1 must also be
a circuit. Consequently, for any of the words w we are to consider,

v(w) ≤ k + 1u(w)=0 + b(u(w)− q(w))/2c ≤ k .(4.23)

Proceeding to bound |fn(w)|, note that any contribution which grows with n

must come from the q diagonal entries of Mn and M̃n which are encountered
according to the circuit w. Suppose first that u ≥ 1, in which case fn(w) = IEMw.
Computing the latter, upon expanding the sums in the q relevant diagonal entries of
Dn = diag(

∑n
j=1 Xij), we must assign specific choices to at least u of the resulting

“free” indices j1, . . . , jq ∈ {1, . . . , n} in order to match all u un-matched edges
of w of the form {w[i − 1], w[i]} ∈ Γn. Indeed, by independence and centering,
every other term of this expansion has zero expectation. After doing so, as each
diagonal entry of Dn is normal of mean zero and variance n, we conclude by Hölder’s
inequality that |fn(w)| ≤ Cwn(q−u)/2. By our bound (4.23) on v(w), this implies
that (4.22) holds.

Consider next words w for which u(w) = 0 and let a1, . . . , aq be the q vertices
for which {ai, ai} is an edge of the circuit w. Let Mii = Qi−Si and M̃ii = Q̃i− S̃i,
for i = 1, . . . , 2k, where Qi = Xii −

∑2k
j=1 Xij , Q̃i = Xii − X̃i,n+1 −

∑2k
j=1 X̃ij , and

S̃i =
∑n

j=2k+1 X̃ij with the corresponding expressions for Si. Note that we may
and shall replace each Si by S̃i without altering IEMw, and since the off-diagonal
entries of Mn and M̃n are the same, we have that

fn(w) = IE
[
Lw

[ q∏

i=1

(Qai − S̃ai)−
q∏

i=1

(Q̃ai − S̃ai)
]]

=
q∑

i=1

IE
[
Lw(Qai − Q̃ai)

i−1∏

j=1

Maj ,aj

q∏

j=i+1

M̃aj ,aj

]
,

where Lw is the product of the (2k− q) off-diagonal entries of Mn that correspond
to the edges of w that are in Γn. Since the distribution of (Lw, {Qi}, {Q̃i}) is
independent of n > 2k, while Mii and M̃ii are normal of mean zero and variance at
most n + 2, it follows by Hölder’s inequality that |fn(w)| ≤ Cwn(q(w)−1)/2, which
by (4.23) results with (4.22).

As already seen, (4.22) implies that (4.20) holds and hence the proof of the
lemma is complete. ¤

Let γ0(dx) = dx
2π

√
4− x21|x|≤2 denote the semi-circle distribution, γ1(dx) =

dx√
2π

exp(−x2/2) denote the standard normal distribution and let γM = γ0 ¢ γ1 be
the corresponding free convolution. In view of Lemma 4.12, our next result shows
that the even moments of IEµ̂(Mn/

√
n) converge as n →∞ to those of γM .

Proposition 4.13. For every k ∈ N,

lim
n→∞

n−(k+1)IEtr(W2k
n ) =

∫
x2kdγM .(4.24)
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Proof. Let An = Zn+n−1/2ξIn, so n−1/2Wn = An+n−1/2Xn. By the strong LLN,
with probability one µ̂(An) → γ1 weakly. Further, supn IE

∫ |x|dµ̂(An) < ∞, and
IE

∫ |x|dµ̂(n−1/2Xn) ≤ n−1
√

IEtr(X2
n) = 1, implying by (Pastur & Vasilchuk 2000,

Theorem 2.1 and p. 280) that µ̂(Wn/
√

n) converges weakly to γM , in probability.
It follows that for any k ∈ N and all r < ∞,

lim
n→∞

IE
∫

hr(x)dµ̂(Wn/
√

n) =
∫

hr(x)dγM(4.25)

where hr(x) = (min(|x|, r))2k. Recall that all moments of γM are finite (c.f. Propo-
sition A.3), so as r →∞ the right-hand side of (4.25) converges to

∫
x2kdγM . It is

not hard to check that for any k ∈ N,

IE
∫

x2kdµ̂(Wn/
√

n) = n−(k+1)IEtr(W2k
n ) ,

is bounded in n by some Ck < ∞. Hence, for all n,

|n−(k+1)IEtr(W2k
n )− IE

∫
hr(x)dµ̂(Wn/

√
n)| ≤ Ck+1r

−2 ,

and (4.24) follows by considering r →∞ in (4.25). ¤

We next derive the analog of Proposition 4.3 and similarly to Proposition
4.9, get as a result the concentration of moments of µ̂(Mn/

√
n) around those of

IE(µ̂(Mn/
√

n)).

