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SPECTRAL METHOD ON QUADRILATERALS

GUO BEN-YU AND JIA HONG-LI

ABSTRACT. In this paper, we investigate the spectral method on quadrilat-
erals. We introduce an orthogonal family of functions induced by Legendre
polynomials, and establish some results on the corresponding orthogonal ap-
proximation. These results play important roles in the spectral method for
partial differential equations defined on quadrilaterals. As examples of appli-
cations, we provide spectral schemes for two model problems and prove their
spectral accuracy in Jacobi weighted Sobolev space. Numerical results coin-
cide well with the analysis. We also investigate the spectral method on convex
polygons whose solutions possess spectral accuracy. The approximation results
of this paper are also applicable to other problems.

1. INTRODUCTION

During the past three decades, spectral method has gained increasing popularity
in scientific computations; see [I]-[7] and [9]-[11] and the references therein. The
standard spectral method is traditionally confined to periodic problems and prob-
lems defined on rectangular domains. However, many practical problems are set
on complex domains. We usually use finite element methods for such problems.
For obtaining accurate numerical results, it is also interesting to consider spectral
methods and other high order methods for non-rectangular domains. Some authors
proposed spectral methods for triangles, quadrilaterals and unbounded domains,
see, e.g., [1], [2], [, [14]-[17]. In particular, pseudospectral methods for polygons
were developed with precise analysis; see [2, Bl [I7] and the references therein.

In this paper, we investigate the spectral method on convex quadrilaterals. This
work is motivated by several facts. For instance, we consider numerical solutions of
partial differential equations defined on a polygon. In this case, we may divide the
polygon into several convex quadrilaterals, and then use a spectral method on each
quadrilateral. Next, for exterior problems of partial differential equations with a
polygon obstacle, we could use mixed Laguerre-Legendre approximation outside a
rectangle containing the obstacle, and use a spectral method for quadrilaterals on
the remaining subdomain. Clearly, as the first step of those algorithms, we need to
study spectral methods on quadrilaterals.

The paper is organized as follows. The next section is for preliminaries. In Sec-
tion 3, we introduce an orthogonal system on a convex quadrilateral, induced by
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FIGURE 1. Quadrilateral 2. FIGURE 2. Square S.

the Legendre polynomials. Then we establish the basic results on the correspond-
ing orthogonal approximation, which possesses spectral accuracy. Moreover, it still
keeps high accuracy, even if the approximated function possesses certain singular-
ities at the edges or the vertices of a quadrilateral. These results play important
roles in the spectral method for partial differential equations defined on quadrilat-
erals. As examples of applications, we provide the spectral schemes for two model
problems in Section 4, with the analysis of convergence. We describe their numer-
ical implementation in Section 5, and present some numerical results in Section 6.
In Section 7, we consider the spectral method for convex polygons and prove the
spectral accuracy of their numerical solutions. The final section is for concluding
remarks.

2. PRELIMINARIES

Let © be a convex quadrilateral with the edges L;, the vertices Q; = (xj,y;)
and the angles 6;, 1 < j < 4; see Figure 1. The length of L; is denoted by ;. For
any Q = (z,y) € Q, we set

1) ai(&n) =3(1-8A-n),  o2(&n) =11+ —n),
a3(&m) = 31+EA+n),  ouén) =31 -EA+n).
We make the variable transformation (cf. [2] [5, [I7, [19]):
4 4
(2.2) v =wx(&n) =Y w055 m), y=y(&n) =Y yoi(&mn).
j=1 j=1
More precisely,
(2.3) x = ag + a1§ + aan + asén, Yy =bo+ b1& + ban + bsén
where
ap = 3(@1 + 22 + 23+ 24), bo = 1(y1 +y2 +ys + ya),
(2.4) ay :%(—xl + 29 + 23 — 24), br = 3(—y1 + Y2+ y3 — ya),
az = 3(=z1 — w2 + 23+ 24), by = $(=y1 — Y2 + Y3 + va),
a3 = H(z1 — z2 + 33 — 24), bs = (y1 — y2 + y3 — ya).
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By the transformation ([22)), the quadrilateral €2 is transformed to the reference

square S = {({,n) | —1 < §,n < 1}, with the edges L and the vertices @} =
(&5,mj), 1 < j < 4;see Figure 2. Infact, &4 =8 =m =m=—-1land {& =8 =
n3=m =1

It is noted that if  is a parallelogram, then a3 = b3 = 0. In this case, the
transformation (2.2)) is an affine mapping. In particular, as = ag = by = b = 0 for
any rectangle €.

Ox
For simplicity, we denote % by Oz, etc. The Jacobi matrix of transformation

@2 i
MQ:<8£J; 05y):<a1+a377 b1+b377>'

opx 0, ag+asf by + b3
Its Jacobian determinant is
a + asn b1 + b3
2. p— —
( 5) JQ(&;”) a2+a3€ b2+b3f d0+dl§+d277
where
do = aiby — azby, dy = ai1bz — azby, dy = azby — azbs.

By virtue of (24), we get

do = 3 (za — x2)(y1 — y3) + £ (v1 — @3) (y2 — v4),
(2.6) di = $(za — 23) (Y2 — 1) + 2 (w2 — 1) (y3 — Wa),
dy = 3(xs — x2)(ya — 1) + £ (x1 — 24) (y3 — ¥2).
Obviously, Jo(§,n) is a linear function of variables £ and 7, and so reaches its
extremum at the four vertices. A direct calculation shows that
Jo(=1,-1) = (x4 — z2)y1 + §(@1 — 24)y2 + 1 (22 — 1)y,
Ja(1,=1) = (x5 — x2)y1 + (21 — x3)y2 + (22 — 21)ys,
Jo(1,1) = 3 (w4 — x3)y2 + (22 — T4)ys + 5 (T3 — T2)ya,
Jo(—1,1) = H(zy — z3)yr + (21 — 20)ys + 3 (@3 — 21)ya,

or equivalently,

1
4

Jo(=1,—1) = +(x2 — 1) (ya — y1) — 7(xa — 1) (Y2 — 11),
1(T3 —x2)(y1 — y2) — j(21 — 22) (Y3 — v2),

1) = g (s —a3) (g2 — y3) — 5 (22 — 23)(ya — ¥3),

Ja(=1,1) = J(x1 — 24)(ys — ya) — 3(x3 — 24) (Y1 — ya)-

As pointed out by Strang and Fix in Section 3.3 of [I§], we have
JQ(—l,—l) = lllg sinel, Jg(l,—l) :lglgsin92,
JQ(l,l) = l3l4 Si11937 JQ(—I,I) = 1411 sin¢94.

Due to the convexity of €2, the above four quantities are positive. Thereby, there
exist positive constants dg and dgy, such that

0< (5(2 = min{JQ(—l, —1), JQ(]., —1), JQ(]., 1), ng(—l, 1)}
S JQ(&, 77) S maX{JQ(_lu _1)7 JQ(17 _1)7 JQ(L 1)7 JQ(_L 1)} = 6;1

The inverse of transformation ([22)) is

(2.7)

§=¢&(x,y), n = n(z,y).
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The explicit expressions of £(z, y) and n(x, y) are given in Appendix A of this paper.
The Jacobi matrix of this inverse transformation is

_ € 01 1 by 4 b3& —by — b3n )
2.8) Mg=M;'= ” - = .
(2.8) Ms & ( & Oyn ) Ja(&:n) ( —a2 — asd a1+ asn
Thanks to ([2.7), its Jacobian determinant Jg(z,y) satisfies
1 _ 1
(2.9) 0< 5 < Js(a,y) = Jg" (&) < 5
QO Q

We now derive several relations, which will be used in forthcoming discussions.
For any point @ = (z,y) € , there exists the corresponding point Q' = (¢(z,vy),
n(x,y)) € S. Denote by L,, the line in S, which is parallel to the é-axis and passes by
Q’. Clearly, all points on this line have the same coordinate . The mapping of the
line Z’m denoted by L7, is not parallel to the x—axis usually. But it intersects the
edges Ly and L3 at the points Q7 = (27 (z,y),yi(z,y)) and Q3 = (z3(,y), y5(z, ),
respectively; see Figures 1 and 2. Similarly, all points on the line Eg, which are
parallel to the n-axis and pass by @', have the same coordinate £. The mapping of
the line L¢, denoted by LY, is not parallel to the y-axis usually; but it intersects the
edges Lo and Ly at the points Q3 = (z3(z,v), y5(x,y)) and Qf = (x5 (z,v), yi(x,v)),
respectively.

