
Spectral methods for multiscale stochastic differential equations∗

A. Abdulle† , G.A. Pavliotis‡ , and U. Vaes§

Abstract. This paper presents a new method for the solution of multiscale stochastic differential equations at
the diffusive time scale. In contrast to averaging-based methods, e.g., the heterogeneous multiscale
method (HMM) or the equation-free method, which rely on Monte Carlo simulations, in this paper
we introduce a new numerical methodology that is based on a spectral method. In particular, we use
an expansion in Hermite functions to approximate the solution of an appropriate Poisson equation,
which is used in order to calculate the coefficients of the homogenized equation. Spectral convergence
is proved under suitable assumptions. Numerical experiments corroborate the theory and illustrate
the performance of the method. A comparison with the HMM and an application to singularly
perturbed stochastic PDEs are also presented.
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1. Introduction. Multiscale stochastic systems arise frequently in applications. Examples
include atmosphere/ocean science [45] and materials science [19]. For systems with a clear
scale separation it is possible, in principle, to obtain a closed – averaged or homogenized –
equation for the slow variables [56]. The calculation of the drift and diffusion coefficients
that appear in this effective (coarse-grained) equation requires appropriate averaging over
the fast scales. Several numerical methods for multiscale stochastic systems that are based
on scale separation and on the existence of a coarse-grained equation for the slow variables
have been proposed in the literature. Examples include the heterogeneous multiscale method
(HMM) [62, 21, 1] and the equation-free approach [36]. These techniques are based on evolving
the coarse-grained dynamics, while calculating the drift and diffusion coefficients “on-the-fly”
using short simulation bursts of the fast dynamics.

A prototype fast/slow system of stochastic differential equations (SDEs) for which the
aforementioned techniques can be applied is 1

(1a) dXε
t =

1

ε
f(Xε

t , Y
ε
t ) dt+

√
2σx dWxt,

∗Submitted to the editors September 16, 2016.
Funding: A. Abdulle is supported by the Swiss national foundation. G.A. Pavliotis is supported by the

Engineering and Physical Sciences Research Council of the UK through Grants Nos. EP/L020564, EP/L024926 and
EP/L025159. U. Vaes is supported through a Roth PhD studentship by the Department of Mathematics, Imperial
College London.
†Mathematics Section, École Polytechnique Fédérale de Lausanne (assyr.abdulle@epfl.ch).
‡Department of Mathematics, Imperial College London (g.pavliotis@imperial.ac.uk).
§Department of Mathematics, Imperial College London (u.vaes13@imperial.ac.uk).
1 In this paper we will consider the fast/slow dynamics at the diffusive time scale, or, using the terminology

of [56], the homogenization problem.

1

mailto:assyr.abdulle@epfl.ch
mailto:g.pavliotis@imperial.ac.uk
mailto:u.vaes13@imperial.ac.uk


2 A. ABDULLE, G.A. PAVLIOTIS, U. VAES

(1b) dY ε
t =

1

ε2
h(Xε

t , Y
ε
t ) dt+

√
2

ε
σy dWyt.

where Xε
t ∈ Rm, Y ε

t ∈ Rn, ε � 1 is the parameter measuring scale separation, σx ∈ Rm×d1 ,
σy ∈ Rn×d2 are constant matrices, andWx,Wy are independent d1 and d2-dimensional Brown-
ian motions, respectively.2 For fast-slow systems of this form, a direct numerical approximation
of the full dynamics would be prohibitively expensive, because resolving the fine scales would
require a time step δt that scales as O(ε2). Under appropriate assumptions on the coefficients
and on the ergodic properties of the fast process Y ε

t , it is well known that the slow process
converges, in the limit as ε tends to 0, to a homogenized equation that is independent of the
fast process and of ε [56, Ch. 11]:

(2) dXt = F(Xt) dt+ A(Xt) dWt.

The drift and diffusion coefficients in (2) can be calculated by solving a Poisson equation
involving the generator of the fast process,3

(3) − Lyφ = f ,

where Ly = h(x, y) · ∇y +σyσ
T
y : ∇y∇y, together with appropriate boundary conditions, and

calculating averages with respect to the invariant measure µx(dy) of Y ε
t :

F(x) =

∫
Rn

∇xφ(x, y) f(x, y)µx(dy),(4a)

A(x)A(x)T =

∫
Rn

[f(x, y)⊗ φ(x, y) + φ(x, y)⊗ f(x, y)] µx(dy).(4b)

Once the drift and diffusion coefficients have been calculated, then it becomes computationally
advantageous to solve the homogenized equations, in particular since we are usually interested
in the evolution of observables of the slow process alone. The main computational task, thus,
is to calculate the drift and diffusion coefficients that appear in the homogenized equation (2).
When the state space of the fast process is high dimensional, the numerical solution of the
Poisson equation and calculation of the integrals in (3) using deterministic methods become
prohibitively expensive and Monte Carlo-based approaches have to be employed. In recent
years different methodologies have been proposed for the numerical solution of the fast-slow
system (1) that are based on the strategy outlined above, for example the Heterogeneous
Multiscale Method (HMM) [62, 21, 1] and the equation-free approach [36]. In particular, the
PDE-based formulas (4) are replaced by Green-Kubo type formulas [21, Sec. 1] that involve
time averages and numerically calculated autocorrelation functions. The equivalence between
the homogenization and the Green-Kubo formalism has been shown for a quite general class
of fast/slow systems of SDEs [54]. See also [39, 41]. While offering several advantages, time
and ensemble averages, on which these methods are based, imply that accurate solutions are

2 It is straightforward to consider problems where the Brownian motions driving the fast and slow processes
are correlated. This scenario might be relevant in applications to mathematical finance. See e.g. [16].

3 We are assuming that the centering condition is satisfied, see (10) below.
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computationally very expensive to obtain. Based on the analysis of [21], one deduces that the
computational cost needed to obtain an error of order 2−p scales as O(2p(2+1/l)), where l is
the weak order of accuracy of the micro-solver used.

When the dimension of the state space of the fast process is relatively low, numerical
approaches that are based on the accurate and efficient numerical solution of the Poisson
equation (3) using “deterministic” techniques become preferable. Such an approach was
taken in [9] for the study of the diffusion approximation of a kinetic model for swarming [12].
The computational methodology that was introduced and analyzed is based on the numerical
calculation of the eigenvalues and eigenfunctions of an appropriate Schrödinger operator using
a high-order finite element method. The authors showed rigorously and by means of numerical
experiments that for sufficiently smooth interaction potentials the proposed numerical scheme
performs extremely well; in particular, the numerical calculation of the first few eigenvalues
and eigenfunctions are sufficient for the very accurate calculation of the drift and diffusion
coefficients.

Methods that are based on the caclculation of the eigenvalues and eigenfunctions of the
transfer (Koopman) operator have been introduced in [24, 25]. In addition diffusion maps
have also been applied to multiscale stochastic systems [14, 13]. Techniques that are based on
the transfer operator and diffusion maps are related to our approach since, unlike the HMM
and the equation-free approach, they do not require the solution of the fast dynamics. On
the other hand, it should be noted that these techniques are, in principle, more powerful than
the methodology developed in this paper, since they enable us to identify the coarse-grained
variables.

In this paper we develop further the methodology introduced in [9] and we apply it to
the numerical solution of fast/slow systems of SDEs, including singularly perturbed stochas-
tic partial differential equations (SPDEs) in bounded domains. Thus, we complement the
work presented in [2], in which a hybrid HMM/spectral method for the numerical solution
of singularly perturbed SPDEs with quadratic nonlinearities [7] at the diffusive time scale
was developed.4 The main difference between the methodology presented in [9] and the ap-
proach we take in this paper is that, rather than obtaining the orthonormal basis by solving
the eigenvalue problem for an appropriate Schrödinger operator, we fix the orthonormal basis
(Hermite functions) and expand the solution of the Poisson equation (3) (after the unitary
transformation that maps it to an equation for a Schrödinger operator) in this basis. We show
rigorously and by means of numerical experiments that our proposed methodology achieves
spectral convergence for a wide class of fast processes in (1). Consequently, our method out-
performs Monte Carlo-based methodologies such as the HMM and the equation-free method,
at least for problems with low-dimensional fast processes. We discuss how our method can be
modified so that it becomes efficient when the fast process has a high-dimensional state space
in the conclusions section, Section 7.

In this paper we will consider fast/slow systems of SDEs for which the fast process is

4 When the centering condition (see Equation (10)) is not satisfied, one needs to study the problem at a
shorter time scale (called the advective time scale) before considering the diffusive limit. This problem is easier
to study since it does not require the solution of a Poisson equation. The rigorous analysis of the HMM method
for singularly perturbed SPDEs at the advective time scale was presented in [11].
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reversible, i.e. it has a gradient structure [55, Sec. 4.8]5

dXε
t =

1

ε
f(Xε

t , Y
ε
t )dt+α(Xε

t , Y
ε
t ) dWxt, Xε

0 = x0, (5a)

dY ε
t = − 1

ε2
∇V (Y ε

t )dt+

√
2

ε
dWyt, Y ε

0 = y0, (5b)

where Xε
t (t) ∈ Rm, Y ε

t (t) ∈ Rn, α(·, ·) ∈ Rm×p,Wx andWy are standard p and n-dimensional
Brownian motions, and V (·) is a smooth confining potential.

Remark 1. Our algorithm applies to the more general situation when the fast dynamics
depends on the slow one in the following way

(6) dY ε
t = − 1

ε2
∇V (Y ε

t )dt+
1

ε
h(Xε

t (t), Y ε
t (t)) dt+

√
2

ε
dWyt, Y ε

0 = y0.

The analysis presented in this paper also generalises with minor changes for such a fast process
and the effective drift (4a) becomes

(7) F(x) =

∫
Rn

∇xφ(x, y) f(x, y)µx(dy) +

∫
Rn

∇yφ(x, y)h(x, y)µx(dy).

Hence the additional term appearing above involves the solution of a Poisson problem already
computed.

SDEs of this form appear in several applications, e.g. in molecular dynamics [18, 40].
Furthermore, several interesting semilinear singularly perturbed SPDEs can be written in this
form, see Section 6. It is well known [55, Sec. 4.9] that the generator of a reversible SDE is
unitarily equivalent to an appropriate Schrödiner operator. Our approach is to first solve this
Poisson equation for the Schrödinger operator via a spectral method using Hermite functions
and then use this solution in order to calculate the integrals in (4). For smooth potentials that
increase sufficiently fast at infinity our method has spectral accuracy, i.e. the error decreases
faster than any negative power of the number of floating point operations performed. This, in
turn, via a comparison for SDEs argument, implies that we can approximate very accurately
the evolution of observables of the slow variable Xε

t in (5) by solving an approximate homog-
enized equation in which the drift and diffusion coefficients are calculated using our spectral
method. For relatively low dimensional fast-processes, this leads to a much more accurate and
computationally efficient numerical method than any Monte Carlo-based methodology. We
remark that our proposed numerical methodology becomes (analytically) exact when the fast
process is, to leading order, an Ornstein-Uhlenbeck process, since in this case, for a suitable
choice of the mean and the covariance matrix, the Hermite functions are the eigenfunctions of
the corresponding Schrödinger operator.