Proposition 4.14. Fix r ∈ N. Let N denote the number of vertex-matched quadru-
ples of circuits in Γn with r vertices each, such that none of them is self-matched.
Then there is a constant Cr such that

N ≤ Crn
2r+2.

Proof. Let P denote the partition of the 4r vertices of the circuits π1, . . . , π4 in
Γn to |P| ≤ 2r distinct groups of matching vertices, with at least two elements in
each group, while having each circuit cross-matched to at least one of the other
circuits. As part of P we specify also which of the four types of edges to use in
each connection along the circuits. For i = 1, 2, 3, 4, let ui = ui(P) be the number
of distinct vertices in πi that do not appear in any πj , j < i. There are at most
n1+u1 ways to choose the circuit π1 in agreement with P, that is, n2/2 ways to
choose the vertex a1 of π1 and at most n ways for each of the remaining u1 − 1
distinct vertices of π1. For i = 2, 3, 4, per given πj , j < i, the same procedure
shows that there are at most n1+ui ways to complete the circuit πi. Further, if πi is
cross-matched to πj for some j < i, then starting the completion of πi at a vertex
that we already determined by such a cross-match, we have that there are only nui

ways to complete πi. The latter improved bound always applies for i = 4, and it
is not hard to check that upon re-ordering the four circuits, we can assure that it
applies also for i = 3. We thus get at most nu+2 quadruples of circuits per choice
of P, where u =

∑
i ui = |P| ≤ 2r, yielding the stated bound. ¤

Proposition 4.15. Suppose {Xij ; j ≥ i ≥ 1} is a collection of bounded i.i.d.
random variables such that IE(X12) = 0 and IE(X2

12) = 1. For any r ∈ N, there
exists Cr < ∞ such that IE[(tr(Mr

n)− IEtr(Mr
n))4] ≤ Crn

2r+2 for all n ∈ N.
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Proof. By (4.16) we have the Markov analog of (4.13)

IE[(tr(Mr
n)− IEtr(Mr

n))4] =
∑

π1,π2,π3,π4

IE[
4∏

j=1

(Xπj
− IE(Xπj

))],(4.26)

where the sum is taken over all circuits πj , j = 1, . . . , 4 in Γn, each having r
vertices. With the random variables {Xij ; n ≥ j ≥ i ≥ 1} independent and of mean
zero, just like the proof of Proposition 4.9, it suffices to take the sum in (4.26)
over all vertex-matched quadruples of circuits on Γn, such that none of them is
self-matched. Since |X| (and hence |Xπ|) is bounded the stated inequality follows
from the bound of Proposition 4.14 on the number of such quadruples. ¤

Proof of Theorem 1.3. The proof is very similar to that of Theorems 1.1 and 1.2,
where by Proposition 4.1(ii), we may and shall assume that {Xij ; j ≥ i ≥ 1} is a
collection of i.i.d. bounded random variables. Then, by (4.18) the odd moments of
the average measure IE(µ̂(Mn/

√
n)) converge to 0, and by Proposition 4.13 the even

moments converge to those of γM , whereas from Proposition 4.15 we conclude that
with probability one the same applies to the moments of µ̂(Mn/

√
n). By Proposi-

tion A.3, γM is a symmetric measure of bounded smooth density that, though of un-
bounded support, is uniquely determined by its moments (having in particular zero
odd moments). Hence, the almost surely convergence

∫
xkdµ̂(Mn/

√
n) → ∫

xkdγM

as n →∞, for all k ∈ N, implies the weak convergence of µ̂(Mn/
√

n) to γM . ¤
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Lidskĭı, V. B. (1950). On the characteristic numbers of the sum and product of
symmetric matrices. Doklady Akad. Nauk SSSR (N.S.), 75, 769–772.