We now calculate 7} (x,y) and y;(z,y), 1 <j < 4. Indeed, ([2.2)) implies

4 4
(210) :ET :Z:Ejo-j(_lvn), yT :Zyjaj(_lan)a
=1 =1
whence
.1 1 L1 1
(211)  zi =@ tz)+g(@a—zgn yi =5 +ya) + 5 —y)n.
Similarly,
.1 1 L1 1
(2.12) =23 = 5(9014‘902)4‘5(902—901)57 Y = §(yl+y2)+§(y2—y1)§7
L1 1 .1 1
(2.13) x5 = 5(902 +x3) + 5(333 — T2)1, Y3 = §(y2 +y3) + 5(93 — Y2)1,
1 1 1 1
(2.14) =y = 5(903 +x4) + 5(333 —24)§, Yy = §(y3 +ya) + 5(93 —ya)é.

Subtracting the first formula of (2.I0) from the first formula of ([22]), we obtain

v i = 3@~ 2)(1+ O — ) + 3 (s — ) (1+E)(1+n).

Similarly,

. 1
(i Z(yQ —y)A+ 8L —n)+ Z(y?’ —ya) (1 + &)L +n).
The above two equalities, together with (24, lead to

(2.15) z—zy=1+&(a1+azm), y—yi =1+ +bsm).
Similarly,

(2.16) z—z3=(1+n)(az+asf), y—ys=1+n)(b2+bs),
(2.17) z—a3=—(1-&(a+azm), y—y5=—(1-&(b+bsm),
(2.18) r—ay=—(1-n)(az+azf), y—yi=—(1-n)(b2+bsf).
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3. ORTHOGONAL APPROXIMATION ON A QUADRILATERAL

In this section, we establish the basic results on the orthogonal approximation
on a convex quadrilateral.

3.1. Legendre orthogonal approximation. We first recall some recent results
on the Legendre orthogonal approximation. Let A¢ = {¢ | |¢] < 1} and x(*#)(¢) =
(1-6)*(14+¢)P, a,B > —1. We define the weighted space Li(a"” (A¢) in the usual

way, with the following inner product and norm,

(0o = [ HOUON IO, ollyio g = (@),
V u,v (S Li(a’ﬁ) (Ag)

We omit the subscript x(*#) in notation whenever o = 3 = 0.
The Legendre polynomial of degree [ is defined by

(=1’

Li(e) = o1 - €.
The set of Legendre polynomials is a complete L? (Ag¢)-orthogonal system. More-
over,
2 Lo
(3.1) ILallze = 4+ 5)7

Let N be any positive integer. Denote by Pn(Ag¢) the set of all polynomials of
degree at most N. Moreover, PY (A¢) = Py (Ae) N Hi (Ag). The L?(A¢)-orthogonal
projection Py a, : L?(A¢) = Py (A¢), is defined by

(32) (PN7A§’U -, ¢)A§ =0, v ¢ S ’PN(Ag)

Throughout this paper, we denote by ¢ a generic positive constant independent
of N and any function. According to Theorem 2.1 of [12], we know that if v €
L*(A¢),0v € L2, (Ag), integers 7 > 0 and 7 < N + 1, then

X
(3.3) [Pn,av = vl[ae < eNTT|020]] o A, -
Next, the orthogonal projection PI{[’K : HY (A¢) = PY(A¢), is defined by
(3.4) (Oc (PN v = 0),0e8)ac =0,V ¢ € PR(Ag).
As a special case of Theorem 3.4 of [I2], we have that if v € H&(Af),ﬁgv €

Li(r71 r71)(A£) and integers 1 <r < N + 1, then
1,0 —r s
(3.5) ||8g(PN7A§v —0)[lag < eN* ||3gv||x(r—1m—1)7A§, ©w=0,1.

3.2. L?*(Q)-orthogonal approximation. We now consider the L?(Q2)-orthogonal
approximation on the quadrilateral €.

Let A,, = {n | |n| < 1}. Clearly, the square S = A¢ x A,;. We denote the inner
product and the norm of L?(Q) by (u,v)q and ||v||q, respectively.

We introduce the functions

o V(@) = L) Lo (o)) 7 (x.0)
= Ll (f(x,y))Lm (ﬂ(x,y))Js;
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By virtue of @B1I), we get

/ / G ()b e (a0, ) ddy — / Lu(€) L (€)de / ) L ()
(zi L ~(m + 1) 51,;/5m,m/

where ;1 is the Kronecker symbol. Moreover, the set of all v, , is complete in the
space L?(Q). Thus, for any v € L*(£2), we have

(37) U(%@/) = Z Z @l,mwl,m(xu y)7
=0 m=0
with
1 1
(38) it =+ )m+3) [ [ o) (o v)dody.

Furthermore, let
Vn(Q) = span{ty m(z,y) | 0 <I,m < N}.
The L?(2)—orthogonal projection Py : L?(2) — Vn (), is defined by
(39) (PNU -, ¢)Q =0, V(ﬁ € VN(Q)
For description of approximation errors, we shall use the following notation:
Aral 225 TRl €2)2 (a1 + asn) (by + ban) 810, T vl|e
k=0 j=0 .
+da| " FI[(1 = n?) 2 (a2 + az€)? (b2 + b3§)* 70105 v]|a).
Theorem 3.1. Ifv € L?(0), A, q(v) is finite for integer r > 0, and r < N + 1,

then
(3.10) | Pnvv — vl < eNT"Apq(v).
Proof. By projection theorem,
1Pvo —vllf, < [lo — vld, Vo € Vn(Q).
Let
(3.11)
ulg,m) = (€ n), 56 m) T (€ m),
O y) = (PN re ® Py, w) €@, 9) n(@, ) T (€, y)n(e,y) € V().
Due to Js(z,y) = Jo ' (€,1), we use ([B3) to obtain
(3.12)

lo—ol2 = / / (u— Py, ® Py.a,u)dédn
S

S 2//(u—]3]\/7/\§u)2d£d’l7—|—2//(131\/'7/\é O(U—PNAUU))Qdﬁd??
< eN72"||9Full7 (AL (Ay)) + ¢||Pn,a,u — u||L2(Aé L2(A,)

—2r T T
=N (”agu”Li@ o (Ae,L2(A,) T ”877“”L2<A5,Li<r,,,,> (A

Thus, it remains to estimate the right side of (BI2).
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Let o(q) = (—=1)971279(2¢ — 3)!!. Thanks to (2.3)), we have
0L P S 1 P S
8§J5 =o(g)diJ3 7, opJs = o(q)dsJ3 .
Hence, we have from (BI1) that

(8:13) Ofu =0 (vI3) = Ji Y Clalr = ki~ a5" ok,
k=0

(314) 8;u = 8;( Jé JQ ZO olr — )dT kJQr+k8k:
k=0

Furthermore, thanks to (23], we have

(3.15) Ocv = 0,v0ex + Oyvdey = (a1 + azn)Oyv + (b1 + bn)Oyv,
(3.16) Oy = 0,00px + 0yv0yy = (az + a3&)0yv + (b2 + b3§)0yv.
Thus, we derive inductively that
k
(3.17) oFv =" Cl(ar + azn)? (b1 + bsn)* 05,
7=0
k: . . . - .
(3.18) kv =" " Cl(az + as&)’ by + bs&)* 700k v,
7=0
Inserting BI7) into BI3) and inserting BI8]) into (BI4), respectively, we find
that
(3.19)
Ofu = JQ Z ZC’“C] k) * IS (ay 4 azn)? (b + bgn)k_jaial’j_jv,
k=0 j=0
(3.20)
Py = g ZZC’W k)dy* I (a2 + as€)? (ba + bs€)F 0105w,
k=0 j=0
Therefore,
(3.21)
10gullz>

(7 T)(AE L2(Ap))
< CZ Z [y 7756571 (1 = €2)% (ar + asn)? (by + bsn)* 98305 v
k=0 j=0

Similarly,
(3.22)

\|3£U||L2(A5,Li(m (An))

<Y o 7RG M (1 = n?)E (a2 + as€) (b + bs€)F I 0K v
k=0 j=0

Finally, the desired result follows from a combination of (312), (321 and (322).
O
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Remark 3.1. By virtue of (2I5)-(ZI8),

ay +azn = :Ifllwi = _I1:I§7 by + b377 = ylj'_y;‘ = _y1:y§7
(323) Lo P
_ z—x;  z—w _ Y=Y _ Y=y
a2+a3§_ 1+772 - = 1,7;17 b2+b3€_ 1+772 __Tr;l'
Consequently,
la + asn| = ——“”*IEZE;’“@’ b1 + ban| = 4/ ——(y’yfl(gy{y;),
(3.24)
o+ asél = JEBETT 4 e = /O,
Therefore, (B.I0) implies
(3.25) |Pxv = vllg < N Az g(v)
where