The rest of the paper is organized as follows. In Section 2, we summarize the results from
homogenization theory for the fast/slow system (5) that we will need in this work. In Section 3
we present our numerical method in an algorithmic manner. In Section 4, we summarize the

5 We could, in principle, also consider reversible SDEs with a diffusion tensor that is not a multiple of the
identity.



SPECTRAL METHODS FOR MULTISCALE SDES 5

main theoretical results of this paper; in particular we show that our method, under appropriate
assumptions on the coefficients of the fast/slow system, is spectrally accurate. The proofs of
our main results are given in Section 5. In Section 6 we present details on the implementation
of our numerical method, discuss the computational efficiency and present several numerical
examples, including an example of the numerical solution of a singularly perturbed SPDE; for
this example, we also present a brief qualitative comparison of our method with the HMM
method. Section 7 is reserved for conclusions and discussion of further work. Finally in the
appendices we present some results related to approximation theory in weighted Sobolev spaces
that are needed in the proof of the main convergence theorem.

2. Diffusion Approximation and Homogenization. In this section, we summarize some
of our working hypotheses and the results from the theory of homogenization used to derive
the effective SDE for the system (5). Throughout this paper, the notation |·| denotes the
Euclidian norm when applied to vectors or the 2-norm when applied to matrices. In addition,
we denote the components of a vector v ∈ Rd by v1, v2 · · · , vd. We start by assuming that
V (·) is a smooth confining potential, [55, Definition 4.2]:

(8) V ∈ C∞(Rn), lim
|y|→∞

V (y) =∞ and e−V (·) ∈ L1 (Rn) .

These hypotheses guarantee that the fast process has a well defined solution for all positive
times, with a unique invariant measure whose density is given by 1

Z e
−V (·), where Z is the

normalization constant. Without loss of generality, we may assume that Z = 1. To these
assumptions, we add

(9) lim
|y|→∞

∇V ·
(
y

|y|

)
=∞ and lim

|y|→∞
W (y) := lim

|y|→∞

(
1

4
|∇V (y)|2 − 1

2
∆V (y)

)
=∞,

which guarantee that the law of Y ε
t converges to its invariant distribution e−V exponentially

fast (e.g. in relative entropy), see [47]. We assume furthermore that the drift coefficient in the
slow equation of system (5) satisfies

(10)

f(x, y) ∈ (C∞(Rm ×Rn))m ,∫
Rn

f(x, y) e−V (y) dy = 0, and

|f(x, y)| ≤ K(1 + |x|)(1 + |y|β) ∀x ∈ Rm and ∀y ∈ Rn,

with β a positive integer and K a positive constant. Under Assumptions (8) and (9), we
can use Proposition 17 and Lax-Milgram theorem to show that there exists for all x ∈ Rm a
unique φ(x, ·) ∈ H1

(
Rn, e−V

)m, where H1
(
Rn, e−V

)
is the weighted Sobolev space defined

in Definition 15, such that

(11) − Lyφi(x, y) := − (∆y −∇yV · ∇y)φi(x, y) = fi(x, y) for i = 1, . . . ,m

and

(12)
∫
Rn

φ(x, y) e−V (y) dy = 0, ∀x ∈ Rm.
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By the theory of elliptic regularity, the uniform ellipticity of L implies that φ is smooth in y,
and by [51, Theorem 1], φ grows at most polynomially in y.

We also make the following assumption on the Lipschitz continuity with respect to x of
the coefficients,

(13)
∣∣f(x, y)− f(x′, y)

∣∣+
∣∣α(x, y)−α(x′, y)

∣∣ ≤ C(y)
∣∣x− x′∣∣ , ∀x, x′ ∈ Rm,

with C(y) a function bounded from above by a polynomial, and the following assumptions on
the growth of the coefficients:

(14) |∇xf(x, y)|+
∣∣∇2

xf(x, y)
∣∣ ≤ K(1 + |y|m1),

|α(x, y)| ≤ K(1 + |x|1/2)(1 + |y|m2),

for positive integers m1,m2 and a positive constant K. It follows from this that φ(·, y) belongs
to
(
C2(Rm)

)m for all values of y. This can be shown by using the Feynman-Kac representation
of the solution of (11) that was studied in [51]:

(15) φi(x, y) =

∫ ∞
0

Eyfi(x, z
y
t ) dt, i = 1, . . . ,m,

where zyt is the solution of

dzyt = −∇yV (zyt ) dt+
√

2 dWt with zy0 = y.

Using the Feynman-Kac formula (15), one can show [51, p. 1073] that there exist L, q > 0
such that:

(16)
|φ(x, y)|+ |∇yφ(x, y)| ≤ L(1 + |x|)(1 + |y|q),
|∇xφ(x, y)|+ |∇y∇xφ(x, y)|+ |∇x∇xφ(x, y)|+ |∇y∇x∇xφ(x, y)| ≤ L(1 + |y|q).

Using the previous assumptions we can prove the following homogenization/diffusion approx-
imation result [51, Theorem 3].

Theorem 2. Let (8)–(10), (13) and (14) be satisfied. Then for any T > 0, the family
of processes {Xε

t , 0 ≤ t ≤ T} solving (5) is weakly relatively compact in (C ([0, T ]))m. Any
accumulation point Xt is a solution of the martingale problem associated to the operator:

G =
1

2
D(x) : ∇x∇x + F(x) · ∇x

where

(17) F(x) =

∫
Rn

∇xφ(x, y) f(x, y) e−V (y) dy,

(18) D(x) =

∫
Rn

(
α(x, y)α(x, y)T + f(x, y)⊗ φ(x, y) + φ(x, y)⊗ f(x, y)

)
e−V (y) dy,

and φ(x, y) is the centered solution of the Poisson equation (11). If, moreover, the martingale
problem associated to G is well-posed, then Xε

t ⇒ Xt (convergence in law), where Xt is the
unique diffusion process (in law) with generator G.
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The matrix D(x) is clearly symmetric, and one can show that it is also positive semi-definite,
see [56, Section 11.5]. In view of Theorem 2, writing D(x) = A(x)A(x)T we obtain the
functions F(x), A(x) that appear in the homogenized SDE (2). Though the choice of A(x)
is not unique, all choices lead to the same associated Fokker-Planck or backward Kolmogorov
equations, hence the probability measures in path space are the same.

3. Numerical Method. In this section, we describe our method for the approximation of
the effective dynamics, the analysis of which is postponed to Section 5. We start by introducing
the necessary notation. We will denote by L2 (Rn) the space of square integrable functions
on Rn. The notation L2 (Rn, ρ), for a probability density ρ, will be used to denote the space
of functions f such that √ρf ∈ L2 (Rn). Weighted Sobolev spaces associated to a probability
density are defined in Definition 15. whereas scales of Sobolev spaces, associated to an operator,
are defined in Definition 16.

In addition to these function spaces, we will denote by Pd(R
n) the space of polynomials

in n variables of degree less than or equal to d, and by Hα(y;µ,Σ) the Hermite polynomials
on Rn defined in Appendix B:

(19) Hα(y;µ,Σ) = Hα(S−1(y − µ); 0, I), with Hα(z; 0, I) =
∏n

k= 1
Hαk(zk)

and α ∈ Nn. Here Hαk(·) denotes the one-dimensional Hermite polynomial of degree αk,
Σ ∈ Rn×n is a symmetric positive definite matrix, D and Q are diagonal and orthogonal
matrices such that Σ = QDQT , S = QD1/2 and µ ∈ Rn.We recall from Appendix B that these
polynomials form a complete orthonormal basis of L2(Rn, G(µ,Σ)), where Gµ,Σ denotes the
Gaussian density onRn with mean µ and covariance matrix Σ. Finally, we will use the notation
hα(y;µ,Σ) to denote the Hermite functions corresponding to the Hermite polynomials (19),
see Definition 21.

We recall from Section 2 that obtaining the drift and diffusion coefficients F(X) and A(X),
respectively, of the homogenized equation

(20) dX = F(X) dt+ A(X) dWt,

requires the solution of the Poisson equations (11). To emphasize the fact that x appears
as a parameter in (11), we will use the notations φx(·) := φ(x, ·) and fx(·) := f(x, ·). The
weak formulation of the Poisson equation (11) is to find φx ∈ H1

(
Rn, e−V

)
m such that for

i = 1, . . . ,m,

aV (φxi , v) :=

∫
Rn

∇φxi · ∇v e−V dy =

∫
Rn

fxi v e
−V dy ∀v ∈ H1

(
Rn, e−V

)
,(21)

with the centering condition

(22) M(φx) :=

∫
Rn

φx e−V dy = 0.

We recall that in order to be well-posed the conditionM(fx) = 0 must be satisfied.
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We begin by performing the standard unitary transformation that maps the generator
of a reversible Markov process to a Schrödinger operator: e−V/2 : L2

(
Rn, e−V

)
→ L2 (Rn).

Introducing

(23) H := e−V/2Ly
(
eV/2·

)
= ∆−

(
1

4
|∇V |2 − 1

2
∆V

)
= ∆−W (y),

and ψx = e−V/2φx, the Poisson equation (11) can be rewritten in terms of the operator (23)
as:

(24) −Hψx = e−V/2fx.

Note that, because the superscript x already indicates that x plays the role of a parameter, we
have have not appended the subscript y to H. The weak formulation of this mapped problem
reads: find ψx ∈ H1 (Rn,H) such that, for i = 1, . . . ,m,

a(ψxi , v) :=

∫
Rn

∇ψxi · ∇v +W (y)ψxi v dy =

∫
Rn

fxi v e
−V/2dy ∀v ∈ H1 (Rn,H) ,(25)

where H1 (Rn,H) =
{
u ∈ H1 (Rn) :

∫
Rn |W |u2 dy <∞

}
, and such that the following center-

ing condition is satisfied:

(26) M̂(ψx) :=

∫
Rn

ψxe−V/2dy = 0.

The formulas for the effective drift and diffusion coefficients can be written as

F(x) =

∫
Rn

∇xψx
(
fx e−V/2

)
dy,(27a)

D(x) =

∫
Rn

ααT (x, y)µx(dy) + A0(x) + A0(x)T ,(27b)

where

(28) A0(x) =

∫
Rn

ψx ⊗
(
fx e−V/2

)
dy.

The advantage of using the unitary transformation is that the solution of this new problem
and its derivative lie in L2 (Rn), rather than in a weighted space.

