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Abstract: In this paper, the performance of three recent algorithms for the frequency-response
enhancement of microwave resonant sensors are compared. The first one, a single-step algorithm,
is based on a couple of direct-inverse Fourier transforms, giving a densely sampled response as a
result. The second algorithm exploits an iterative procedure to progressively restricts the frequency
response. The final one is based on the super-resolution MUSIC algorithm. The comparison is
carried out through a Monte Carlo analysis. In particular, synthetic signals are firstly exploited to
mimic the frequency response of a resonant microwave sensor. Then, experimental data collected
from water-glucose solutions are adopted as validation test for potential applications in noninvasive
blood-glucose monitoring.

Keywords: microwaves resonant biosensors, noninvasive continuous blood glucose monitoring,
signal processing

1. Introduction

Diabetes is an extremely widespread disease, potentially leading to very severe impli-
cations [1]. In such a context, a number of efforts are being carried out for the development
of methodologies and devices enabling a noninvasive continuous glucose detection [2–6].

As is well known, glucose levels are typically measured by taking blood drops from
patients’ fingers, and placing them on chemically pretreated strips [7]. To have an accurate
control, this operation must be performed several times each day, thus leading to uncom-
fortable situation for the patients. Moreover, continuous monitoring cannot be assured.

From this perspective, the adoption of microwave sensors [8–18] can provide a valid
tool to realize a noninvasive control, one that does not affect the usual life activities of
patients. Resonant sensors [19] are particularly attractive for this, as they directly relate
the frequency variations of the output response to the electromagnetic changes of the
targeted biological tissue (i.e., blood), from which the interested parameter (i.e., glucose
concentration) can be subsequently retrieved. However, such sensors may exhibit a low
quality factor, and hence low resolution, depending on their specific structure, as well
as due to unavoidable losses. Furthermore, when the sampling frequency step is not
sufficiently fine, the resonant sensor may fail to capture the true resonant frequency, thus
reducing the accuracy of the measurement process.

A useful way to overcome the above issues is to apply signal-processing techniques,
able to increase the resolution of the frequency response, as well as the accuracy of the
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reconstruction process, but avoiding the need for sophisticated and expensive measuring
devices or equipments [20–22]. In this paper, a signal-processing approach for the response
sharpening of microwave resonant sensors is proposed. The idea is to numerically focus
on a restricted portion of the sensor curve, in the proximity of the resonance position, by
subsequently applying proper signal processing to enhance the resolution in this portion.
The outlined approach significantly increases the accuracy of the reconstruction process, but
avoids the adoption of a huge number of samples and/or sophisticated hardware otherwise
required to achieve the same resolution level. In the paper, three specific techniques
are discussed and compared. The first one is based on a single iteration of a couple
of direct-inverse Fourier transforms [20]; the second one relies on multiple iterations of
these pairs [21]; and, finally, the third algorithm is based on the MUSIC method [22]. A
deep analysis of the above three methodologies is conducted, by making a comparison of
their performances, and highlighting their respective advantages and weaknesses. The
analysis is first carried out in terms of synthetic signals, specifically generated ad hoc.
Experimental data measured by a resonant microwave sensor on water-glucose solutions
are also considered as validation test.

2. Algorithms Description

In this section, the algorithms under comparison are briefly described, by reporting all
essential elements to make the paper self-consistent.

Let us consider the purple curve shown in Figure 1, which represents a typical return
loss function, RL( f ), related to a microwave sensor [23], namely:

RL( f ) = −20 log10|Γ( f )| (1)

In particular, the function Γ( f ) represents the reflection coefficient measured at the sensor
input, within the observation band [ fmin, fMAX ]. As can be seen, the signal has a significant
dispersion around its maximum value, due both to the losses as well as to the specific
sensor configuration. Therefore, its response is “far” from being an ideal Dirac impulse at
the resonance frequency. It must be taken into account that, if the acquisition frequency
step is not sufficiently fine, the return loss sample associated to the resonant frequency may
not be captured. Moreover, the relatively small shifts in the resonant frequency may not
be correctly identified. However, as will be shown in the following, the three considered
algorithms successfully cope with the above issue.

In order to highlight the key points of these algorithms, we can assume, without loss of
generality, that the return loss function Γ( f ) satisfies the condition RL( fmin) < RL( fMAX).
Furthermore, it must be noted that acting on the return loss by means of Fourier transform
means operating with the complex cepstrum [24] of the inverse Fourier transform of the
magnitude of the reflection coefficient.