T k ) i )
Ar o) =303 g M di (e —a) (x—3) 2 (y—yi) (y—93) = 9205 Tolla

k=0 j=0
2 * w\\ =L o4 —7
Hda|"F||((z = 23) (@ — 21) 2 ((y — ¥3)(y — ¥i)) = 9205 v]|a).
On the other hand, let 5 = 1, y5 = y1, and
oq = max (|bg + bs€], [by + banl, laz + azf|, [a1 + azn]).
(&mes

It can be checked that

1
(3.26) oq = 5 max (|7; — zjl, [y; = yjl)-
Accordingly, by B.I0),
(3.27) [Pno —vllo < eNT"ATG(v)
where

r k
Ta()=)_ ) 6g eh (T [(1-€%) 2810yl laHlda| M II(1—0?) E 020y 0 |g).
k=0 j=0
Remark 3.2. We see from the definition of A, o(v) and (.:24) that in the norm of
derivative 8505 ~7v, there are the weight functions

fie =11 =) ((z—a})(@—25)) ((y —yi)(y —y5)* 7], 0<j <k <,
gik =11 =n*)""*((z —23)(@ - 29) (y —w3)(y —yi)* 7 0<j<k <
Let |@Q — Q;| be the distance between Q(z,y) and Q% (x,y). Clearly,

fie <c(1—=8)MQ —Q;l*, 0<k<rv=13,
giee <cl=m)FQ-Qp**, 0<k<rv=24

Thus, all f; tend to zero as Q(z,y) goes to Ly or Lz, while all g, tend to
zero as Q(x,y) goes to La or Ly. Moreover, the higher the order k of derivative,
the smaller the weight functions f;; and g;x. Next, let Qs5(z,y) = Q1(z,y). We
find, especially from (ZII)-(2.14), that the points Q; (z,y) and @} (x,y) tend to
the same vertex @,, as the point Q(z,y) goes to Q,, 1 < v < 4. Therefore, the
corresponding weight functions tend to zero simultaneously. As a result, ||Pyv—v]|q
still keeps the order N7, even if the approximated function has the singularity
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SPECTRAL METHOD ON QUADRILATERALS 2245

rh

at the vertices, such as [070FIv| = o((1 — &2) =
0305 3v] = o((1— P51 - Qo) By =24
Remark 3.3. If Q = {(x,y) | |z| < a,|y| < b,a,b,> 0}, then a1 = a,by = b,az =
a3 = by = bg = 0. In this case, J¢v = alyv,0yv = bOyv, Jo = ab,zi(x,y)
—a,x5(z,y) = zi(r,y) = v23(z,9) = ayi(ry) = yry) = vy =
—b,yi(z,y) = b, and {(z,y) = 7,n(x,y) = §. Therefore,

[Pyvo —vlla < eN7"(||(a? = 2?)20;0]|a + [|(6* — y*) 20, 0]|a).

It is noted that in this special case, the L?(£2)-orthogonal approximation keeps the
same spectral accuracy, even if the considered function possesses certain singular-
ities at the edges of the quadrilateral. If, in addition, @ = b = 1, then the above
estimate turns out to be the same result as in [13].

Q- Q7 ) v = 1,3 and

3.3. H}(Q2)-orthogonal approximation. We now turn to the Hg({)-orthogonal
approximation. According to the Poincaré inequality, there exists a positive con-
stant cq such that

(3.28) lwlla < calVw|a, Yw € Hy(Q).
For simplicity of statements, let (a1 + azn)y = (a1 + azn)” for v > 0, and (a; +
agn)}’ = 0 otherwise. The meanings of (b; + bg,n)if’7 (az + a3§)¥ and (by + bgf)?

are similar. Let 7q = max(Jag|, |bs]). Clearly, yq < 0q. In order to describe the
approximation error, we also introduce the following notation:

Bra(v) = oa((ldi] + |da|)dg" +1)

T k
(303687 I H1(1 — €)% (an + asn)? (b + bn)* 9040k o

k=0 j=0

+ 1do " THI(1 = 1) T (a2 + as€)? (ba + bs€)F I I |a)
r—1 k

+3 05T S T T (a8 M1 (1 €2) F (ar +asn)? (by+bsn) P IS0k T u]|g
k=0 j=0

+70ll(1 = €77 (a1 + azn)] " (by + bsn)* ~9920F v]|g

+y0ll(1 =€) (a1 + azn)’ (b + bsn) 79208 v]|g

+oql[(1—€2) (a1 + agn)’ (by + bsn) T+ 9 y||q

+oal|(1—€)F (a1 + a:m)f(bl + b)) P IOk ||

+ Idz\“’H[ldl\551H(1—772 (a2 + ) (ba + bs&)F 9L vl

)=
{7 (b2 + b36)* 7000y vl lo
J

+yall(1—7%) 7 (a2 + asé)

+70ll(L = 7%)7% (a2 + as)? (by + bs€)} 7 0100 |q

+0qll(1—1?) "7 (az + as€)? (bz + bs€) I

+ 00ll(1 = 1%) % (az + as€)! (bs + bs€)* /00, 1ullal}).

Let VH(Q) = H(2) N Vi (). The orthogonal projection Py° : HZ (2) — V()

is defined by
(3.29) (V(Pyv —v), Vo) = 0, Vé € VI(Q).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



2246 GUO BEN-YU AND JIA HONG-LI

Theorem 3.2. Ifv € H} () and B, q(v) is finite for integers 2 <r < N +1, then
(3.30) [IV(Py"v = v)lla < eN'"Bra(v),  [|Py"v—vlla < cyN~"Bro(v),
where cf, is a positive constant depending on (2.

Proof. By the projection theorem,
(3.31) IV(Pyv —v)llo < V(6 —v)llo, V¢ € VR(Q).

Let u(&,n) be the same as in B1I1), and ¥ (&,n) = (PI{,’Sxé . PJ{,’S\nu)(f, 7). Take

o, y) = (€, )0 9) o * (0. n(x.m) € V().

We denote by ||w||s the norm of the space L?(S), and Vgw = (dew, dw)T. It can
be shown that Vgw = MqVw. Thus by [2.8), Vw = MsVsw. Hence, we use (2.8)
and (21 successively to obtain

0u(6—0) = (b + b€ I 0el(¥ = ) *) = (b1 + ban) I 0, (6 = w) I )
= (b2 + b98) T (0w — w) — 3T (4 — w)
— (b1 +b3n)Jg 2 (0y(¥ — u) — 3dad5 (¥ —w)).

With the aid of [29), (8:20) and the Poincaré inequality on S, a direct calculation
gives

102(6 = v)lle < coady (IV(W —u)lls + (di| + |d2])dg " ||v> = ulls)
< coadq ' ((|di] + |d2])dg " + D[V (v —u)ls.

We can estimate ||, (¢ — v)||o in the same manner. Accordingly,
(3.32) IV(¢ = v)lla < coadg ((|di] + |d2])3g" + 1)[[Vs (¥ —u)]]s-

We now estimate ||[Vg(¢p — u)||s. Clearly,

066 =l = 10:(PYS, & P u =l
1,0 (plo
< [|0g(Py NA “—U)||S+ 10 Py a, (P p, 1 — w3

Using B.0) with p =1 gives
196 (PY% 0~ )% < eN* gl ragay:
=1,
Using B.3) with r = p =1 gives
1,0 1,0 1,0
106 Py a, (Pyp, u— u)||E < 10 (Py 5, u— u)||%2(A5,L2(An))-
Thereby, using (3.3 with x4 = 0 again yields

1,0 1,0 2—-2 1
10ePy A (Pra, v =S < eN* 7100 ullToncz2 ()

We can estimate [0, (¢ — u)||% similarly. Consequently, we get that
(3.33)

2 2—-2 2 2
IVs(¥ —u)lls < eN T‘(HaguHLi(Tfl,Tfl)(A§1L2(A77)) + Ha:;uHLz(AévLi(r—Lr—l)(An))

r—1 2 r—1 2
10 0gullze L eron 10605 el anne )
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We next estimate the right side of (833). By (B19), (B20) and the same argument
as in the derivations of B21]) and B22)), we verify that

(3.34)
I98ullz oy rn
r k
r—1 . . . .
<SOSR = €2)F (ar + agn)? (by + bym) I D305 vl g,
k=0 j=0
(3.35)

||67T7.UHL2(A€7Li(T,1,T,1) (Aﬂ))

<Y ol TR (1 = ?) T (a2 + az€) (b + bs€) I DI0E T v

k=0 j=0

Furthermore, thanks to (Z3)) and ([21), we have J¢Jo = dy and 0, Jq = d2. More-
over,

De (0105~ Tv) = (ay + azn)dLT1 05~ Iv + (by + bsn)dL0k 110,

0y (0308 ~Iv) = (ag + as&)OITOF v + (by + b3) D40k~ 1.