To approximate numerically the coefficients of the effective SDE, we choose a finite-
dimensional subspace Ŝd of H1 (Rn,H), specified below, and consider the finite-dimensional
approximation problem: find ψxd ∈ (Ŝd)

m such that, for i = 1, . . . ,m,

a(ψxdi, vd) =

∫
Rn

fxi vd e
−V/2dy ∀vd ∈ Ŝd.(29)

Existence and uniqueness, up to a function in the kernel of H, if that space is contained in Ŝd,
of the solution to the finite-dimensional problem are inherited from the infinite-dimensional
problem (25).
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For a given basis {eα}|α|≤d of Ŝd, the finite-dimensional approximation of ψx can be ex-
panded as ψxd =

∑
|α|≤dψ

x
α eα, and from the variational formulation (29) we obtain the fol-

lowing linear systems:

(30)
∑
|β|≤d

a(eα, eβ)ψxβ = fxα with fxα =

∫
Rn

fx eα e
−V/2 dy.

We will use the notation Aαβ = a(eα, eβ) for the stiffness matrix. In view of formula (27) we
see that we also need an approximation of the gradient of the solution, which we denote by
(∇xψx)d and decompose in the basis as (∇xψx)d =

∑
|α|≤d(∇xψ

x)α eα. This approximation
can be obtained by solving (30) with the right-hand side (∇xfx)α =

∫
Rn(∇xfx) eα e

−V/2 dy.
In practice, we solved (30) by using the function solve of the C++ linear algebra library
Armadillo. As d → ∞, the lowest eigenvalue of Aαβ tends to zero. This could in principle
induce numerical instabilities, because the system becomes ill-conditioned, but didn’t cause
any problem in the numerical experiments we present in Section 6.

Then, by substituting the approximations of ψx and ∇xψx in (27), we calculate the ap-
proximate drift and diffusion as follows:

Fd(x) =

∫
Rn

(∇xψx)d

(
fx e−V/2

)
dy =

∑
|α|≤d

(∇xψx)α f
x
α,(31a)

A0d(x) =

∫
Rn

ψxd ⊗
(
fx e−V/2

)
dy =

∑
|α|≤d

ψxα ⊗ fxα,(31b)

Dd(x) =

∫
Rn

ααT (x, y) e−V dy + A0d(x) + A0d(x)T , Ad(x)Ad(x)T = Dd(x).(31c)

For Ad(x) to be well defined, the symmetric matrix Dd must be positive semi-definite. Using
the notations ψxξ = ψxd · ξ and fxξ = (fxe−V/2) · ξ, we can show this by noticing that, for any
ξ ∈ Rm, ξT (A0d(x) + A0d(x)T )ξ = 2

∫
Rn ψ

x
ξ f

x
ξ dy = 2 a(ψxξ , ψ

x
ξ ), by (29).

Although ψxd and (∇xψx)d are not uniquely defined when Ŝd contains the kernel of H,
the coefficients defined in (31a) and (31b) are unique, because by the centering condition f
is orthogonal in L2 (Rn) to the kernel of H. The matrix Ad(x) is not, however, uniquely
determined by (31c). Using these coefficients, we obtain the approximate homogenized SDE

(32) dXd = Fd(Xd)dt+ Ad(Xd)dWt.

This equation can now be easily solved using a standard numerical method, e.g. Euler-
Maruyama.

Our numerical methodology is based on the expansion of the solution to (24) in Hermite
functions:

(33) Ŝd = span{hα(y;µ,Σ)}|α|≤d.

A good choice of the mean and covariance, µ and Σ, respectively, is important for the efficiency
of the algorithm. In our implementation we choose

(34) µ =

∫
Rn

y e−V (y)dy and Σ = λ

∫
Rn

(y − µ)(y − µ)T e−V (y) dy,
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where λ > 0 is a free parameter independent of the first two moments of e−V . This choice
for the mean and covariance guarantees that our method is invariant under the rescaling
Ỹ ε
t = σ(Y ε

t − m). An example illustrating why this is desirable is when the mass of the
probability density e−V is concentrated far away from the origin. Using Hermite functions
centered at 0 would provide a very poor approximation in this case, but choosing Hermite
functions around the center of mass of e−V leads to a much better approximation. Note that
this is not the only choice that guarantees invariance under rescaling, but it is the most natural
one.

Remark 3. When the potential V is quadratic, say V (y) = 1
2(y −m)TS(y −m), the eigen-

functions of the operator H (defined in (23)) are precisely the Hermite functions hα(y;m,S).
Hence choosing these as a basis, i.e. eα = hα(y;m,S), leads to a diagonal matrix A in the lin-
ear systems (30), because a(eα, eβ) = λαδαβ, with λα defined in (87). This choice corresponds
to λ = 1 in (34). The optimal choice for the parameters µ and Σ for a general density e−V

and function f has been partially studied. In particular, it was shown in [30] that O(p2) Her-
mite polynomials are necessary to resolve p wavelengths of a sine function, when keeping the
scaling parameter fixed. This result carries over to the case of normalized Hermite functions,
where the associated covariance matrix would play the role of the scaling parameter. In [60], it
was shown that much better results could be obtained by choosing the scaling parameter as a
function of the degree of approximation. In particular, the author shows that by choosing this
parameter inversely proportional to the number of Hermite functions, only O(p) functions are
needed in order to resolve p wavelengths in one spatial dimension. More recently, the question
of the optimal choice of the scaling parameter has also been studied in the framework of spectral
methods for the Fokker-Planck equation, see [23].

Summary of the Method. In short, the method can be summarized as follows.
For a given initial condition Xε(0) = X0, n = 0, 1, 2, . . ., a given stochastic integrator

Xn+1
d = Ψ(Xn

d ,Fd,Ad,∆t, ξn), and a chosen time step ∆t, set Xn
0 = X0 and

1. Compute the solution ψX
n
d

d and (∇xψX
n
d )d of (30);

2. Evaluate Fd(X
n
d ),Ad(X

n
d ) from (31);

3. Compute a time step Xn+1
d = Ψ(Xn

d ,Fd,Ad,∆t, ξn), and go back to 1.

4. Main Results. In this section we present the main results on the analysis of our nu-
merical method, the proof of which will be presented in Section 5. We first need to introduce
some new notations. We will denote by 〈·, ·〉e−V the inner product of L2

(
Rn, e−V

)
, defined

by 〈u, v〉e−V =
∫
Rn u v e

−V dy, and by ‖ · ‖e−V the associated norm. We will also use the
notation ‖ ·‖k,e−V for the norm of Hk

(
Rn, e−V

)
, and ‖ ·‖k,O, where O is a negative selfadjoint

operator, for the norm of Hk (Rn,O), see Appendix A. We will denote by π(·) the projection
onto mean-zero functions of L2

(
Rn, e−V

)
, defined by

(35) π(v) = v − 〈v, 1〉e−V , v ∈ L2
(
Rn, e−V

)
.

We will work mostly with the Schrödinger formulation (24) of the Poisson equation. In that
context, we will employ the L2 (Rn) projection operator on {v̂ ∈ L2 (Rn) : M̂(v̂) = 0}, see (26),
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which we denote by π̂(·) :

(36) π̂(v̂) = v̂ − 〈v̂, e−V/2〉0 e−V/2, v̂ ∈ L2 (Rn) ,

where 〈·, ·〉0 denotes the L2 (Rn) inner product.
Finally, we will say that a function g ∈ L2 (Rn) ∩ C∞(Rn) decreases faster than any

exponential function in the L2 (Rn) sense if

(37)
∫
Rn

g(x)2eµ|y| dy <∞ ∀µ ∈ R,

and denote by E(Rn) the space of all such functions.
In addition to the hypotheses presented in Section 2, we will use the following assumptions.

Assumption 4.1. The potential W (y), introduced in (9), is bounded from above by a polyno-
mial of degree 4k, for some k ∈ N. Furthermore, for every multi-index α, there exist constants
cα > 0 and µα ∈ R such that ∣∣∂αy V ∣∣ ≤ cα eµα|y|,
where V (·) is the potential that appears in (5b).

Assumption 4.2. The drift vector f(x, y) in (5a) is such that e−V (·)/2 ∂αy f(x, ·) ∈ (E(Rn))m

and e−V (·)/2 ∂αy∇xf(x, ·) ∈ (E(Rn))m×m for all α ∈ Nn and x ∈ Rm.

For the proof of our main theorem we will need to have control on higher order derivatives of
the solution to the Poisson equation (11). To obtain such bounds we need to strengthen our
assumptions on f(x, y) in (5a). In particular, in addition to (14), we assume the following:

Assumption 4.3. For all α ∈ Nn, there exist constants Cα > 0 and `α ∈ N such that

(38)
∣∣∂αy f ∣∣+

∣∣∂αy∇xf ∣∣ ≤ Cα (1 + |y|`α).

In addition, the diffusion coefficient in the right-hand side of (5a) satisfies

(39) |α(x, y)| ≤ K(1 + |y|m2),

for constants K and m2 independent of x.

From the Pardoux-Veretennikov bounds (16), a bootstrapping argument, Assumptions 4.1
and 4.3 and the integrability of monomials with respect to Gaussian weights we obtain the
bounds

(40) ‖φx‖s,Lµ,Σ ∨ ‖∇xφ
x‖s,Lµ,Σ ∨ ‖f

x‖e−V ≤ C(s),

for s ∈ N and a constant C(s) independent of x, and where a ∨ b denotes the maximum
between a and b.

Remark 4. In Assumption 4.3 we assumed that the derivatives of the drift vector in (5a)
with respect to y are bounded uniformly in x. This is a very strong assumption and it can be
replaced by a linear growth bound as in (14). Under such an assumption the proof of Theorem 7
has to be modified using a localization argument that is based on the introduction of appropriate
stopping times. Although tedious, this is a standard argument, see e.g. [32], and we will not
present it in this paper. Details can be found in [61].
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Theorem 5 (Spectral convergence of the Hermite-Galerkin method). Under Assumptions 4.1
to 4.3, for any s ∈ N there exists C(s), independent of x, such that the approximate solutions
ψxd and (∇xψx)d satisfy the following error estimate:

‖π̂(ψxd)−ψx‖0 ∨ ‖π̂((∇xψx)d)−∇xψx‖0 ≤ C(s) d−s,

where ‖ · ‖0 is the usual L2 (Rn) norm.

Using this result, we can prove spectral convergence for the calculation of the drift and diffusion
coefficients.

Theorem 6 (Convergence of the drift and diffusion coefficients Fd and Ad). Suppose that
Assumptions 4.1, 4.2 and 4.3 hold. Then the error on the approximate drift and diffusion
coefficients decreases faster than any negative power of d, uniformly in x, i.e. for all s ∈ N
there exists D(s) such that

sup
x∈Rm

|Fd(x)− F(x)| ∨
∣∣Ad(x)Ad(x)T −A(x)A(x)T

∣∣ ≤ D(s) d−s.