Lukacs, E. (1970). Characteristic functions. Hafner Publishing Co., New York.
Second edition, revised and enlarged.

Mohar, B. (1991). The Laplacian spectrum of graphs. In Graph theory, combina-
torics, and applications. Vol. 2 (Kalamazoo, MI, 1988), Wiley-Intersci. Publ.
(pp. 871–898). New York: Wiley.

Nicolas, J.-L. (1992). An integral representation for Eulerian numbers. In Sets,
graphs and numbers (Budapest, 1991), volume 60 of Colloq. Math. Soc. János
Bolyai (pp. 513–527). Amsterdam: North-Holland.

Pastur, L. & Vasilchuk, V. (2000). On the law of addition of random matrices.
Comm. Math. Phys., 214 (2), 249–286.

Sakhanenko, A. I. (1985). Estimates in an invariance principle. In Limit theo-
rems of probability theory, volume 5 of Trudy Inst. Mat. (pp. 27–44, 175).
Novosibirsk: “Nauka” Sibirsk. Otdel.

Sakhanenko, A. I. (1991). On the accuracy of normal approximation in the in-
variance principle [translation of Trudy Inst. Mat. (Novosibirsk) 13 (1989),
Asimptot. Analiz Raspred. Sluch. Protsess., 40–66; MR 91d:60082]. Siberian
Adv. Math., 1 (4), 58–91. Siberian Advances in Mathematics.

Sen, A. & Srivastava, M. (1990). Regression analysis. Springer Texts in Statistics.
New York: Springer-Verlag. Theory, methods, and applications.
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Appendix A. Properties of γH , γM and γT

In this section we establish properties of the symmetric measures with moments
given by (3.5), and (3.8) and the free convolution γM of Theorem 1.3. For proofs,
it is convenient to express the volumes pH(w) and pT (w) as the probabilities that
involve sums of independent uniform random variables. This can be done by setting
the undetermined variables as the independent uniform U [0, 1] random variables
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U0, U1, . . . , Uk, expressing the dependent variables as the linear combinations of
U0, U1, . . . , Uk, and expressing the volumes as the probabilities that these linear
combinations are in the interval I. For each partition word w of length 2k with a
non-zero volume p(w), this probability takes the form

p(w) = IP




k⋂

i=1





M∑

j=0

ni,jUj ∈ [0, 1]






 ,(A.1)

where ni,j are integers and M = k.

Proposition A.1. A symmetric measure γT with even moments given by (3.5) has
unbounded support.

Proof. It suffices to show that (m2k)1/k →∞. Let w be a partition word of length
2k. Denoting Si =

∑
j ni,jUj − 1

2 , i = 1, 2, . . . , k, we have

pT (w) = IP

(
k⋂

i=1

{
|Si| < 1

2

})
.(A.2)

Since the coefficients ni,j in (A.1) take values 0,±1 only, and
∑

j ni,j = 1, each
of the sums Si in (A.2) has the following form

S = (Uα − 1/2) +
L∑

j=1

(Uβ(j) − Uγ(j)),(A.3)

where α, β(j), γ(j), j = 1, . . . , L are all different. Let Li denote the number of
independent random variables U in this representation for Si. Clearly, 1 ≤ Li ≤
k + 1.

Fixing ε > 0 let Uj = 1/2 + Vj/(ε(k + 1)) for j = 0, . . . , k. For k > 1/ε define
the event

A =
k⋂

j=0

{
|Uj − 1/2| < 1

2ε(k + 1)

}
,

noting that conditionally on A, the random variables V0, . . . , Vk are independent,
each uniformly distributed on [−1/2, 1/2]. As under this conditioning the i.i.d.
random variables {Vj} have symmetric laws, it is easy to check that for i = 1, . . . , k,
the form (A.3) of Si implies that

IP(|Si| > 1
2
|A) = IP(|

Li∑

j=1

Vj | > ε(k + 1)/2) = 2IP(
Li∑

j=1

Vj > ε(k + 1)/2) ,

which by Markov’s inequality is bounded above by

2e−ε2(k+1)/2(IEeεV )Li = e−ε2(k+1)/2

(
eε/2 − e−ε/2

ε

)Li

.