Therefore, by differentiating (3I9) with respect to 7, we obtain

(3.36)
r—1 k N
O 0u =3 "Ck \Clo(r —k— 1)dy "1y, T
k=0 j=0

[(da(=r + K+ 3 )(al +azn)’ (by + ban)* 7 o
+JQ(G3(G1+G37}) H(by+b30)" 7 +b3(a1 +azn)? (b1+b377)¢_]_,1)8%65_w
+Ja(a1+azn)? (b1+b377)k I ((ag+a3€)di Oy v+ (ba+b38) 0305~ T v)].

Similarly, by differentiating (3:20) with respect to &, we obtain

(3.37)
r—1 k 1
0e0ru =3 "N CF Clo(r—k—1)dy gy T
k=0 j= O

[(di(=r+k+3 )(a2+a3§) /(by + bg&)F 7
+Ja(az(az + a3§) " (bg + b3€)* 7 + bs(az + az€)i (by + b3f)k - 1)8]8k T
—|—J9(a2 =+ agf) (b2 + bgf)k 3((a1 -+ a317)83+18k Iy =+ (bl =+ b377)({9] 8”“ J+1 )]

Then, following the same line as in the derivations of [B21)) and ([B.:22]), we obtain

r—1 k

10 e,y e zagy S €D ldilTTFTaRT R

k=0 j=0
(d2log (1 — &%) = (a1+a377) (by + ban) 79505 T vl|a

(3.38) +m||(1—g2)’22(a1+a3n) H(by + bsn)*I9L9EIv]|q
Fyall(1 = €2)7" (a1 + aan)’ (b +b377)k - 13]3k Tvllq
+oall(1 - €)% (a1 + azn)’ (bs + 5377)'“ Jﬁ%“a;’f_jvﬂn
+oall(1 = €2)72 (a1 + agn)? (by + bsn)* 70508+ 1u]|g]
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and
r—1 k
||353;7114|L2(A5,Li(r_2w_2)(An)) < CZ Z || o
k=0 j=0
[l [0 1(1 = n?) =" (a2 +a3§) ' (by + b3&)F 70505 v
(3.39) +y0ll(1 = 7%) % (a2 + az&)] " (b + bs€)F T 040k~ JvHQ
+“m||(1—772)r22(a2+035) (b2 + bs&)y 7~ 13]3'“ Tv]|o
+mmrwﬂ7%@+%awrwﬁwﬂﬁﬂﬁﬁwa

+ooll(1 —72) 7 (az + az€)? (ba + bs&)F 99505~ 1y||q).

Then, the first result of (30) comes from a combination of B31)—339), B38)
and (3:39).

We now prove the second result of [B30). Let g € L?(£) and consider an
auxiliary problem which is to find w € H}(Q) such that

(3.40) (Vw,Vz)q = (9,2)a, ¥V 2 € H} ().

Taking z = w in ([340) and using (B2])), we obtain ||Vw|la < callg|lq. Moreover,
by the property of the elliptic equation with the homogeneous boundary condition,
there exists a positive constant ¢g such that

(3.41) lwllzz@) < callwlle + llglo) < calcalVewlla + llgll)
< Ca(cg + 1l

Taking z = PJ{[’O’U —wv in ([340). Then we use [3:29)) and the first result of ([B.30) to
obtain
(3.42)
(Py"0 = v,9)a| = |(Vw, V(Py" —v))a| = [(V(Py w —w), V(Py" —v))al
< V(P w = w) [l V(Py" = v)lla < eN7"Bpa(v) Bza(w).

Since r > 2, we use ([3.26) to assert that By o(w) < Ballw|| g2(o) where

Ba = ((Jda] + |da|)dg " +1) (255 So(k+1)(Jda*7* + |do* )
k=0

+Z§k 268 (k4 1)[|d1|**(|da|d5 + vaoq + 0q)

ol (|1 135" + 000 + 00)])-
Finally, we have from (4I) and (3:42)) that

PYo% — B B
||PJ{710’U _ U”Q _ sup |( N v v, g)ﬂ‘ S CNﬁT r,Q (U) Q,Q(”LU)
9EL2(Q),g£0 lglle lglle
< o 22wz < g 6o N7 B, g (v).
This ends the proof. O

Remark 3.4. By the definition of B o(v) and (B.24), there are the weight functions
(1 =€) (2 — 2})(z — 23)) ((y — yi)(y — 3))* 7| and [(1 — )" *((2 —
x3)(x — 23))7 ((y — y3)(y — yi))* 7|, in the norm of derivative 030F v, etc. Since
r > max(k,2), they decay to zero as the point Q(x,y) goes to the corners of
the quadrilateral. Therefore, the error of H}(2)-orthogonal approximation keeps
the order N'~" even if the considered function possesses certain singularities at
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the vertices of the quadrilateral. For instance, [9J85 7v| = o((1 — £2) = |Q —
2k

Q™ 2_1) as Q(z,y) tends to the edges L; or Ls, etc.

Remark 3.5. f Q = {(x,y) | || < a, |y| < b,a,b,> 0}, then 0 = max(a,b), g = ab
and d; = da = 7o = 0. Moreover, a; = a,bs = b and as = a3 = by = bs = 0. Thus,
we have from (B30) and [B37) that

O o =a""2b30L 9, B0 lu=atb T2 a20,0) M.

Accordingly, the quantity B, q(v) is reduced to
B,a(v) = max(a,b)(b~"|(a® — 22)"7 dvlla + a1||(b? — y?) "= O5vlla)

r— r—

tabmax(a, b)([|(® ~ 22) T 05 0yella + |2 — ?) 7 0.0 ollo).

Therefore, the error of the Hg(2)-orthogonal approximation still keeps the order
N~ even if the considered function possesses certain singularities at the edges of
the quadrilateral. If, in addition, a = b = 1, then the above estimate turns out to
be the same result as in [13].

4. SPECTRAL METHOD FOR QUADRILATERALS
In this section, we propose the spectral method for quadrilaterals.

4.1. A steady problem. As an example, we consider the following simple prob-
lem:

_AU(x’y) = f(x,y), (I7y) € Qv
(1) { Uz,y) = 9(z,9), (2,1 € 00

We first consider the case g(z,y) = 0. Then, the weak formulation of [I]) is to
seek solution U € H}(Q), such that

(42) (VUa VU)Q = (f7 U)Qv Vv € H(%(Q)
The spectral scheme for (2] is to find uy € Vo (L), such that
(4.3) (Vun,V)a = (f,d)a, Vo € VR(Q).

For the convergence analysis, we set Uy = PJ{,’OU . We have from (2] with

@Z9) that

Let Uy = uy — Uy. Subtracting @) from [Z3), we obtain

Taking ¢ = Uy in the above, we get [|[VUy|q = 0. This fact with the Poincaré
inequality on Q implies Uy = 0, i.e., uy = PI{;OU. Finally, by 330),

(4.6) HV(UN — U)”Q < CNliTBnQ(U), ||uN — U||Q < CCENﬁTBTVQ(U).

Remark 4.1. In practice, U(x, y) might not vanish on the boundary. In this case, we
construct a function W(zx,y) which equals U(z,y) on 09; see ([T3)) of this paper.
Then, we solve the corresponding problem and obtain the numerical solution of
original problem.
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Remark 4.2. The spectral scheme (4) is similar to scheme (1.15) of [2]. But
scheme (1.15) of [2] is a pseudospectral method. Our method is more similar
to scheme (5.3.11) of [5] for a single domain, as well as the related method in
[I7]. Whereas they are not exactly the same. First, one uses the base functions
L (§(a:, y))Lm (77(37, y)) in [2, (5 [177], which are not mutually orthogonal in the space
L?(Q). However, we use the base functions L; (&(z,y)) L (n(z, y))Jé (x,y), which
are mutually orthogonal in the space L?(f). It is more natural. As a result, we
could use the recent result on the Jacobi orthogonal approximation to derive better
error estimate (330) of numerical solution, with the Jacobi weights, which cover
certain singularities on the vertices of .

4.2. An unsteady problem. Let 3 be a constant. We consider the problem

(4.7)
U (z,y,t) = AU(z,y,t) + BU(2,y,1) + f(z,9,1),  (2,9) €Q, 0<t<T,
U(x7y’t):g(xay7t)a (x,y)eaQ, O<tST,
U(l’,y,O) = UO(xvy)a (I,y) e QU IN.