Using the spectral convergence of the approximate calculation of the drift and diffusion
coefficients, we can now control the distance between the solution of the homogenized SDE
and its approximation (32).

As we have already mentioned, homogenization/diffusion approximation theorems are gen-
erally of the weak convergence type. Furthermore, the effective diffusion coefficient of the
simplified equation is not uniquely defined – see Equation (18) and the fact that D(x) =
A(x)A(x)T . Consequently, it is not possible to prove the strong convergence of the solution to
the approximate SDE (32) to the solution to the homogenized SDE (20) without constraining
the choice of the factorization. To establish the next result, we will therefore assume that A(x)
and Ad(x) are the unique symmetric positive semi-definite square roots of D(x) and Dd(x).

Denoting by X(t) the exact solution of the homogenized equation and by Xd(t) the ap-
proximate solution, we use the following norm to measure the error:

(41) |||X(t)−Xd(t)||| :=

(
E

[
sup

0≤ t≤T
|X(t) − Xd(t)|2

])1/2

.

Theorem 7. Let Assumptions 4.1 to 4.3 hold. Then the error between the approximate and
exact solutions of the simplified equation satisfies

(42) |||X(t) − Xd(t)||| ≤
√

4 (T + 4)β(s)T d−s exp (2 (T + 4)CL T ) ,

for any s ∈ N and T > 0, and where β(s) is a constant depending only on s.

Now we consider the fully discrete scheme. We need to consider an appropriate discretization of
the approximate homogenized equation (32). For simplicity we present the convergence results
for the case when we discretize the homogenized SDE using the Euler-Maruyama method:

(43) Xn+1
d = Xn

d + ∆tFd(X
n
d ) + Ad(X

n
d ) ∆Wn,
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but we emphasize that any higher order integrator, e.g. the Milstein scheme, could be used
[37, 49]. The following is a classical result on the convergence of Xn

d for which we refer
to [37, 49, 32] for a proof.

Theorem 8 (Convergence of the SDE solver). Assume that X0 is a random variable such
that E|X0|2 <∞ and that Assumptions 4.1 to 4.3 hold. Then

(44)

(
E

[
sup

n∆t∈[0,T ]
|Xn

d − Xd(tn)|2
]) 1

2

≤ C(T )
√

∆t.

for any choice of T , where Xn
d denotes the solution of (43).

Combined, Theorem 7 and Theorem 8 imply the weak convergence of the solution of (43) to
the solution of the homogenized equation (20).

5. Proofs of the Main Results.

5.1. Convergence of the Spectral Method for the Poisson Equation. In this section we
present the proof of Theorem 5, establishing the convergence of the spectral method for the
solution of the Poisson equation (21). Since the variable x only appears as a parameter in
the Poisson equation, we will consider in this section that it takes an arbitrary value and will
omit it from the notation. Additionally, to disencumber ourselves of vectorial notations, we
will consider an arbitrary direction of Rn, defined through a unit vector e, and denote by f
the projection f · e.

We recall from [51, 52] that there exists a unique smooth mean-zero function of φ ∈
H1
(
Rn, e−V

)
satisfying the variational formulation

(45) aV (φ, v) := 〈∇φ,∇v〉e−V = 〈f, v〉e−V ∀v ∈ H1
(
Rn, e−V

)
.

Let Sd be the finite-dimensional subset of H1
(
Rn, e−V

)
defined by Sd = eV/2Ŝd, where Ŝd is

the approximation space defined in eq. (33), and consider the following problem: find φd ∈ Sd
satisfying:

(46) aV (φd, vd) = 〈f, vd〉e−V ∀vd ∈ Sd.

Note that, by definition of f , φ = φ · e and φd = φd · e. The convergence of φd to φ can be
obtained using techniques from the theory of finite elements, in particular Céa’s lemma and
an approximation argument. We will use the notation that was introduced at the beginning
Section 4.

Lemma 9 (Céa’s lemma). Let φ be the solution of (45) satisfying M(φ) = 0 and φd be a
solution of (46). Then,

‖φ− π(φd)‖1,e−V ≤ C inf
vd∈Sd

‖φ− vd‖1,e−V .

Proof. The proof is standard. It uses Poincaré inequality for the measure e−V dx, recalled
in Appendix A, Proposition 17.



14 A. ABDULLE, G.A. PAVLIOTIS, U. VAES

Since we will be working mostly with the Schrödinger formulation of Poisson equation, we
need an analogue of Lemma 9 for the transformed PDE. We recall from Appendix A that the
space H1 (Rn,H) is equipped with the norm

‖ψ‖21,H = ‖ψ‖20 +

∫
Rn

|∇ψ|2 dy +

∫
Rn

Wψ2 dy.

Lemma 10. Let ψ be the unique solution of (25) satisfying M̂(ψ) = 0 and ψd be a solution
of (29). Then the projections ψ = ψ · e and ψd = ψd · e satisfy

(47) ‖ψ − π̂(ψd)‖1,H ≤ C inf
vd∈Ŝd

‖ψ − vd‖1,H.

Proof. The result follows directly by using the fact that e−V/2 is also a unitary transfor-
mation from H1

(
Rn, e−V

)
to H1 (Rn,H).

Next, we focus on establishing a result that will allow us to control the right-hand side
of (47). In [26, Lemma 2.3] the authors show that any smooth square integrable function such
that (−∆ + W )v = g lies in the space E(Rn) introduced in (37), provided that g ∈ E(Rn)
and that Assumption (9) holds. Differentiating the equation with respect to yi, we obtain:

(−∆ +W ) ∂yiv = ∂yig − ∂yiW v,

so it is clear by Assumption 4.1 that ∂αψ ∈ E(Rn) for all values of α ∈ Nn. This implies that ψ
belongs to the Schwartz space S(Rn). We now generalize sligthly [26, Lemma 3.1]. This result
will enable to control the norm ‖ · ‖1,H on the right-hand side of (47) by a norm ‖ · ‖k,Hµ,Σ ,
where Hµ,Σ is an operator defined in Appendix A. From this appendix, we recall that the
operator Hµ,Σ, with µ ∈ Rn and Σ a symmetric positive definite matrix, is defined by Hµ,Σ =
−∆ +Wµ,Σ(y), where Wµ,Σ denotes the quadratic function (y− µ)TΣ−2(y− µ)/4− tr Σ−1/2.

Lemma 11. For every k ∈ N and v ∈ S(Rn),∫
Rn

|y|4k v2(y) dy ≤ C(k, µ,Σ)‖v‖22k,Hµ,Σ ,

where C(k, µ,Σ) is a constant independent of v.

Proof. We set Qµ,Σ = (y − µ)TΣ−2(y − µ)/4. Following the methodology used to prove
lemma 3.1 in [26], we establish that:

‖Qµ,Σ(y)k+1v‖20 ≤ ‖Qµ,Σ(y)k
(
Hµ,Σ + tr Σ−1/2

)
v‖20 + C1(k,Σ)‖Qµ,Σ(y)kv‖20,

for all k ∈ N, and where C1(k,Σ) = (4k + 2)(k ρ(Σ−2) + tr Σ−2/4). Reasoning by recursion
and applying the triangle inequality, this immediately implies

‖Qµ,Σ(y)kv‖20 ≤
k∑
i=0

ci(k,Σ) ‖
(
Hµ,Σ + tr Σ−1/2

)i
v‖20

≤ C2(k,Σ)‖v‖22k,Hµ,Σ ,
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To conclude, note that
|y|4k ≤ C3 + C4Qµ,Σ(y)2k,

for suitably chosen C3 and C4 depending on Σ and µ.

A finer version of the previous inequality could be obtained by following the argumentation
in [26, Theorem 3.2], but this will not be necessary for our purposes. Lemma 11 can be used
to show the following result.

Lemma 12. If W (y) is bounded above by a polynomial of degree 4k, there exists a constant
C depending on k, µ, Σ, and W such that any v ∈ S(Rn) satisfies

‖v‖1,H ≤ C ‖v‖2k,Hµ,Σ .

Proof. This follows from the considerations of Appendix A. First we note that

‖v‖21,H = ‖v‖21,Hµ,Σ +

∫
Rn

(W −Wµ,Σ)v2 dy.

To bound the second term, we use Assumption 4.1 on W , together with Lemma 11:∫
Rn

(W −Wµ,Σ)v2 dy ≤
∫
Rn

(C1 + C2 |y|4k)v2 dy ≤ C3‖v‖22k,Hµ,Σ ,

with C1, C2, C3 depending on k, µ, Σ.

Upon combining the results presented so far in this section, we can complete the proof of
Theorem 5.

Proof of Theorem 5. In this proof, the constant C is independent of d and changes from
line to line. By Lemmas 10 and 11, and the fact that the exact solution ψ and its derivatives
are smooth and decrease faster than exponentials, we have:

‖ψ − π̂(ψd)‖1,H ≤ C inf
vd∈Ŝd

‖ψ − vd‖1,H ≤ C inf
vd∈Ŝd

‖ψ − vd‖2k,Hµ,Σ .

Using Corollary 23 on approximation by Hermite functions, we have for any s > 2k

‖ψ − π̂(ψd)‖1,H ≤ C(d+ 1)−
s−2k

2 ‖ψ‖s,Hµ,Σ ,

≤ C(d+ 1)−
s−2k

2 ,

where we used the first estimate of (40) and the fact that ‖ψ‖s,Hµ,Σ = ‖φ‖s,Lµ,Σ . The same
reasoning can be applied to ∇xψ. Since s was arbitrary, this proves the statement.

5.2. Convergence of the Drift and Diffusion Coefficients. In this section we prove the
convergence of the drift and diffusion coefficients obtained from the approximate solution of
the Poisson equation.
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Proof of Theorem 6. From the expressions of F and Fd we have:

F(x)− Fd(x) =

∫
Rn

(∇xψx − (∇xψx)d) · (fx e−V/2) dy

=

∫
Rn

(∇xψx − π̂((∇xψx)d)) · (fx e−V/2) dy,

where we used the fact that f is centered, thus orthogonal to (∇xψx)d − π̂((∇xψx)d). Using
Theorem 5 and Cauchy-Schwarz inequality we deduce that there exists for any value of s ∈ N
a constant C(s) such that

|Fd(x)− F(x)| ≤ ‖∇xψx − π̂((∇xψx)d)‖0 ‖fx e−V/2‖0
≤ C(s) d−s‖fx‖e−V .

The error on the diffusion term can be bounded similarly:

|A0d(x)−A0(x)| =
∫
Rn

(ψxd −ψx)⊗ (fx e−V/2) dy

≤ C(s) d−s ‖fx‖e−V .

The proof can then be concluded using the last bound from (40).