Since ex−e−x

2x ≤ ex2/2 for x > 0, and Li ≤ k + 1, we deduce that

IP
(
|Si| > 1

2

∣∣∣∣ A

)
≤ 2 exp

(−ε2(k + 1)/2 + ε2Li/4
) ≤ 2e−ε2(k+1)/4 ,(A.4)
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for i = 1, . . . , k. As 2ke−ε2(k+1)/4 ≤ 1/2 for some k0 = k0(ε) < ∞ and all k ≥ k0,
it follows from (A.2) and (A.4) that for all k ≥ k0 and any word w of length 2k,

pT (w) ≥ 1
2
IP(A) =

1
2
(ε(k + 1))−(k+1).(A.5)

Since there are more than k! partition words w of length 2k, this shows that for all
large enough k we have

m2k ≥ 1
2
k!(ε(k + 1))−(k+1) ≥ (3ε)−k.

Hence, lim supk→∞m
1/k
2k ≥ 1/(3ε). As ε > 0 is arbitrarily small, this completes the

proof. ¤

Proposition A.2. A symmetric measure γH with even moments given by (3.8) is
not unimodal and has unbounded support.

Proof. Suppose that the symmetric distribution γH is unimodal. Since all moments
of γH are finite, from Khinchin’s Theorem, see (Lukacs 1970, Theorem 4.5.1), it
follows that if φ(t) =

∫
eitxγH(dx) denotes the characteristic function of γH , then

g(t) = φ(t) + tφ′(t) must be a characteristic function, too. The even moments
corresponding to g(t) are (2k+1)m2k(γH), and must be a positive definite sequence,
that is, the Hankel matrices with entries [(2(i+j)−3)m2(i+j−2)(γH)]1≤i,j≤n should
all be non-negative definite. However, with m4 = 2, m6 = 11/2 and m8 = 281/15,
for n = 3 the determinant

det




1 3m2 5m4

3m2 5m4 7m6

5m4 7m6 9m8


 = det




1 3 10
3 10 77/2
10 77/2 843/5


 = −73/20

is negative. Thus, γH is not unimodal.
To show that the support of γH is unbounded we proceed like in the Toeplitz

case. The main technical obstacle is that some partition words contribute zero
volume. We will therefore have to find enough partition words that contribute a
non-zero volume, and then give a lower bound for this contribution.

We consider only moments of order 4k − 2, k ≥ 2, and find the contribution of
the partition words which have no repeated letters in the first half, i. e.,

w[1] 6= w[2] 6= · · · 6= w[2k − 1].

That is, we consider the set of partition words w of length 4k − 2 of the form
w = abc... with the first 2k − 1 letters written in the fixed (alphabetic) order,
followed by the repeated letters a, b, c, . . . at positions 2k, . . . , 4k − 2. We also
require that the repeats are placed at odd distance from the original matching
letter. Formally, we consider the set of partition words w of length 4k − 2 which
satisfy the following condition.

If w[α] = w[β] and α < β then α 6≡ β mod 2, α ≤ 2k − 1, and
β ≥ 2k.

Since we can permute all letters at locations 2k, 2k +2, . . . , 4k− 2 and all letters at
locations 2k +1, 2k +3, . . . , 4k−3, clearly there are k!(k−1)! such partition words.

To show that all such partition words contribute a non-zero volume, we need
to carefully analyze the matrix of the resulting system of equations (3.6). This is
a (2k − 1) × (4k − 1) matrix with entries 0,±1 only. The first 2k − 1 columns of
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the matrix are filled in with the pattern of sliding pairs 1, 1 corresponding to first
occurrences of every letter, i.e. the left hand sides of equations (3.6) are simply





x0 + x1 = . . .
x1 + x2 = . . .

...
x2k−2 + x2k−1 = . . .

.

So the first 2k columns of the matrix are as follows, with the star denoting as yet
unspecified entries of the 2k-th column.

1100..00*
0110..00*
0011..00*
...

0000..11*
0000..011

The remaining columns are as follows. In every even row of the second half we have
a disjoint (non-overlapping) pairs (−1,−1), including the site adjacent to the ”last
letter”, that has entry 1 in the last row, and entry −1 in one of the odd rows. None
of these −1,−1 are in the last column, a coefficient of x4k−2.