We first consider the case with g(z,y,t) = 0. Then, the weak formulation of (A7)
is to find U € L>(0,T; L*(2)) N L2(0,T; H} (), such that

(8tU(t)7 v)9+(VU(t)7 VU)Q = B(U(t)v U)Q+(f(t)7 U)Qa

(4.8) Vo e HY(Q), 0<t < T,
U(0) = Up.
The spectral scheme for (@8] is to find uy € VY (Q) for all 0 < ¢ < T, such that
(atuN (t), ¢)Q + (qu (t)v V(b)g = ﬁ(UN (t)v U)Q + (f(t)v ¢)Q>
(4.9) Vo e VI(Q), 0<t<T,
uN(O) = PNU().
We now analyze the convergence. Letting Uy = PI{;OU , we obtain from (48]
that
(OUN (1), ) + (VUN(1), Vo)a = B(Un (1), v)o
(4.10) +(f (1), 9)a + G1(t, 9) + Ga(t, ), Yo € Vy(Q), 0 <t < T,
Un(0) = Py°U,
with

Gi(t,9) = ((Un(t) = U(t), 0)a,  Ga(t,d) = BU(E) — Un(t), §)a-
Letting Uy = uy — Uy, and subtracting (@I0) from @), we obtain

(0:Un, 9o + (VUn, Vd)a = B(Un(1),v)q — Gi(t,¢) — Ga(t, d),
(4.11) Vo e VI(Q), 0<t<T,
Un(0) = PyUy — P Up.

Take ¢ = 20Uy in @II). Then,
(4.12) S| UN(OIE +2IVUN (O] < 28 TUn (D)1 + 2/G1(t, Un)| + 2|Ga(t, Un)|.
By virtue of [B:28)) and ([B30]), we have
- 1~
21G1(tUN)| - < o5 IUN B + 2¢3]10:(Un (1) = U0) 11

<
(4.13) T2
< 3IVUN(@))1 + chz(0?2)2N_2T33,sz(atU(t))-
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Similarly,

r7 1 r7 * —2r
(4.14) 2/Ga(t,Un)| < SIIVUNIG + cB2ct(ct)* N~ Blo(U(1)).

For simplicity of statements, let
t
B(®) = Ol + [ I70(€) b

Substituting ([@I3) and (@I4) into (@I2), we obtain
(4.15)

O(B(Un(8))e") < ce (5% + 1)y (ch) N> (B o(0:U (1)) + Bl o(U(1))).
On the other hand, we use (BI0) and the second result of (B30) to obtain

1UN(0)3 < 2|PyUs — Uol3 + 2/|Us — PY U3
< N7 (A7 6 (Uo) + () B (Vo))

(4.16)
Integrating (EI5]) with respect to ¢ and using ({I6]), we obtain
(4.17) E(Un(t)) < eN~2e*' R, o 5(U, 1)
where
t
Reqs(Ut) = (8 + 1)052(0;2)2/0 3_266(33,9(85[](5)) + BE,Q(U(f)))df

+ AE,Q(UO) + (05)233,9([]0)-

Finally, a combination of B30) and ([@IT) leads to

t
[ 19 une) = U©)Ifade < N2 Ry 5(0,1)
0

(4.18) ¢
v B2 oUe)e
0

(4.19) llun (t) = U@ < N~ (2 Rpa,p(U.t) + (c5)* B o(U(1)))-

5. NUMERICAL IMPLEMENTATION

In this section, we describe numerical implementation. Let

(5.1) a1(Q) = a(Li(¢) = Liy2(¢)), = (4l +6)72.

Clearly, o;(£1) = 0. Moreover, a calculation shows
(5.2) dcor(Q) = diLy(C),  di=2"3(1+1)7H (20 +3)5.

Further, we set

(53) 1/’l,m(l’7y) = Ul(f(.f, y))o.m(n(xvy))‘]g (I, y)v O S l7m S N - 2a
which form a basis of V().
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We first consider the scheme ([{3]). We expand the numerical solution uy(z,y)
as

N-2
(5.4) un(z,y) = Z UN ki Vk 5 (T, Y)-

k,j=0

Substituting (4] into @3] and putting ¢(z,y) = Yrm(z,y) in the resulting
equation, we derive a linear system with the unknown coefficients un x ;,0 < k, j <
N — 2. This system can be rewritten as a compact matrix form. To do this, let

u = (Un,0,0,UN,0,1," " UN,O,N—2," " UN,N—2,05" " UN,N—2,N—2)" ;
F = (foo, fo1,  fon—a, [n—20. Fn—an—2)T,  fim = ([s%1m)o-
Furthermore, let ajm 1 = (0xVk,j: Ozim)a + (Oy¥k j, Oytim)a. The matrix

@0,0,0,0 @0,0,0,1 s ap,0,N—-2,0 *°° Q0,0,N—2,N—2
A= a0,1,0,0 a0,1,0,1 s ap,1,N—-2,0 **° @0,1,N—2,N—2
AN—-2,N—2,0,0 AN—-2,N—-2,01 "~ ON—2,N-2 N—-2,0 " "AN—2 N-2,N—2 N—2

Consequently, we have
(5.5) Au=F.

The matrix A is full. But its condition number (labeled by Cond.) is acceptable;
see Table 5.1.

TABLE 5.1. Condition number of matrix A.

N 5 10 15 20 25
Cond. | 34.3 | 410.5 | 1873.6 | 5624.1 | 13316.2

We now turn to (8). We approximate the term d;uy (t) by the Crank-Nicholson
discretization with the mesh size 7. It is of the form
>0 Llun(t+7) —un(t), Yim)e + 50 (un(t + 7)) + Opun (t), Oxtim)o
+5(0y (un (t+ 7)) + Oyun (t), Oytrm)
= 18(un(t +7) + un(8), Yim)e + fim(t +3), 0<Lm< N -2,
where fi ., (t+ %) = (f(t+ 5),%1,m)a. We expand the numerical solution as

N-2
(5.7) un (@, y,t) = Y un g ()P ().
k,j=0
Inserting (5.7)) into (5.0]), we obtain a scheme for the unknown coefficients un  ; (t),
t=71,27,---, [%] It can be also written as a compact matrix form. To do this, let
u(t) = (un,0,0(t), un01(t), -, un,n-2.n-2()7,
T T T T T
F(t+ 5) = (foolt+ 5), foa(t+ 5), o fNca N2t + 5)) :

Let A be the same matrix as in (55). The matrix B is similar to A, with the entries
bim kj = (Yr,j, ¥1,m)a. Then, the matrix form of (B.6]) is

(5.8)  (tA+(2—7B8)B)u(t+7) = (—TA+ (2+ 78)B)u(t) + 2rF(t + g).
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FIGURE 3. Numerical errors of ([@3]). FIGURE 4. Numerical errors of (5.6).
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FIGURE 5. Numerical errors of (5.6). FIGURE 6. Stability of (5.6).

6. NUMERICAL RESULTS

We first use (£3)) to solve [@2) with the test function
(6.1)
Uz, y) = (y—E=2azv) )y, Z=eadazy) gy, @=za)Wazye) _ 0y

(xa—x1) (z2—21) (z3—2)

(y — gllnsin) —y)) /a% 42 41,

where z; and y;, 1 < j <4 are the coordinates of the vertices of 2. We shall also
use the test function

(6.2) U(z,y) = 4sin(2z + 3y),

which does not vanish on the boundary. In actual calculation, we take 1 = 0, x5 =
3,x3 = 2,24 = 1,y1 = 0,y2 = 0,y3 = 3 and y4 = 2. For description of numerical
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errors, let (ps,; and wys; be the nodes and the weights of one-dimensional Legendre-
Gauss-Lobatto quadrature. We measure the numerical errors by

M
En(U) = (Y (U@(Cari Corj) y(Carir Car )
=1
—un (@ (Carin Caryg), Y(Carir Carg)))? (dot+di o + dQCM,j)WM,in,j)%

~ (//S(U(x(&n%y(f,n))—uN(x(g,n),y(&77)))2J£2(£’77)d5dn)% —|U = un|lo-

In Figure 3, we plot the values of log;y Enx(U) vs. the mode N, with the test
functions ([@I) and (62). They demonstrate the high accuracy of scheme ([@3).
We next use ([{9) to solve (@3], with the test function
(6.3)
Uz, y,t) =(y— (z—z1)(ya—y1) —uy1)(y— (z—z2)(y2—y1) —12)(y— (z—z3)(y3s—y2) —ys3)

(z4a—x1) (z2—21) (r3—22)

(v ) ) L

For describing the numerical errors at a different time ¢, we use the notation
En(U(t)). In Figure 4, we plot the values of Ex(U(t)) with 8 = 1,t =5, N =
5,10, 15,20, and 7 = 0.01,0.001, 0.0001. Clearly, the error decays rapidly as N in-
creases and 7 decreases. It also shows the high accuracy in space. We also use
[#12) to solve [@II), with the test function

(6.4) U(z,y) = 4sin(2z + 3y + ¢).

In Figure 5, we plot the corresponding values of En (U(t)) with 8 = 1. They indicate
again the high accuracy in space.