5.3. Convergence of the Solution to the SDE. The proof of Theorem 7 relies on two
results. First, it relies on the existence of a constant CL, proved in Appendix C, such that the
effective drift and diffusion coefficients, obtained using (17) and (18) and by calculating A(x)
as the unique symmetric positive semi-definite square root of D(x), satisfy

(48) |F(a)− F(b)|2 ∨ |A(a)−A(b)|2 ≤ CL|a− b|2,

for all a, b ∈ Rm. Next, by Theorem 6 and Lemma 24, there exists for every s ∈ N a constant
β(s) independent of d and x such that

(49) |Fd(x)− F(x)|2 ∨ |Ad(x)−A(x)|2 ≤ β(s) d−s,

for any x ∈ Rm. Upon combining (48) and (49), Theorem 7 can be proved.

Proof of Theorem 7. The error ed(t) = X(t) − Xd(t) satisfies

ed(t) =

∫ t

0
F(X(τ)) − Fd(Xd(τ)) dτ +

∫ t

0
A(X(τ)) − Ad(Xd(τ)) dWτ .

Using the inequality (a+ b)2≤ 2a2 + 2b2 and Cauchy-Schwarz, we have

(50)

E

[
sup

0≤ t≤T
|ed(t)|2

]
≤ 2T E

[∫ T

0
|F(X(τ)) − Fd(Xd(τ))|2 dτ

]

+ 2E

[
sup

0≤t≤T

∣∣∣∣∫ t

0
A(X(τ)) − Ad(Xd(τ)) dWτ

∣∣∣∣2
]
.



SPECTRAL METHODS FOR MULTISCALE SDES 17

The first term in the right-hand side can be bounded by using the triangle inequality with the
decomposition F(X(τ))−Fd(Xd(τ)) = (F(X(τ))−F(Xd(τ))) + (F(Xd(τ))−Fd(Xd(τ))), the
Lipschitz continuity of F(·) and the convergence of Fd to F:

(51)

E

[∫ T

0
|F(X(τ)) − Fd(Xd(τ))|2 dτ

]
≤ E

[
2β(s)T d−s + 2CL

∫ T

0
|X(τ) − Xd(τ)|2 dτ

]
≤ 2β(s)T d−s + 2CL

∫ T

0
E

[
sup

0≤ t≤ τ
|ed(t)|2

]
dτ

The second term can be bounded in a similar manner by using Burkholder–Davis–Gundy
inequality, see for example [35, Theorem 3.28], and Itô isometry :

(52)

E

[
sup

0≤ t≤T

∣∣∣∣∫ t

0
A(X(τ)) − Ad(Xd(τ)) dWτ

∣∣∣∣2
]

≤ 4E

∣∣∣∣∫ T

0
A (X(τ)) − Ad(Xd(τ)) dWτ

∣∣∣∣2
≤ 8β(s)T d−s + 8CL

∫ T

0
E

[
sup

0≤ t≤ τ
|ed(t)|2

]
dτ.

Using (51) and (52) in (50), we obtain:

E

[
sup

0≤ t≤T
|ed(t)|2

]
≤ 4 (T + 4)

(
β(s)T d−s + CL

∫ T

0
E

[
sup

0≤ t≤ τ
|ed(t)|2

]
dτ

)
.

By Gronwall’s inequality, this implies:

(53) E

[
sup

0≤ t≤T
|ed(t)|2

]
≤ 4 (T + 4)β(s)T d−s exp (4 (T + 4)CL T ) ,

which finishes the proof.

Remark 13. Note that, as mentioned in Section 4, the convergence of the solution can still
be proved if we assume that the Lipschitz continuity and convergence of the coefficients holds
only locally, provided there exists p > 2 and a constant K independent of d such that the
solutions of the equations

dX = F(X) dt + A(X) dWt, X(0) = X0,

and
dXd = Fd(Xd) dt + Ad(Xd) dWt, Xd(0) = X0,

satisfy the moment bounds

E

[
sup

0≤t≤T
|X(t)|p

]
∨E

[
sup

0≤t≤T
|Xd(t)|p

]
≤K.
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With these alternative assumptions, we can show that

E

[
sup

0≤ t≤T
|X(t) − Xd(t)|2

]
≤ 4 (T + 4)DR(s)T d−s exp (4 (T + 4)CR T )

+ 2K

(
2p δ

p
+

p− 2

Rp p δ
2
p−2

)
for any δ > 0 and R > |X0|, and where CR and DR are the local constants for the as-
sumptions. The proof of this estimate is very similar to the one of the strong convergence of
Euler-Maruyama scheme in [32, Theorem 2.2], and will thus not be presented here. From this
estimate, we deduce that the solution of the approximate homogenized equation converges to
the exact solution when d → ∞.

6. Implementation of the Algorithm and Numerical Experiments. In this section, we
discuss the implementation of the algorithm and present some numerical experiments to vali-
date the method and illustrate our theoretical findings.

6.1. Implementation details. Below we discuss the quadrature rules used and the ap-
proach taken for the calculation of the matrix and right-hand side of the linear system of
equations (30).

The algorithm requires the calculation of Gaussian integrals of the type:

(54) I =

∫
Rn

f(y)G(µ,Σ)(y) dy.

Several approaches, either Monte Carlo-based or deterministic, can be used for the calculation
of such integrals. Probabilistic methods offer an advantage when the dimension n of the state
space of the fast process is large, but since the HMM is more efficient than our approach in
that case, in practice we don’t use them. Instead, we use a multi-dimensional quadrature rule
obtained by tensorization of one-dimensional Gauss-Hermite quadrature rules.

For the calculation of the stiffness matrix, we can take advantage of the diagonality of A
when the potential is equal to Vµ,Σ := 1

2(y − µ)Σ−1(y − µ) + log(
√

(2π)n det Σ).6 Using the
notation Hµ,Σ to denote the same operator as in Lemma 11, and the shorthand notations Hα

and hα, for α ∈ Nn, in place of Hα(y;µ,Σ) and hα(y;µ,Σ), respectively, we have:

(55) Aαβ = −
∫
Rn

(H−Hµ,Σ)hα hβ dy −
∫
Rn

Hµ,Σ hα hβ dy =: Aδαβ +Dαβ,

where D is a diagonal matrix whose entries can be computed explicitly and

(56) Aδαβ =

∫
Rn

(W −Wµ,Σ) fαfβ dy =

∫
Rn

(W −Wµ,Σ)G(µ,Σ)HαHβ dy,

where Wµ,Σ is the potential obtained from Vµ,Σ according to (9). To simplify the calculation
of these coefficients, we expand the Hermite polynomials in terms of monomials:

(57) Hα(y;µ,Σ) =
∑
|β|≤d

cαβ y
β.

6 The constant log(
√

(2π)n det Σ) in V (µ,Σ) is chosen so that
∫
Rn e

−V dy = 1.
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With this notation, we write:

(58) Aδαβ =
∑
|ρ|≤d

∑
|σ|≤d

cαρ cβσ

∫
Rn

(W −Wµ,Σ)G(µ,Σ) y
ρ+σ dy =:

∑
|ρ|≤d

∑
|σ|≤d

cαρ cβσIρ+σ,

The integrals Iα are computed by numerical quadrature. Denoting by wi and qi the weights
and nodes of the Gauss-Hermite quadrature, respectively, Iα is approximated as

(59) Iα ≈
Nq∑
i=1

wi (W (qi)−Wµ,Σ(qi)) G(µ,Σ)(qi) q
α
i , |α| ≤ 2d,

where Nq denotes the number of points in the quadrature. Only the last factor of the previous
expression depends on α, so the numerical calculation of these integrals can be performed by
evaluating for each grid point the value of wi (W (qi)−Wµ,Σ(qi)) G(µ,Σ)(qi) and the values of
qαi for |α| ≤ 2d. For the numerical experiments presented in this paper, we used a quadrature
rule with 100 points in each dimension, so Nq = 100n. This quadrature rule was used also to
approximate the exact effective coefficients from (27).

A similar method can be applied for the calculation of the right-hand side, whose elements
are expressed as:

(60) bα =

∫
Rn

e−V/2f eα dy.

By expanding the Hermite functions in terms of Hermite polynomials multiplying G1/2
(µ,Σ), the

previous equation can be rewritten as

(61) bα =
∑
|β|≤d

cαβ

∫
Rn

(
e−V

G(µ,Σ)

) 1
2

f(x, y) yβ G(µ,Σ) dy,

which is a Gaussian integral that can also be calculated using a multi-dimensional Gauss-
Hermite quadrature.

6.2. Numerical experiments. Now we present the results of some numerical experiments.
The Euler-Maruyama scheme is used to approximate both X(t) and Xd(t) with a time

step of 0.01 for T = 1, and Nr = 100 replicas of the driving Brownian motion are used for the
numerical computation of expectations. The ith replica of the discretized approximations of
X(t) and Xd(t) are noted Xn,i and Xn,i

d respectively. In most of the numerical experiments
below, the error is measured by:

(62) E(d) =

(
1

Nr

Nr∑
i=1

max
0≤n∆t≤1

|Xn,i − Xn,i
d |

2

) 1
2

,

which is an approximation of the norm ||| · ||| used in Theorem 7.
In the numerical experiments presented in this paper, we have chosen the scaling parameter

λ in (34) by trial-and-error. A natural extension of the work presented in this paper is to
develop a systematic methodology for identifying the optimal scaling parameter, see also the
discussion in Remark 3.
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6.2.1. Test of the method for single well potentials. For the two problems in this section,
the scaling parameter is chosen as λ = 0.5 for all degrees of approximation. We start by
considering the following problem.

(63)



dx0t = −1

ε
Ly [cos (x0t + y0t + y1t)] dt,

dx1t = −1

ε
Ly [sin (x1t) sin (y0t + y1t)] dt,

dy0t = − 1

ε2
∂y0V (y) dt+

1

ε
[cos (x0t) cos (y0t) cos (y1t)] dt+

√
2

ε
dW0t,

dy1t = − 1

ε2
∂y1V (y) dt+

1

ε
[cos (x0t) cos (y0t + y1t)] dt+

√
2

ε
dW1t,

with

(64) V (y) = y2
0 + y2

1 + 0.5
(
y2

0 + y2
1

)2
,

and where Ly = −∇V · ∇ + ∆. We have written the right-hand side of the equations for
the slow processes x0t and x1t in this form to ensure that the centering condition is satisfied.
The convergence of the approximate solution of the effective equation for this problem is
illustrated in Figure 1. Here the potential is localized, so Hermite functions are well suited for
the approximation of the solution, which is reflected in the very good convergence observed.