In the odd rows we have pairs of consecutive (−1,−1) which overlap entries from
the even rows, but not themselves, including a single (−1,−1) pair which fills in
one spot in the last column, the coefficients of x4k−2.

For example, the word w = abc . . . abc . . . , where all 2k − 1 letters a, b, c, . . . are
repeated alphabetically twice, is in the class of the partition words under consider-
ation. The corresponding system of equations is





x0 + x1 = x2k−1 + x2k

...
xi + xi+1 = x2k+i−1 + x2k+i, i = 1, 2, . . . , 2k − 3

...
x2k−2 + x2k−1 = x4k−3 + x4k−2 ,

and its matrix is

1100..00-1-1 0 ... 0 0
0110..00 0-1-1 ... 0 0
0011..00 0 0-1 ... 0 0
...

0000..11 0 0 0 ...-1 0
0000..01 1 0 0 ...-1-1

All other partition words in our class are obtained from permuting letters
w[2k], w[2k + 2], . . . , w[4k − 2], and then permuting letters w[2k + 1], w[2k +
3], . . . , w[4k−3] of w = abc . . . abc. Thus all other systems of equations are obtained
from the above one by permuting even rows in columns 2k + 1, 2k + 2, . . . , 4k − 2
and odd rows in columns 2k, 2k +1, . . . , 4k− 1 (apart from the 1 at column 2k and
row 2k − 1 which is never permuted, but get eliminated if the first row permutes
to become the last one). For each of these words the sum of all odd rows in the
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system minus the sum of all even rows is [1, 0, . . . , 0,−1], implying that for such w
the additional constraint x0 = x4k−2 we require when computing pH(w) is merely
a consequence of (3.6).

The solutions of equations (3.6) for such partition words w are easy to analyze
due to parity considerations. Gaussian elimination consists here of subtractions of
the given row from the row directly above it, starting with the subtraction of the
(2k− 1) row and ending with the subtraction of the second row from the first row,
at which point the first 2k − 1 columns become the identity matrix. During these
subtractions, a −1 entry in each column of the original system can meet a non-
zero entry only from a row positioned at an odd distance above it, in which case
they cancel each other. So as we keep subtracting, all coefficients take values 0,±1
only. Further, for each row the sum of the entries in columns 2k, . . . , 4k− 1 is −2,
except for the last row for which it is −1. Thus, after all subtractions have been
made, these sums are −1 at each of the rows. We can now set the 2k undetermined
variables to i.i.d. U [0, 1] random variables, x2k−1 = U0, . . . , x4k−2 = U2k−1, and
solve the 2k− 1 equations for the dependent variables x0, . . . , x2k−2. By the above
considerations we know that each of these dependent random variables is expressed
as an alternating sums of independent uniform U[0,1] random variables of the form
(A.3).

The argument we used for deriving (A.5) thus gives the bound pH(w) ≥
1
2 (2kε)−2k for each of these k!(k − 1)! partition words, and hence for all k large
enough, we have

m4k−2(γH) ≥ 1
2
k!(k − 1)!(2εk)−2k ≥ (6ε)−2k.

Thus m
1/k
4k−2 →∞, which implies that the support of γH is unbounded. ¤

Proposition A.3. The free convolution γM = γ0 ¢ γ1 of the standard semi-circle
distribution γ0 and the standard normal γ1 is a symmetric measure, determined by
moments, has unbounded support and a smooth bounded density.

Proof. By (Biane 1997, Corollary 2), γM has a density, by (Biane 1997, Corollary
4) the density is smooth, and by (Biane 1997, Proposition 5) it is bounded.

We now verify that γM is determined by moments and has unbounded support.
We need the following observation: a probability measure µ has odd moments van-
ishing iff the odd free cumulants k2r+1(µ) of µ vanish. This can be easily read from
(Speicher 1997, formula (72)).