In Figure 6, we plot the values of En(U(t)) with the test function (3), § =
+1, N =20 and 7 = 0.001. They demonstrate the stability of (5.0).

7. THE SPECTRAL METHOD FOR POLYGONS

In this section, we investigate the spectral method for polygons.

7.1. Some preparations. We first consider several quasi-Legendre orthogonal
approximations on the convex quadrilateral Q. To do this, we put 9(&,n) =

v(x(€,1),y(&;m)), and

Wb, (1) = 5(0(=1,=1)(1 =) + (=1, 1)(1 +n)),
(7.1) Wb, (€) = 5(0(=1,=1)(1 = &) + 9(1, =1)(1 + £)),
‘ Ob,5 (1) = 5(0(1, 1) (1 =) + 0(1,1)(1 + 1)),
Wb,.,(§) = 3(0(=1,1)(1 = &) +9(1,1)(1 +¢))
Next, we set
(7 2) {)g,Ll (77) = ’0(_1’ 77) - f}b,Ll (77)7 @S,Lz (f) = @(57 _1) - ﬁb,Lz (6)3
' By 1, () = 0(1,m) = 0, £5(n), 0y 1, (§) = 0(&,1) — 0,1, (8)-
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The above four functions vanish at the endpoints of A¢ or A,;, respectively. We also
set
(7.3)

.00(€:1) = 830 (€.1) + 50 (€.1).

Shoa(6m) = (L= OB(=1,m)+(1 = (€ ~1)+ (L + oL, m)+(1+ n)a(§, 1)),

#0(Em) =~ (1= (1~ n)p(~1,-1) + 1+ 1~ mi(1, ~1)
+1L+ ML +mi(L,1) + (1= (L +m)i(~1,1)),

or equivalently,

S0 = O 1, )+ (1= )i 1, O+ (1 + 0, () +(1+ m)if1, (€))

F (= O = m)o(=1,-1) + (1+ (1~ mo(1, 1)
HA4 O +ma(1,1) + (1 - +m)i(-1,1)).

Let 9(&,m) = 9(£,m) — 0p.00(€,1). Obviously, 9 (&, n) vanishes on 9.

For the spectral method for a union of quadrilaterals, it is simpler to take the
base functions ¥ym(z,y) = Li(£(x,y)) L (n(z,y)), as in [2, B, I7]. Let Vn(Q) =
{1m(2,9),0 <1,m < N} and VI(Q) = H (Q)NVn (). The orthogonal projection
P]{,’% : HY(Q) — V() is defined in the usual way. Furthermore, let N, be any
positive integer. We define the projection on 0, as

op,00(81) =

*P}vb,anﬁb,m(ﬁm) 5(( ) A ”19 Ll(n) (1- )PNbOAg’[)b Lo (&)
+(1+ f)PNb O L3( )+ (1+n)Py N, Ag’Ub b, (©)
+((= O = mo(=1,-1) + (L+ (1L~ mo(1, 1)
A +HA+no(1,1) + (1 =& +n)o(-1,1)).
Furthermore,
vey (2, ) = 0% (& M) |e—¢ (@) n=n(r.v)+ 0p,00(2, ) = 0b,00(& M) le=¢(2,9),n=n(z,v)+

P, 000,00(7,Y) = « P, 0000,00 (& 1) =t (2 ) n=n(z.v)-
Then, the first quasi-Legendre orthogonal projection *P]{,7 N, 1s defined by
(7.4) *P]{I,Nb,ﬂv(xvy) = PN%)”?Z@ y) + *PJ{/b,asz”b,aﬂ(%y)-
It can be checked that *PJ{,VNMQ’U(:L‘, y) = v(z,y) at the four vertices of 2. Since
1,0

Py N, 00 — v = Py qud(2,y) = v)(2,9) + « Py, 00000 (2,y) — vb00(2,Y),
we have
(7.5)

1,0
IV(Px n, v = 0)lo < |IV(Pygvg — vd)lla + [[V(Py, aqvb.00 — vso0)|lo-

For notational convenience, let

A 112
Dy s() = (||3§w||Li(Hmfl)(AE,L2(A + ||8 w||L2 (A6, L2 (g 1y (An))

N|=

—1 ~ 112 1
+||ag &’wHLi(Pz,Pm(Ava2(A +||8§a"' U)HLQA LQ(, . 2)(1\ ))) .

1
By (23), we have ||Vuw||q < coqdg ?||Vsw||s. Now, let

1,0 1,0 50
Pz, y) = Pyac® PN,ANUQ|€:£(w7y)>n:n(w,y)'
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Then, following the same line as the derivations of (332) and [B33]), we deduce
that
(7.6)
IIV(P, NQUQ —vp)lle < [IV(¢ - UQ)HQ < coady * ||V s Pyia, ® Py, 06— 93)lls
< coadg? N1 D, 5(88) < condy? NV (D, s(0) + Dys(8)9) + Drs(850)).

We are going to estimate the upper bound of the right side of ([ZG]). First, an
argument similar to the derivation of (3.30), leads to

(7.7) Dy,5(0) < ¢dg* Eyra(v)
where B, q(v) = E{(v) + EU(v) + ESp(v), with
E ) = > (I(1 = €37 (an + agm)* (b + ban) 050, o]l

HI(1 = 7?) "= (as + as&)* (ba + bs&) " F0k0; v ),
-1

EG(w) =Y (1(1 — €)% (a1 + aszn)* (by + bsn)" ™ Yaz + as€) 9510, Lu|q
k=0
+I(1 = n?) ?2 (a2 + az€)* (ba + b3€)" (a1 + azn) 0y, 1ulg
+[(1—-¢%)" : (a1 + asn)¥ (b1 + bsn)" =1 (by + b3€) D50 F v
+(1=1?) "2 (a2 + as&)*(ba + bs&)" "1 (b1 + b3n) 955 *v|lq),
r—2
ES)(0) = S (11— &) as(ar + azn)* (b + byn)" ™+ 20507420
k=0

HI(1 = n?) "= ag(az + as)* (by + bsg)"F-205 10 k20|
= by(ay + agn)* (by + ban)"~F 2080 g
(L= 7?) " ba(ag + az€)*(be + bsg)" 2050, 1ollq).

We now estimate Dr,g(vb gﬂ) We have from (73) that for r > 2,

b5 (& m) = 37"(( mo(&, —1) + (L+n)o(&, 1)),

Ubasz(f n) = 5:;((1—5)@(—1777)+(1+§)@(1777))~
On the other hand, for r 2 3,
00,56 m) = 23 (~0(€, ~1) + 0(E, 1)) / o 90 (€.n)i,
0e0y~ 1 87"’1 —0(=1 (1 == 00" 1o d
3 ’UbBQ(g 77) mn ( U( 777)+U( 777 2/1;g (3 n U(&an) 57

while

1
ey ty e (6,m) = 5(=0d(= 1) = Ded(E, —1) + D;0(L, 1) + (€, 1))

1 . 1 R
—5 [ ocdnitenan+ [ odyilendc.
2 Ja, 2 Jae
With the aid of the previous equalities, a direct calculation yields

_ 1
(7.8) D,.s(085) < ¢6g Fra(v)
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where F,.0(v) = F{Q(v) + EG(v) + B (v), with

)

FYw) = Z( 37— €2)F (a1 + agn)* (by + ban)"FOET 0] 21

7 k=0 v=24
ro1 — .
+ ) (=) 7 (a2 + as€)*(ba + b3&)" 00 F vl 2(1,))-
v=1,3
. (2) ra(2) ra(2)
We next estimate Dy (D 50). In fact, 070, 50(€,m) = 050, 9(&,m) = 0 for
r> 2, and 0 ) 1715289(5 n) = 9¢0)~ 1vb 89(5 n) = 0 for r > 3. Moreover,

DeniZo (€ m) = — 3 (5(~1,~1) = 5(1,~1) + (1, 1) = #(~1,1))

1
-1 /S 0e0y 0 (€, m)dEdn.