In the next example, the state space of the fast process has dimension 3:

(65)



dx0t = −1

ε
Ly [cos (x0t + y0t + y1t)] dt,

dx1t = −1

ε
Ly [sin (x1t) sin (y0t + y1t + 2y2t)] dt,

dy0t = − 1

ε2
∂y0V (y) dt+

1

ε
[cos (x0t) cos (y1t) cos (y0t + y2t)] dt+

√
2

ε
dW0t,

dy1t = − 1

ε2
∂y1V (y) dt+

1

ε
[cos (x0t) cos (y0t + y1t)] dt+

√
2

ε
dW1t,

dy2t = − 1

ε2
∂y2V (y) dt+

√
2

ε
dW2t,

with

(66) V (y) = y4
0 + 2y4

1 + 3y4
2.

Because computing the effective coefficients is much more expensive computationally than in
the previous case, we measure the error for a given value of the slow variables, by

(67) e(d, x) =
|F(x)− Fd(x)|
|F(x)|

+
|A(x)−Ad(x)|
|A(x)|

.

The value we chose for the comparison is x = (0.2, 0.2), for which the denominators in the
previous equation are non-zero. The relative error on the homogenized coefficients is illustrated
in Figure 2. In this case, the method also performs very well, although it is slightly less accurate
than in the previous example.
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Figure 1. Error E(d), see (62), for the fast-slow SDE (63). The blue dots were obtained by numerical
experiments, and the straight line is a function of the type C e−αd obtained by linear regression in the d −
log10(E(d)) plane. A super-algebraic convergence is observed.
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Figure 2. Relative error of the homogenized coefficients, e(d, x), see (67), for the fast/slow SDE (65) at
x = (0.2, 0.2). In this case, the convergence is also super-algebraic.
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6.2.2. Test of the method for potentials with multiple wells. Now we consider multiple-
well potentials that lead to multi-modal distributions. Potentials with multiple wells pose
challenges to our method because of the localized nature of Hermite functions. In the examples
below, we consider potentials with wells that are close to each other, so the solutions can still be
approximated well by Hermite functions. The first potential that we analyze is the standard
bistable potential,

(68) V (y) = y4/4− y2/2.

We consider the fast/slow SDE system:

(69)


dxt = −1

ε
Ly (xt sin(yt)) dt,

dyt = − 1

ε2
∂yV (yt) dt+

√
2

ε
dWt.

We choose the parameter λ in (34) to be λ = 0.5. The convergence of the method is illustrated
in Figure 3. Although the method is less accurate than in the previous cases, a super-algebraic
convergence can still be observed, and a good accuracy can be reached by choosing a high
enough value for the degree of approximation. Note that the computational cost in this case is
low – the numerical solution can be calculated in a matter of seconds on a personal computer.
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Figure 3. Error E(d), see (62), for the fast/slow SDE (69).

Next we consider the tilted bistable potential

(70) V (y) = y4/4− y2/2 + 10y,
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which corresponds to the case γ = 1, δ = 10 in the examples considered in [9], and the fast/slow
SDE

(71)


dxt = −1

ε
Ly
(
xt sin(yt) + y2

t

)
dt,

dyt = − 1

ε2
∂yV (xt, yt) dt+

√
2

ε
dWt.

The convergence of the solution in this case is presented in Figure 5, for the scaling parameter
λ = 1. Due to the presence of a strong linear term, the potential is localized, see Figure 4.
As a result, the convergence of the spectral method is good, though it does not appear to be
super-algebraic.
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Figure 4. Probability density e−V (·)/Z associated to the potential (70).

Finally, we consider a three-well potential in R2,

(72) V (y) =
(

(y0 − 1)2 + y2
1

)(y0 +
1

2

)2

+

(
y1 −

√
3

2

)2
(y0 +

1

2

)2

+

(
y1 +

√
3

2

)2
 ,
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Figure 5. Error E(d), see (62), for the fast/slow system (71).

and the following fast/slow SDE:

(73)



dx0t = −1

ε
Ly [cos (x0t + y0t + y1t)] dt,

dx1t = −1

ε
Ly [sin (x1t) sin (y0t + y1t)] dt,

dy0t = − 1

ε2
∂y0V (y) dt+

1

ε
[cos (x0t) cos (y0t) cos (y1t)] dt+

√
2

ε
dW0t,

dy1t = − 1

ε2
∂y1V (y) dt+

1

ε
[cos (x0t) cos (y0t + y1t)] dt+

√
2

ε
dW1t.

For this fast/slow SDE, we choose λ = 0.35. A contour plot of the potential is shown in
Figure 6, and the convergence graph is presented in Figure 7. In this case the error is very
large for degrees of approximation lower than 10, beyond which the convergence is clear and
super-algebraic. The accuracy reached with a degree of approximation equal to 30 is of the
order of 1× 10−4, which is good in comparison with the accuracy that can be achieved using
Monte Carlo-based methods.

6.2.3. Discretization of a multiscale stochastic PDE. As mentioned in the introduc-
tion, our numerical method is particularly well-suited for the solution of singularly perturbed
stochastic PDEs (SPDEs), and constitutes a very good complement to the method proposed
in [2]. Let us recall how the method introduced in [2] works for a singularly perturbed SPDE
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Figure 7. Error E(d), see (62), for the fast/slow system (73).
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of the following form

(74)
∂u

∂t
=

1

ε2
Au+

1

ε
F (u) +

1

ε
QẆ ,

posed in a bounded domain of Rm with suitable boundary conditions. We consider the set-up
from [7]. In particular, the operator A in (74) is a differential operator, assumed to be negative
and selfadjoint in a Hilbert space H, and with compact resolvent. It is furthermore assumed
that A has a finite dimensional kernel, denoted by M. The term W denotes a cylindrical
Wiener process on H and Q denotes the covariance operator of the noise, which is assumed
to be positive, selfadjoint, and bounded. It is assumed that Q and A commute, and that the
noise acts only on the orthogonal complement ofM, denoted byM⊥, see [7, Assumption 2.4].
The function F (·) is a polynomial function representing a nonlinearity that has to be such that
the above scaling makes sense.7

Since A is selfadjoint with compact resolvent, there exists an orthonormal basis of H con-
sisting of eigenfunctions of A. We denote by {λk, ek} the eigenvalues and corresponding eigen-
functions ofA. We arrange the eigenpairs by increasing absolute value of the eigenvalues, so the
m first eigenfunctions are in the kernel of the differential operator,M = span{e1, . . . , em}. For-
mally, the cylindrical Brownian motion can be expanded in the basis asW (t) =

∑∞
i=1 eiwi(t),

where {wi}∞i=1 are independent Brownian motions. The assumption that the covariance opera-
tor Q commutes with the differential operator A means that this operator satisfies Qei = qi ei,
while the assumption that the noise only acts on M⊥ implies that qi = 0 for i = 1, 2, . . . , m.

We now summarize how the dynamics of the slow modes in (74) can be approximated by
solving a multiscale system of SDEs using the methodology developed in [2].

First, we write the solution of (74) as

u = x+ y, with x =
m∑
k=1

xk ek and y =
∞∑

k=m+1

yk ek.

Note that x = Pu, and y = (I − P)u, where P is the projection operator from H onto
M. By assumption, the noise term can be expanded in the same way, as

∑∞
k=1 qk ek ẇk(t).

Substitution of these expansions in the SPDE gives:

d

dt

(
m∑
k=1

xk ek +
∞∑

k=m+1

yk ek

)
= − 1

ε2

∞∑
k=m+1

λk yk ek +
1

ε
F (u) +

1

ε

∞∑
k=m+1

qk ek ẇk(t).

The equations that govern the evolution of the coefficients xk and yk can be obtained by taking
the inner product (of H) of both sides of the above equation by each of the eigenfunctions of
the operator, and using orthonormality :

(75)


ẋi =

1

ε
〈F (u), ei〉 i = 1, . . .,m;

ẏi = − 1

ε2
λi yi +

1

ε
〈F (u), ei〉+

1

ε
qi ẇi i = m+ 1,m+ 2, . . .

7 i.e., the centering condition is satisfied.
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Equation (75) can be written in the form

(76)


ẋ =

1

ε
a(x, y),

ẏ =
1

ε2
A y +

1

ε
b(x, y) +

1

ε
Q Ẇ ,

where a(x, y) and b(x, y) are the projections of F (u) onM andM⊥, respectively:

a(x, y) =
m∑
i=1

ai(x, y) ei with ai(x, y) = 〈F (x+ y), ei〉,

and

b(x, y) =
∞∑

i=m+1

bi(x, y) ei with bi(x, y) = 〈F (x+ y), ei〉.

The scale separation now appears clearly. We now truncate the fast process in (76) as
y≈

∑m+n
i=m+1 yi ei to derive the following finite dimensional system:

(77)


ẋi =

1

ε
ai(x, y) i = 1, . . .,m;

ẏi = − 1

ε2
λiyi +

1

ε
bi(x, y) +

1

ε
qi ẇi i = m+ 1, . . .m+ n,

In [43], the authors investigate the use of the heterogeneous multiscale method (HMM) for
solving the problem (77), and show that a good approximation can be obtained using this
method. However, when the nonlinearity is a polynomial function of u, the function a in the
system above, which also appears on the right-hand side of the Poisson equation, is polynomial
in x and y. In addition, the generator of this system of stochastic differential equations is of
Ornstein-Uhlenbeck type to leading order, and so its eigenfunctions are Hermite polynomials.
This means that the right-hand side can be expanded exactly in Hermite polynomials, and
so the exact effective coefficients can be computed. Note that although equivalent, applying
the unitary transformation is not necessary in this case, as we can work directly with Hermite
polynomials in the appropriate weighted L2 space.

We consider the SPDE (74), with A = ∂2

∂x2 + 1 and F (u) = u2 ∂u2

∂x , posed on [−π, π] with
periodic boundary conditions:

(78)
∂u

∂t
=

1

ε2

(
∂2

∂x2
+ 1

)
u +

1

ε
u2 ∂u

2

∂x
+

1

ε
QẆ .

The eigenfunctions of A on [−π, π] with periodic B.C. are

ei =


1√
π

sin

(
i+ 1

2
x

)
if i is odd,

1√
π

cos

(
i

2
x

)
if i is even,
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and the corresponding eigenvalues are λi = 1 − (i+1)2

4 if i is odd and λi = 1 − i2

4 if i is even.
For the numerical experiments, we chose qi = 1/i if 3 ≤ i ≤ 5, qi = 0 otherwise, and we
used 7 modes for the truncation of the Fourier series. In this case the null space of A is
two-dimensional. We consider a noise process of the form:

(79) QẆ =
∞∑
i=3

qi ẇi.

Following the methodology outlined above, we approximate the solution by a truncated Fourier
series:

(80) u = x1 e1 + x2 e2 +

n+ 2∑
i= 3

yi ei.