Since free cumulants linearize the free convolution, kr(γM ) = kr(γ0) + kr(γ1).
This shows that the odd moments of γM vanish. Recall that the free cumulants
kn(µ) and the moments mn(µ) of a probability measure µ are related by (Speicher
1997, formula (72)). In particular, for µ with vanishing odd moments, the even
cumulants k2r(µ) are related to the moments by the equations

m2n(µ) =
n∑

r=1

k2r(µ)
∑

i1+···+i2r=2n−2r

2r∏

j=1

mij (µ) , n = 1, 2, . . . .(A.6)

By symmetry, the odd cumulants of γ1 vanish, and k2r(γ1) are non-negative;
(k2r(γ1) count all irreducible pair partitions of {1, . . . , 2r}, see (Bożejko & Speicher
1996, page 152)). Since k2(γ0) = 1, and all higher free cumulants of γ0 vanish (see
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(Hiai & Petz 2000, Example 2.4.6)), we have

k2r(γ1) ≤ k2r(γM ) ≤ 2k2r(γ1)

Together with (A.6) this implies by induction that

m2r(γ1) ≤ m2r(γM ) ≤ 4rm2r(γ1)

In particular, γM has unbounded support and is uniquely determined by moments.
Since its odd cumulants vanish, the odd moments vanish and γM is symmetric. ¤

Appendix B. Moments of free convolution

In this section we identify moments of the free convolution γ0 ¢ γ1. The result
and the method of proof were suggested by (Bożejko & Speicher 1996), who give a
combinatorial expression for the moments of free convolutions of normal densities.

Denote by W the set of all partition words. Recall that a (partition) sub-word of
a word w is a partition word w1 such that w = a...cw1d..z. Let W0 be the set of all
irreducible partition words, i. e., words that have no proper (non-empty) partition
sub-words.

Definition B.1 ((Bożejko & Speicher 1996)). We say that p : W → R is pyra-
midally multiplicative, if for every w ∈ W of the form w = a...cw1d..z, we have
p(w) = p(w1)p(a...cd..z).

Lemma B.1 ((Bożejko & Speicher 1996, page 152)). Suppose that the moments
are given by

m2n =
∑

w∈W,|w|=2n

p(w),(B.1)

and m2n−1 = 0, n = 1, 2, . . . . If the weights p(w) are pyramidally multiplicative,
then the free cumulants are

k2n =
∑

w∈W0,|w|=2n

p(w).

Proposition B.2. A symmetric measure γM with the even moments given by (3.1)
is given by the free convolution γM = γ0 ¢ γ1.

Proof. We apply Lemma B.1 to measures γM , γ0, and γ1. If w = ..w1.. then
h(w) = h(w1) + h(w \w1), so the Markov weights pM (w) := 2h(w) are pyramidally
multiplicative. It is well known that the moments of the normal distribution are
given by (B.1) with p1(w) = 1, which is (trivially) multiplicative. The moments
of the semi-circle distribution are given by (B.1) with p0(w) = 1 for the so called
non-crossing words, and p0(w) = 0 otherwise. (A partition word is non-crossing, if
it can be reduced to the empty word by removing pairs of consecutive double letters
xx, one at a time.) It is well known that this weight is pyramidally multiplicative,
too.

We now use Lemma B.1 to compare the free cumulants of the semi-circle, normal
and Markov distributions. Let w ∈ W0. If |w| = 2 then pM (w) = 2, and otherwise
pM (w) = 20 = 1 as an irreducible word has no proper sub-words, and hence no
encapsulated sub-words. Thus k2(γM ) = 2, and for n ≥ 2

k2n(γM ) = #{w ∈ W0, |w| = 2n}.
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If |w| = 2 then p0(aa) = 1, and otherwise p0(w) = 0 as an irreducible word of
length 4 or more cannot be non-crossing. Thus k2(γ0) = 1, and for n ≥ 2

k2n(γ0) = 0.

From p1(w) = 1 we get

k2n(γ1) = #{w ∈ W0, |w| = 2n}
for n ≥ 1; in particular, k2(γ1) = 1. Thus, for n ≥ 1

k2n(γM ) = k2n(γ0) + k2n(γ1),

which proves that γM = γ0 ¢ γ1. ¤
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Figure 1. Histograms of the empirical distribution of eigenval-
ues of 100 realizations of the Hankel and Toeplitz matrices with
standardized triangular U − U ′ entries.
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