As a result, Dr,s(@g()i%g) =0 for r > 3, and
(7.9)
Da5(0590) < Il(ar + asn)(az + as&)d2vlla + [|(br + bym) bz + b3€)92v] |
+l[(a1 + asn) (b2 + b3§)0:9yv||a + [[(b1 + bsn)(az + a3€) 00y v||a
Hlasduvllo + [[bs8,0ll0 < cdg* (B (0) + ESY(0)).
Furthermore, we estimate ||V (. Py, 50Ub.00 — vb00)llo- By virtue of (Z3), we
have

P, o000 — o0 = (1= &) (Py,x, 800, (n) =85, (1)
+(1 - )(Pz\fb AU ASLQ(f) UbLQ( £))
(1+§)(P1{rb0 @ELS( ) — UbL3( ) + (1+77)(P1\f,, Ae bL4(f)_@2,L4(§)))~

With the aid of [B3]), we verify that for r, > 2,

N =

IVs(: Pk, 352%69—%89)”5
<Ny~ 7"b(||(1— 2)™ 5:;”@2,L1||S+|\(1—52) 5“%@”5
H[(1—n?) 3“va3\|5+||(1—52) 8TbUbL4||S)
=cN,~ Tb(|( U 8”71)( 177)||S+|\(1—§2) 3” (& -Dlls

Th

HI(1 =) " apa(L)lls + 11(1 - €)™ 9o e, )Hs)-
The above inequality with ([29) implies
(7.10) IV (+Py, 000,00 — vho0)|lo < coady Ny ™" Gy, a(v)
where
Gry (v Z ST =0T (a2 + as)F(ba + b3€) " TFOEN R0 12y,
k=0 v=1,3
ry—1
+ (=877 (a1 + azn)* (by + ban)" FOEO F | 21,))-
v=2.4

A combination of (ZH)—(ZI0) gives
IV(-Pr 00 = 0o

(711) —1 1—7r 1—7p
< CUQ(sg (N (ET’Q(’U) + FT’Q(’U)) + Nb Grb,g(ﬂ))).
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We now turn to the quasi-Legendre orthogonal approximations corresponding to
Neumann boundary conditions imposed on certain edges of 2. To do this, we need
some preparation. For fixedness, we assume that the Neumann boundary condition
is given on Lq; see Figure 1. Let

CHY'(Ae) ={ve H'(Ae) [v(1) =0}, "Py(A¢) ={ ¢ Pn(Ae) [ ¢(1) =0}
The orthogonal projection “Py . : “H'(A¢) — “Py(Ag), is defined by
(0e("Py o v —v),0e8)a, =0, V¢ € "Py(Ag).
Take )
86) = = [ Pr-va, dyuln)dn € “Pa(Ae).

4
If v € °H(A¢) and v € LQ(T e 1)(A5) for integers 1 < r < N 41, then by virtue
of the projection theorem and (BEI) we deduce that

(7.12) 106 Py a0 = 0)llae < [10¢(6 — v)]]a
' = ||PN71)A§8§’U — 851;“,\{ < CNlirHag'l)”x(r—l,r—l),/\g.
Moreover, a standard duality argument yields
(7.13) ||OPJ{,,A£U —vl[ae < eNTT|0v] [y 1m0) A

Now, we set
"HYQ)={ve H'(Q) |v=0o0n Ly, Lz and Ly},  °Vy(Q) ="H*(Q)NVN(Q).
The orthogonal projection OP]{LQ :OHL(Q) — "V (Q) is defined by
(7.14) (V(°Pyqv —v),Vé)q =0, Vo € "V (9).
Next, let ﬁb,Lg (f) = %@(1, —1)(1 —|—§),f)b L4( ) = % ( )(1 —|—€), and let f/b,Ls(ﬁ) be
the same as in (ZI). We also define 0} ; (£), ), (1) and ﬁb 1, (&) by (IEI) with the
above new 0y 1,(€) and 0y, 1, (£). Evidently, vb7L2( ) = 0y, (£1) =35, (1) = 0.
Furthermore, we set 99 (€,1) = 9(€,1) — db.00(€, 1), with

(7.15) s,00(8,m) = ;((1—77)va2(§)+(1+§)62,L3(n)+(1+n)@qu4(5))

F (O =M1, 1)+ 1+ +mi(1, 1),

The function ¢ (&,n) vanishes on L;,j=2,3,4. We also introduce the projection
on Jf), as

Bl painon(€n) = 51— 1P, 0001, (€) + (1+ OPE, 8, ()
+(1+m) Py, 2, %1, (6)
+i((1 + —n)o(l, 1) + (1 + (1 +n)o(1, 1)).
Finally, we define the quasi-Legendre orthogonal projection *PJ{L N, QU as

(7.16) *PJ{LNb,QU(xvy) = OPz{r,QUg(l"vy) + *PJ{Imé)va,@Q(‘xa Y),
where the meanings of vQ(x,y), vp00(z,y) and *P]{,bﬂﬂvb,ag(:c,y) are similar to
those in (T4)), with the new functions 9% (£,n) and 9 90(¢,n), and the new pro-

jection *PI{[MBQ@Z,@Q(E, n). It can be checked that . Py y, ov(2,y) = v(z,y) at the
vertices (z,y) = (1,—1) or (1,1).
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In the same manner, we can define the quasi-Legendre orthogonal projections
*P]{,, N, U corresponding to the Neumann boundary condition imposed on the edges
Lo, Ly and Ly, respectively. Moreover, by using (85), ((I3]) and an argument like
the derivation of ([ZI1l), we can derive the error estimates for these quasi-Legendre
orthogonal projections, which are similar to (ZITI).

7.2. Composite quasi-orthogonal approximation on polygons. We are now
in a position to study the quasi-Legendre orthogonal projection on a polygon with
the boundary 992 and 9*Q C 9. We divide Q into convex quadrilaterals €2;,1 <
i < n, with the boundary 0€);, the edges L;,, the vertices Q);, and the angles
0;.v, 1 < v < 4. Therefore, 9*; = 0*Q N 0Q;. The local variable transformation
are denoted by & = &(x,y) and n; = n;(x,y), 1 < i < n. The corresponding
quantities oq,, ¥0,,00,,di,1,di2,ai1,0:2,6;3,b;1,b; 2 and b; 3 are defined in the
same way as for the single quadrilateral; see Section 3. Let h; = diam €2;. Assume
that the partition of €2 satisfies the following hypotheses:

(Hl) Qzuyzlﬁz and szQk :(D lfl#lﬁ

(Hs) each vertex of ©; is also one of the vertices of adjacent quadrilaterals,

(H3) if Q; N 9Q # 0, then ©; has at most one edge 9*Q;,

(Hy) there are positive constants By and f; such that 0 < 8y < 6;, < 1 <
7, 1<v<4,1<i<n,and so 0 < oh? < g, < 61h?,1 <i < n.

Let N = (Ny, Ny, -+, N,,) and r = (ry,r9,--+,r,). We define the quasi-Legendre
orthogonal projection . Py y, o¥ as « PN n, ovlo, = «P, n,.0,0,1 < @ < n, where
the projections *P]{,i,Nb)in are constructed in such a way that

(A) if ;N 09 = 0, then Py y, o,v is given by (T4,

(B) if 9*Q; # 0, say 0*Q; = L; 1, then *P]{,i’Nb’in is similar to ([CI6]).

Clearly, if L; ,, and Ly, are the same segment, say L; 3 = L 1, then the coefficients

: : 1,0 ~0 . 1,0 ~0
in the expansions of LS (n;) and PNb,Ank 0p.1,, () are the same. It can

be checked that . Py y, v € C().

For a description of the approximation error, we introduce the notation E,, o, (v),
F,, q,(v) and G,, q,(v), with the quantities &,n;,00,,7;,00,;,di1,diz2, i1, G2,
ai3, bi1,bi2 and b; 3, respectively. According to the previous statements and an
standard argument as in [2, 5 [7], we observe that if v € H(Q;) N C(Q;) and
E,, q,(v), Fy, o,(v) and G,, o,(v) are finite for integers 2 < r; < N; +1(1 <i < n)
and 2 <7, < Ny + 1, then

V(P a0 = v)le

< coady" S (N} T By, (0) + Fro, () + NE TG, ,(0).
=1

(7.17)

7.3. Spectral element method for polygons. We now consider the following

problem,
—AU(.I,y) = f(xvy)a (I,y) S Q,

(7.18) hU(z,y) = g2(z,y), (z,y) € 97,
U(x,y) :gl(x,y)a (x,y) € 89\8*9
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If 0*Q = 09, we require, in addition, (f,1)q = 0 and (U,1)q = 0 for fixing the
solution. In what follows, we suppose 0*€2 # 92 for simplicity. Let
V() ={ve H(Q)NC(Q) |v=g1 on 90\ 9*Q},
V(Q) ={ve H(Q)NC(Q) |v=0o0n 00\ 5*Q}.
The weak formulation of (LI8) is to find U € V, () such that

(7.19) (VU, Vv)q +/a . g2(z, y)v(z,y)ds = (f,v)q, Yo € V(Q).