Substituting in the nonlinearity and taking the inner product with each of the eigenfunctions,
a system of equation of the type (77) is obtained. The operator A and the nonlinearity were
chosen so that the centering condition is satisfied. The homogenized equation for the slow
variables (x1, x2) reads

(81) dXt = F(Xt) dt+ A(Xt) dWt,

where F(·) and A(·) are given by equations (4a) and (4b), respectively, and W is a standard
Wiener process in R2. The Euler-Maruyama solver was used for both the macro and micro
solvers, and the parameters of the HMM were chosen as

(82) (δt/ε2, NT ,M,N,N ′) = (2−p, 16, 1, 10×23p, 2pp).

Here δt is the time step of the micro-solver, NT is the number of steps that are omitted in
the time-averaging process to reduce transient effects, M is the number of samples used for
ensemble averages, and N , N ′ are the number of time steps employed for the calculation of
time averages and the discretization of integrals originating from Feynman-Kac representation
formula (15), respectively. See [21, 62] for a more detailed description of the method and a
detailed explanation of the parameters in (82). In Figures 8 and 9, we compare the solutions
obtained using the HMM method with the one obtained using our approach, using the same
macro-solver and the same replica of the driving Brownian motion for both, and with the
initial condition xi0 = 1.2 for i = 1, . . . ,m. The former is denoted by X̂n and the latter by
Xn. Notice that when the value of the parameter p increases, the solution obtained using the
HMM converges to the exact solution obtained using the Hermite spectral method.

We now investigate the dependence on the precision parameter p of the error between
the homogenized coefficients. The same error measure as in [21] is used to compare the two
methods:

(83) Ep =
∆t

T

 ∑
n≤T/∆t

|FpHMM (Xn)− FSp(X
n)| + |Ap

HMM (Xn) − ASp(X
n)|

 .
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Here FpHMM and Ap
HMM are the drift and diffusion coefficients obtained using the HMM

with the precision parameter equal to p, while FSp and ASp are the coefficients given by
the Hermite spectral method developed in this paper. Given the choice of parameters (82),
the theory developed in [21] predicts that the error should decrease as O(2−p). This error is
presented in Figure 10 as a function of the precision parameter p, showing a good agreement
with the theory developed in [2, 21].

For the SPDE described above, solving the Poisson equation associated with (77) using
Hermite polynomials does recover exactly the corresponding effective parameters, and the only
source of error is the macroscopic discretization scheme. This is in sharp contrast with the
HMM-based method developed in [1], for which the micro-averaging process to recover the
effective coefficients represents a non-negligible computational cost.

Comparison of (X̂n)1 and (Xn)1 in (81) for the SPDE (78)

p = 3 p = 4

0 0.2 0.4 0.6 0.8 1

p = 5

0 0.2 0.4 0.6 0.8 1

p = 6

Figure 8. Evolution of the coefficient x1 of the first term in the Fourier expansion (80) of the the solution
to the SPDE (78), obtained numerically by the HMM (black) and the Hermite spectral method (red), for one
sample of the driving Brownian motion.
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Comparison of (X̂n)2 and (Xn)2 in (81) for the SPDE (78)

p = 3 p = 4

0 0.2 0.4 0.6 0.8 1

p = 5

0 0.2 0.4 0.6 0.8 1

p = 6

Figure 9. Evolution of the coefficient x2 of the second term in the Fourier expansion (80) of the the solution
to the SPDE (78), obtained numerically by the HMM (black) and the Hermite spectral method (red), for one
sample of the driving Brownian motion.
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Figure 10. Error between the homogenized coefficients (see (83)) for the SPDE (78), as a function of the
precision parameter p. The green line, obtained by polynomial fitting, has slope −1.01 in the p− log2(Ep) plane,
which is close to the theoretical value of -1, showing a perfect agreement with the theory.



32 A. ABDULLE, G.A. PAVLIOTIS, U. VAES

7. Conclusion and Further Work. In this paper, we proposed a new approach for the
numerical approximation of the slow dynamics of fast/slow SDEs for which a homogenized
equation exists. Starting from the appropriate Poisson equation, the same unitary transfor-
mation as in [9] was utilized to obtain formulas for the drift and diffusion coefficients in terms
of the solution to a Schrödinger equation. This equation is solved at each discrete time by
means of a spectral method using Hermite functions, from which approximations of the ho-
mogenized drift and diffusion coefficients were calculated. A stochastic integrator was then
used to evolve the slow variables by one time step, and the procedure is repeated.

Building on the work of [26], spectral convergence of the homogenized coefficients was
rigorously established, from which weak convergence of the discrete approximation in time to
the exact homogenized solution was derived. In the final section, the accuracy and efficiency
of the proposed methodology were examined through numerical experiments.

The method presented, although not as general as the HMM, has proven more precise
and more efficient for a broad class of problems. It performs particularly well for singularly
perturbed SPDEs, and constitutes in this case a good complement to the HMM-based method
presented in [2]. It also works comparatively very well when the fast dynamics is of relatively
low dimension – typically less than or equal to 3 – and especially so when the potential is
localized, since fewer Hermite functions are required to accurately resolve the Poisson equa-
tions in this situation. Our method also has several advantages compared to the approach
taken in [9]: it does not require truncation of the domain, does not require the calculation
of the eigenvalues and eigenfunctions of the Schrödinger operator, and has better asymptotic
convergence properties.

The limitations of the method are two-fold; its generality is limited by the requirement of
the gradient structure for fast dynamics, and its efficiency is limited by the curse of dimen-
sionality, which causes the computation time to become prohibitive when the dimension of the
state space of the fast process increases.

The extent to which some of these constraints can be lifted constitutes an interesting topic
for future work. We believe that it is possible to generalize our method to a broader class of
problems while retaining its efficiency and accuracy. When the fast process is not reversible,
then tools from the spectral theory for non-selfadjoint problems could be used [31]. In the case
of the underdamped Langevin dynamics, expansion of the solution in Hermite polynomials in
both position and momentum can be performed [38]. On the other hand, high-dimensional
integrals could be computed more efficiently. For example, an alternative to the tensorized
quadrature approach taken in this work is to use a sparse grid method; such a method can in
principle offer the same degree of polynomial exactness with a significantly lower number of
nodes, see e.g. [27, 34]. Furthermore, efficient preconditioning techniques can be used in order
to reduce the computational cost of the numerical solution. Preconditioning can be naturally
implemented for nonreversible fast processes that have a well-defined structure, such as the
underdamped Langevin dynamics, [57], or the Markovian approximation of the generalized
Langevin equation, [50].
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Appendix A. Weighted Sobolev Spaces. In this section, we recall a few results about
weighted Sobolev spaces needed for the analysis presented in Section 5. For more details
on this topic, see [26, 64, 8, 44]. Throughout the appendix, V denotes a smooth confining
potential whose derivatives are all bounded above by a polynomial and such that ρ := e−V is
normalized.

Definition 14. The weighted space L2 (Rn, ρ) is defined as

L2 (Rn, ρ) =

{
u measurable :

∫
Rn

u2 ρ dy <∞
}
.

It is a Hilbert space for the inner product given by:

〈u, v〉ρ =

∫
Rn

u v ρ dy.

Definition 15. The weighted Sobolev space Hs (Rn, ρ), with s ∈ N, is defined as

Hs (Rn, ρ) =
{
u ∈ L2 (Rn, ρ) : ∂αu ∈ L2 (Rn, ρ) ∀ |α| ≤ s

}
.

It is a Hilbert space for the inner product given by:

〈u, v〉s,ρ =
∑
|α|≤s

〈∂αu, ∂αv〉ρ

We also define the following spaces.

Definition 16. Given s ∈ N and a positive selfadjoint operator −L on a Hilbert space H of
functions on Rn, we define Hs (Rn,L) as the space obtained by completion of C∞c (Rn) for the
inner product:

〈u, v〉s,L =

s∑
i=0

〈(−L)iu, v〉H .

We will denote the associated norm by ‖ · ‖s,L.
It can be shown that C∞c (Rn) is dense in H1 (Rn, ρ), see [63]. By integration by parts,
this implies that H1 (Rn, ρ) = H1 (Rn,L), where −L is the positive selfadjoint operator on
L2 (Rn, ρ) defined by L = ∆−∇V ·∇. For the rest of this appendix, we make the additional
assumption that the potential V satisfies

(84) lim
|y|→∞

(
1

4
|∇V |2 − 1

2
∆V

)
=∞ and lim

|y|→∞
|∇V | =∞.

With this, the following compactness result holds.

Proposition 17. Assume that (84) holds. Then the embedding H1 (Rn, ρ) ⊂ L2 (Rn, ρ) is
compact, and the measure ρ satisfies Poincaré inequality:∫

Rn

(u− ū)2 ρ dy ≤ C
∫
Rn

|∇u|2 ρ dy ∀u ∈ H1 (Rn, ρ) ,

where ū =
∫
Rn u ρ dy.
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Proof. See [44], sec. 8.5, p. 216.

Remark 18. Alternative conditions on the potential that ensure that the corresponding Gibbs
measure satisfies a Poincaré inequality are presented in [42, Theorem 2.5].

Now we consider the unitary transformation e−V/2 : L2 (Rn, ρ)→ L2 (Rn), and character-
ize the spaces obtained by applying this mapping to the weighted Sobolev spaces.

Proposition 19. The multiplication operator e−V/2 is a unitary transformation from Hs (Rn,L)
to Hs (Rn,H), where −H is the positive selfadjoint operator on L2 (Rn) defined by

−H = e−V/2 L eV/2 = −∆ +

(
|∇V |2

4
− ∆V

2

)
=: −∆ +W.

Proof. Since (−H)i = e−V/2 (−L)i eV/2, 〈u, v〉s,L = 〈e−V/2u, e−V/2v〉s,H for any u, v ∈
C∞c (Rn) and any exponent i ∈ N, from which the result follows by density.

The space H1 (Rn,H), for H defined as above, is of particular relevance to this paper. This
space can be equivalently defined by

H1 (Rn,H) =

{
u ∈ H1 (Rn) :

∫
Rn

|W |u2 dy <∞
}
,

and, for u ∈ H1 (Rn,H),

‖u‖21,H =

∫
Rn

u2 + |∇u|2 dy +

∫
Rn

Wu2 dy.

Appendix B. Hermite Polynomials and Hermite Functions. In this appendix, we recall
the results about Hermite polynomials and Hermite functions that are essential for the analysis
presented in this paper.