Figure 1. Application example of the three sharpening algorithms under analysis.

2.1. Data Preprocessing

The three algorithms we are going to compare share the same initial preprocessing
steps on the acquired return loss. The common operations are described in the following:
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1 Making M return loss acquisitions and performing the sample average of them. The
value of M must be set to obtain a sufficiently smooth signal as that of Figure 1. The
aim of this step is to realize a noise filter, without affecting the “true” signal.

2 Determining the frequency value f̃ , such that RL( f̃ ) = RL( fMAX).
3 Defining:

R̃L( f ) =

{
RL( f̃ ) fmin ≤ f ≤ f̃
RL( f ), f̃ ≤ f ≤ fMAX

(2)

4 Defining the “new” version of the return loss as RL( f ) = R̃L( f )− RL( fMAX), which
is devoid of endpoint contributions.

5 Setting the real parameter 0 < α < 1.
6 Identifying the two values f̃min > fmin and f̃MAX < fMAX such that:

RL( f̃min)

max{RL( f )} =
RL( f̃MAX)

max{RL( f )} = α (3)

7 Computing the inverse Fourier transform of the portion of |RL( f )| enclosed in the
interval [ fmin, fMAX ] (for t ∈ [tmin, tMAX ]), namely:

rl(t) =
∫ fMAX

fmin

|RL( f )| ej2π t f d f (4)

for which the unwrapped version of the phase φ(t) = ∠rl(t) is almost linear in the
main-lobe region of |rl(t)|, where the information about the resonance frequency is
actually encoded. The magnitude of RL( f ) is considered to cut any negative values
with small magnitudes, which may exist due to noise.

8 Setting the real parameter 0 < β < 1.
9 Identifying the two values t̃min and t̃MAX such that:

|rl(t̃min)|
max{|rl(t)|} =

|rl(t̃MAX)|
max{|rl(t)|} = β (5)

2.2. Single-Step Algorithm

This algorithm is based on a single iteration of a pair of Fourier transformations.
Actually, to make a comparison based on the same settings, we consider here a slightly
modified version of the algorithm presented in [20]. In particular, the end points are
eliminated in [20] after determining the extremes f̃min and f̃MAX, while in this work the
end points are first removed, and then the above extremes are identified. Assuming the pre-
processing steps 1 to 9 have already been carried out, this algorithm requires the following
additional steps (please note the progressive numbering starting from 10):

10 Computing the new version of the return loss (for f ∈ [ f̃min, f̃MAX ]), namely:

R̂L( f ) =
∣∣∣∣∫ t̃MAX

t̃min

ejφ(t) e−j2π t f dt
∣∣∣∣ (6)

which is narrower with respect to the original one.
11 Assuming the point of maximum of R̂L( f ) as the estimate of the resonance frequency,

fest.

Before discussing the other two sharpening methods, it is useful to make some clarifi-
cations regarding the numerical implementation. Indeed, from a practical point of view, we
operate with digital signals, because the algorithm starts with the acquisition of N f samples
of the return loss within the band [ fmin, fMAX ]. Accordingly, R̃L( f ), RL( f ) and R̂L( f ) are
discrete-frequency signals. More precisely, R̃L( f ) and RL( f ) are sampled in N f points of the
domain [ fmin, fMAX ]; instead, R̂L( f ) is sampled in N̂ f (>> N f ) points of domain [ f̃min, f̃MAX ].



Bioengineering 2022, 9, 156 4 of 12

Hence, assuming uniform sampling, the initial frequency step ∆ f = ( fMAX − fmin)/(N f − 1)
is much larger than the final one ∆̂ f = ( f̃MAX − f̃min)/(N̂ f − 1). From the foregoing, it
also follows that the values f̃min and f̃MAX approximately satisfy the equality relative to the
normalised return loss in point 3. The same argumentation applies to f̃ in point 4.

Obviously, even in the time domain we operate with digital signals. Taking into
account that the time window [−0.5/∆ f , 0.5/∆ f ] corresponds to the period of the in-
verse discrete-time Fourier transform of a uniformly sampled frequency signal with step
equal to ∆ f , the signal rl(t) is sampled in Nt points of the interval [tmin, tMAX ], with
tmin = −tMAX = −0.5/∆ f , where Nt is independent of N f and N̂ f .