*

For the numerical solution of ([ZI9), we need three kinds of base functions.
Let L;(§) be the Legendre polynomial of degree | as usual. The base functions
corresponding to €);, are given by
w?li,li,mi (aj? y)

1
(L1,(&) = Li,42(&)) (Lan, (1) — L, 42(m:))
0, otherwise.

on Qi7

&i=&i(x,y)mi=ni(z,y)>

Next, we define the base functions corresponding to the edges of quadrilaterals. For
instance, if L; , = L; 1 = Ly 3, then the corresponding base function

,l/}%i,lmli,k(x’y)

—/—(1 - 61)(Ll k (771) - Llf k+2(77i))|§'=£-(:c v),mi=n:(x,y)» on Qia
2 417‘7]{; + 6 T, T, 2 (2 9 A K2 2 bl

_ 1 _
ﬁ(l + fk)(quk (nk) - Lli,k+2(nk))|Ek:§k(zvy)vnk:nk(zvy) on Yy,

4 +
0, otherwise,

The third kind of base functions correspond to the vertices of quadrilaterals. For
example, if Q;, 1 = Qi, .2 = Qi;,3 = @i, .4, then the the corresponding base function

1 _
Z(l = &) (1 —mi) i =& (T,Y),miy =74, (z,y)>  OL Qi ,
1 _
Z(l + &, ) (1 = miy) Cin=Cip (T,Y)Nip =Ty (z,y)>  OL Qi
’(/}Qi ig,ig,i (x,y): 1 A
e 1(1 + 613)(1 + 7713) Cig=Ei5 (T,9),Mizg="is(2,y)> on Qig?
1 _
1(1 - 67,4)(1 + 7714) Eiy=8iy (T,9)Miy =Ny (T,y)> on Qi4a
0, otherwise.

Let Wi N, (©2) be the set spanned by ,(/)Soziqliqu‘, (2,y),0 < l;;m; < N; — 2, all
w%hk’li‘k(x,y), 0<lix <Npandallyg,, ., .. .. (z,y). Clearly, Wn n, () C HY(Q)N

C(€2). Furtherore, we let
Vo, (2) = { ¢ € W, (Q) | ¢ = Py, 9091 on 0\ 97},

where, for example, if the edge L;; C 090\ 0*Q, then we take gi1(—1,7;) =

91(55(_1777i)7y(—1777i)) and

1 1,

3 (=1, -1 —mn;) — 591(_13 1)(1+n:))

)+ 591 (=1, 1) (1 +m)

1,0 N
*P]{]maggl(mv Y) :PNb,Am_ (91 (=1, m;) —

g1
1,
+§91(—1, -1 —ni) +

&i=&i(z,y)mi=n:i(z,y)"

DN | =
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The set VX n, () ={ ¢ € Wn n,(©) | ¢ =0 on 902\ 9°Q}.
We now construct the spectral method for (.I9). We first consider an auxiliary
problem (cf. [§]), which is to find the solution W € V, py () such that
b

L0091

(7.20) (YW, Vo) + /

8*

QgQ(x,y)v(x,y)ds = (f,v)q, Yo € V(Q).

The corresponding spectral method is to find wn,n, € Vi, (§2) such that
(7.21)
(Vun e Volo+ [ aa(eg)o(w.s)ds = (£.)a Yo € Vi, ()

For derivation of error estimate of numerical solution, we introduce the orthog-
onal projection Py y, qv : H'(Q2) N C(Q) = Vi n, (2) such that

(V(PI&I,N;,,QU —v),Vo)a =0, Vo € VN, (2).

This, along with ([[C20)), leads to

(722) (VPY oW, Ve)a + /

8*

ng(w,yw(fﬂ,y)ds =(f,9)a, Vo€ VR N, (D).

Subtracting (T22) from (Z21)) yields
(V(PllI,Nb,QW —wN,N,), Vé)a = 0, Vo € VN, (Q).
This implies wn n, = P v, oW- Consequently (cf. [8]),

HV(wN,Nb - W)HQ = HV(PﬁI,Nb,QW - W)”Q < HV(*P&,N%QU - W)HQ

7.23
(7.23) < V(P ol = U)o + V(U = Wa.

Furthermore, we have from (I8]) and (C20) that

—A(U(l‘,y) - W(l‘,y)) =0, (xay) € Qa
8n(U(I7y) - W(I7y)) =0, (xa y) € 0"Q,
Ulz,y) = W(x,y) = g1(z,y) — <Py, o091 (2,Y), (z,y) € 90\ 0" Q.

According to the properties of elliptic equation (cf. [8]) and the quasi-Legendre
orthogonal approximation, we obtain

U =Wz (o)
(7.24)

n
< cllgr — « Py, o091l 00\00) < coadg N, ZKrb,Qi (91)
=1
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where K, q,(g1) =0 if Q, N0 = 0, and otherwise,

Zb I(1—12) ™% (az + az€)* (bs + b3&)" 0y 0 g1l 2L, )
= if Ly C 00\ 0+,
Zb (L= €)™ (a1 + asn)* (b + ban) ™ 050, g1l 2 (L, )
kjo if Ly C 00\ 6+,
S = 1) (02 + a5 (b + bat) 0O gl zaia, oy
kr_o if L C 00\ 6+,
SO0 =€) (a1 + asn) by + by B g a o,
= if Liy C 00\ 079
A combination of (ZI7), (Z23)) and ([Z.24]) leads to the following conclusion.

Theorem 7.1. If the hypotheses (Hi)—(Hy) hold, U € H(2) N C(Q), and all
E. 0,(U), Fr,0,(U), Gy, 0,(U) and K, 0,(g1) are finite for integers 2 < r; <
N,+1,1<i<nand 2 <ry, < Np—+1, then

KTbﬁﬂf, (91) =

U —wnN,w, |5 ()

< 609651 Z(Niliri (ETi;Qi(U) + FTi,Qi(U)) + Nbl_rb(GTLnQi (U) + Ky, 0, (gl)))

i=1

Remark 7.1. By ([3.28), we have max(|a; 3], |bi 3], |oq,

) < ch;. Therefore,

n [ r;—1

U = Wn, i) < ¢y NSO R H|o5ay Ullo + Y by 2050y U o
i=1 k=0 k=0

4 r;
+D S 9ROy R U )

v=1 k=0

n 4
+e D NTRPTEY D (110505 Ul
i=1 v=1k=0
+10F05 12 (L, n(90—00)))-
This is similar to the result (5.4.16) of [5] and the corresponding result of [17] for
multidomain pseudospectral method.

Remark 7.2. In actual computation, we evaluate the terms fa*ggg(:c,y)gé(x, y)ds
and (f, ¢)q approximately. Thus, in general, there exist two additional errors de-
pending on the accuracy of numerical quadratures and the smoothness of f and

g2.

8. CONCLUDING REMARKS

In this paper, we first established the basic results on the orthogonal approxi-
mation for arbitrary convex quadrilaterals, which conform the mathematical foun-
dation of the related spectral method possessing the spectral accuracy. Moreover,
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the Jacobi weighted norms appearing in the upper bounds of approximation er-
rors, cover certain singularities of considered functions at the edges or vertices of
quadrilaterals.

As examples of applications, the spectral schemes were proposed for two model
problems, with the optimal error estimates of numerical solutions. The numerical
results demonstrated their high accuracy, and coincide with the analysis well. We
also developed a spectral method for convex polygons. Our method could be applied
to exterior problems with non-rectangular obstacles.

It is noted that the super-convergence of finite element method was obtained
for analytical solutions; see [19]. But our results are valid for solutions in certain
weighted Sobolev space, which is much more practical.

APPENDIX A
We have from ([23)) that
(a1b3 —a3b1)§2 — (bg(iﬂ—ao) —(lg(y— bo) —|—a2b1 —(lle)g—bQ(x —(lo) +a2(y— bo) = 0
If a1b3 — a3b1 75 O, then
1
£(z,y) = m(b3($ —ao) — as(y — bo) + azby — arby
+0+/(bs3(x—ao0) —as(y—bo) +azbr —a1b2)2+4(ar1bs —asb) (b2(x —ao) —az(y—bo))),

where o = 1, if the points (); are numbered counterclockwise as in Section 2, and
o = —1 otherwise. If a;b3 — azb; = 0, then

ba(z — ag) — az(y — bo)
3(z —ag) —as(y — bo) + azby — arby’

5(377 y) == b
Similarly, we have

(agbg—agbg)UQ—(bg(z—ao)—ag(y—bo)+a1b2—agbl)n—bl(:ﬂ—ao)—|—a1(y—b0) = 0
If a2b3 — a3b2 75 O, then

1
n(z,y) = Hazbs —asha) (bs(z — ao) — as(y — bo) + arbe — azbs
+)\\/(b3(x—a0)—ag(y—bo)+a1b2—a2b1)2—|—4(a2b3—agbg)(bl(:c—ao)—al(y—bo))),

where A = —1, if the points ); are numbered clockwise as in Section 2, and A =1
otherwise. If asbs — agzby = 0, then

bl(l‘ — ao) — Cll(y — bo)
3(£E — ao) — (lg(y — bo) —+ a1b2 — a2b1 ’

77(907?/) = —b
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