Hermite polynomials. In one dimension, it is well-known that the polynomials

(85) Hr(s) =
(−1)r√
r!

exp

(
s2

2

)
dr

dsr

(
exp

(
−s2

2

))
r = 0, 1, 2, . . .

form a complete orthonormal basis of L2
(
R, G(0,1)

)
, where G(0,1) is the Gaussian density of

mean 0 and variance 1. These polynomials can be naturally extended to the multidimensional
case. For µ ∈ Rn and a symmetric positive definite matrix Σ ∈ Rn×n, consider the Gaussian
density G(µ,Σ) of mean µ and covariance matrix Σ. Let D and Q be diagonal and orthogonal
matrices such that Σ = QDQT , and note S = QD1/2, such that Σ = SST . The polynomials
defined for α ∈ Nn by

(86) Hα(y;µ,Σ) = Hα(S−1(y − µ); 0, I), with Hα(z; 0, I) =
∏n

k= 1
Hαk(zk),

form a complete orthonormal basis of L2(Rn, G(µ,Σ)). Note that the Hermite polynomial
corresponding to a multi-index α depends on the orthogonal matrix Q chosen. When µ and
Σ are clear from the context, we will sometimes omit them to simplify the notation.
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In addition to forming a complete orthonormal basis, the Hermite polynomials are the
eigenfunctions of the Ornstein-Ulhenbeck operator

−Lµ,Σ = Σ−1(y − µ) · ∇ −∆,

which is the operator L from the previous appendix for ρ = G(µ,Σ). The eigenvalue associated
to Hα(y;µ,Σ) is given by

(87) λα =

n∑
i=1

αiλi,

where {λi}ni=1 are the diagonal elements of D−1.

Proof. Let us introduce, for an orthogonal matrix P ∈ Rn×n and a vector u ∈ Rn, the
rotation operator RP and the translation operator Tu defined respectively by RP f(·) = f(P T ·)
and Tuf(·) = f(·−u). With these notations, note that Lµ,Σ = Tµ ◦RQ ◦L0,D ◦RQT ◦T−µ and
Hα(·;µ,Σ) = Tµ ◦RQHα (·; 0, D), so it is sufficient to show that Hα(·; 0, D) is an eigenfunction
of L0,D. Writing L0,D as a sum of one-dimensional operators, we see that it is enough to prove
this in one dimension, which follows from a simple recursion.

It follows that Hermite polynomials are also orthogonal in Hs (Rn,Lµ,Σ), and that the
norm of Hα(y;µ,Σ) in that space is given by (1 + λα + λ2

α + · · · + λsα)1/2. Noting that
1 + r + r2 + · · ·+ rs ≤ e

1
r rs for r > 0 and that λα →∞ when |α| → ∞, this implies that, for

a function u ∈ Hs (Rn,Lµ,Σ) and cα = 〈u,Hα(·;µ,Σ)〉G(µ,Σ)
,

(88)

c2
0 +

∑
|α|>0

λsαc
2
α

 ≤ ‖u‖2s,Lµ,Σ ≤ L
c2

0 +
∑
|α|>0

λsαc
2
α

 , where L = max
|α|>0

e
1
λα .

Hermite polynomials have very good approximation properties for smooth functions in L2
(
Rn, G(µ,Σ)

)
.

In Proposition 20, we note π (·,Pd) : L2(Rn, G(µ,Σ)) → Pd the L2(Rn, G(µ,Σ)) projection op-
erator on the space of polynomials of degree less than or equal to d.

Proposition 20 (Approximation by polynomials in weighted spaces). Let Σ be a symmetric
positive definite matrix, and suppose that f ∈ Hs (Rn,Lµ,Σ). Then

‖f − π (f,Pd) ‖r,Lµ,Σ ≤ C(Σ, r, s) (d+ 1)−
(s−r)

2 ‖f‖s,Lµ,Σ ,

for r ∈ N such that 0 ≤ r ≤ s.
Proof. See [26, Theorem 3.1]. From (88), we have that

‖f − π (f,Pd) ‖2r,Lµ,Σ ≤ L
∑
|α|>d

λrαc
2
α ≤ LM r−s

∑
α∈Nn

λsαc
2
α ≤ LM r−s‖f‖2s,Lµ,Σ ,

with cα = 〈f,Hα(·;µ,Σ)〉G(µ,Σ)
and M = min|α|>d λα. Since λα > C(Σ) |α|, the conclusion

follows.
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Hermite Functions. Hermite functions can be defined from Hermite polynomials as follows:

Definition 21. Given µ ∈ Rn, and Σ ∈ Rn×n positive definite, we define the Hermite
functions hα(y;µ,Σ) by:

hα(y;µ,Σ) =
√
G(µ,Σ)Hα(y;µ,Σ) for α ∈ Nn.

These functions form a complete orthonormal basis of L2 (Rn). Since they are obtained from
Hermite polynomials by a multiplication by

√
G(µ,Σ), they satisfy:

Proposition 22. Given µ ∈ Rn and Σ ∈ Rn×n positive definite, the Hermite functions
hα(y;µ,Σ) are the eigenfunctions of the operator:

−Hµ,Σ = (G(µ,Σ))
1
2 (−Lµ,Σ) (G(µ,Σ))

− 1
2 = −∆ +

(
(y − µ)TΣ−2(y − µ)

4
− tr Σ−1

2

)
,

with the same eigenvalues as in (87).

Hermite functions inherit the good approximation properties of Hermite polynomials expressed
in Proposition 20. In the following result, π refers to the L2 (Rn) projection operator, i.e.

(89) π
(
f,
√
G(µ,Σ)Pd

)
=
∑
|α|≤d

〈f, hα(·;µ,Σ)〉hα(·;µ,Σ).

Corollary 23 (Approximation by Hermite functions in flat space). Let µ ∈ Rn and Σ ∈ Rn×n

be a symmetric positive definite matrix, and suppose that f ∈ Hs(Rn, Hµ,Σ). Then

‖f − π
(
f,
√
G(µ,Σ)Pd

)
‖r,Hµ,Σ ≤ C(Σ, r, s) (d+ 1)−

(s−r)
2 ‖f‖s,Hµ,Σ ,

for any r ∈ N such that 0 ≤ r ≤ s.

Appendix C. Proof of (48). In this appendix, we show the Lipschitz continuity of the
effective coefficients. The proof relies on the following technical lemma.

Lemma 24. For any m ∈ N and any symmetric positive semi-definite matrices M1,M2 ∈
Rm×m, there exists c(m) > 0 such that

sup
|x|=1

∣∣∣∣√xTM2
2x−

√
xTM2

1x

∣∣∣∣ ≥ c(m) |M2 −M1| ,

where |·| is the matrix 2-norm.

Proof. To alleviate the notations, let M = M1 and ∆ = M2 − M1. The inequality is
trivially satisfied when ∆ = 0; we assume now that ∆ 6= 0. Without loss of generality, we
assume that |∆| = 1, that ∆ has an eigenvalue equal to +1, and that M is diagonal with its
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eigenvalues occuring in descending order on the diagonal. For x ∈ Rm arbitrary,√
xT (M + ∆)2x =

√
xTM2x+ xT (M∆ + ∆M)x+ xT∆2x

=

√(√
xTM2x+

√
xT∆2x

)2
− 2

(√
xTM2x

√
xT∆2x− xTM∆x

)
By Cauchy-Schwarz inequality, the expression in the second brackets is non-negative, so as-
suming that x is such that the expression in first brackets is positive,∣∣∣∣√xT (M + ∆)2x−

√
xTM2x

∣∣∣∣ ≥
∣∣2xTM∆x+ xT∆2x

∣∣
2(
√
xTM2x+

√
xT∆2x)

≥ 2xTM∆x+ xT∆2x

2(
√
xTM2x+ 1)

=: RM,∆(x)

To conclude the proof, we show that for any m,M,∆ as above, there exists x ∈ Rm such
that RM,∆(x) is bounded from below by a constant depending only on m. Assume that there
exist {Mi}∞i=1 and {∆i}∞i=1 such that sup|x|=1RMi,∆i(x)→ 0, and let xi denote an eigenvector
corresponding to the eigenvalue 1 of ∆i. Passing to a subsequence if necessary, we can assume
that xi → x∞. By assumption,

RMi,∆i(xi) =
2xTi Mixi + 1

2
√
xTi M

2
i xi + 2

→ 0⇒ xTi Mixi√
xTi M

2
i xi

→ 0⇒ xTi

(
Mi

|Mi|

)
xi → 0,

so in particular the first component of x∞ is equal to 0. Let now {yi}∞i=1 be the sequence
obtained from {xi}∞i=1 by replacing the first component by 0. By assumption,

RMi,∆i(yi) =
(Mi yi)

T (∆iyi)

|Miyi|+ 1
+

|∆iyi|2

2 |Miyi|+ 2
→ 0.

Since (∆iyi − yi) → 0, both terms must tend to 0. This implies that yTi Miyi/ |Miyi| → 0,
so the second component of x∞ is 0 too. Continuing this way, we obtain x∞ = 0, which is a
contradiction because xi → x∞ and |xi| = 1.

Proof of (48). For the drift coefficient, we use (16) and Assumption 4.3:

|F(a)− F(b)| ≤
∫
Rn

|∇xφ(a, y)−∇xφ(b, y)| |f(a, y)| e−V

+ |∇xφ(b, y)| |f(a, y)− f(b, y)| e−V dy

≤ |a− b|
∫
Rn

sup
x∈(a,b)

|∇x∇xφ(x, y) f(a, y)| e−V

+ sup
x∈(a,b)

|∇xφ(b, y)∇xf(x, y)| e−V dy

≤ |a− b|
∫
Rn

2C0 L (1 + |y|`0)(1 + |y|q) e−V dy.
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The proof of the Lipschitz continuity of A(·) relies on Lemma 24. By virtue of this result, it is
sufficient to show that, for all ξ ∈ Rm with ξT ξ = 1, (ξTD(x)ξ)1/2 is Lipschitz continuous with
a Lipschitz constant independent of ξ. Let ξ ∈ Rm be given, and let us introduce the notations
fξ = fT ξ, φξ = φT ξ, and αξ = αT ξ. Clearly, φξ is the centered solution of −Lφξ = fξ, so

ξTD(x)ξ =

∫
Rn

(
|αξ|2 − Lφξ φξ

)
e−V dy =: D1(x) +D2(x).

From the triangle inequality and (13),

∣∣∣√D1(x+ ∆x)−
√
D1(x)

∣∣∣ ≤ (∫
Rn

|aξ(x+ ∆x, y)− aξ(x, y)|2 e−V (y) dy

) 1
2

≤ |∆x|
(∫

Rn

C(y)2e−V (y) dy

) 1
2

.

Likewise, using (14) and (16),

∣∣∣√D2(x+ ∆x)−
√
D2(x)

∣∣∣ ≤ (∫
Rn

|φξ(x+ ∆x, y)− φξ(x, y)| |fξ(x+ ∆x, y)− fξ(x, y)| e−V (y)dy

) 1
2

≤ |∆x|
(∫

Rn

KL(1 + |y|q)(1 + |y|m1) e−V (y) dy

) 1
2

.

Thus
√
ξTD(x)ξ is Lipschitz continuous with a constant independent of ξ.
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