Finally, Equation (4) is implemented as the sampled version of the inverse discrete-
time Fourier transform of |RL( f )|, while Equation (7) is implemented as the magnitude of
the sampled version of the discrete-time Fourier transform of the term ejφ(t). In general,
discrete-time Fourier transformations are used in order to have greater flexibility in terms
of sampling, in the sense that even nonuniform sampling is very easy to implement.

2.3. Iterative Algorithm

The iterative algorithm is based on an “uncertain” (i.e., not a priori known ) number
of iterations of the pair of Fourier transformations and, actually, it shares points 1 to 10
with the previous algorithm. Assuming that the above preprocessing steps have already
been carried out, the current algorithm consists of the following additional steps (please
observe that also in this case the progressive numbering starts from 10):

10 Computing the new version of the return loss (for f ∈ [ f̃min, f̃MAX ]), namely:

R̂L( f ) =
∣∣∣∣∫ t̃MAX

t̃min

ejφ(t) e−j2π t f dt
∣∣∣∣ (7)

which is narrower with respect to the original one.
11 Computing the new version of rl(t), namely:

rl(t) =
∫ f̃MAX

f̃min

R̂L
2
( f ) ej2πt f d f (8)

which presents a wider magnitude main-lobe, so that its unwrapped phase is almost
linear over a longer time interval. Again, Equation (8) is implemented as the sampled

version of the inverse discrete-time Fourier transform of the function R̂L
2
( f ).

12 Repeating the pre-processing step 9 and steps 10 and 11 (of the current algorithm)
as long as the condition |rl(t)|/ max{|rl(t)|} ≥ β ∀ t ∈ [tmin, tMAX ] is not fulfilled,
and finally computing the final return loss by Equation (7), whose point of maximum
gives the estimated resonance frequency, fest.

For the above algorithm, the same implementation considerations of the previous
procedure also apply.

2.4. MUSIC-Based Algorithm

MUSIC-based algorithm consists in determining the MUSIC pseudospectrum [25,26],
starting from the phase of the return-loss function rl(t) provided by Equation (4). As stated
above, it shares some points with the other two mentioned procedures. In order to make the
comparison based on the same identical parameters, we consider here a slightly modified
version of the MUSIC-based algorithm with respect to that presented in [22], thus also
considering the parameter β. Assuming the preprocessing steps 1 to 9 have already been
carried out, the current algorithm consists of the following additional steps (please, observe
again that the numbering starts at 10, in continuity with the common preliminary 1–9 steps
described in Section 2.1):

10 Computing the so-called (Ñt × Ñt) correlation matrix [26], namely:
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R = r̃l r̃l
H

(9)

in which:

r̃l =
(

ejφ(t̃min), ejφ(t̃min+∆t), ..., ejφ(t̃MAX)
)T

(10)

where Ñt is the number of samples of the function ejφ(t) falling within the interval
[t̃min, t̃MAX ], ∆t = (t̃MAX − t̃min)/(Ñt − 1), the superscript H stands for transposition
and conjugation, and the superscript T stands for transposition. It is worth noting that
no additional decorrelation procedure [26] (between spectral lines to be estimated) is
needed here, as there is only one resonance frequency (spectral line).

11 Performing the eigendecomposition of R as:

R = V Λ V−1 (11)

in which V and Λ are the eigenvectors and eigenvalues matrices, respectively.
12 Computing the MUSIC eigenspectrum (for f ∈ [ f̃min, f̃MAX ]) [27] as:

P( f ) =
aH( f ) a( f )

aH( f ) Ṽ Ṽ
H

a( f )
(12)

in which Ṽ consists of the columns of V corresponding to the smallest Ñt − 1 eigen-
values contained in Λ, and

a( f ) =
(

ej2π f t̃min , ej2π f (t̃min+∆t), ..., ej2π f t̃MAX
)T

(13)

is the so-called steering vector. As for R̂L( f ), the eigenspectrum is also sampled at N̂ f

points belonging to the interval [ f̃min, f̃MAX ].
13 Assuming as final return loss the eigenspectrum given by Equation (12) and, con-

sequently, the point of maximum of this function as the estimate of the resonance
frequency fest. Note that this assumption is consistent with the fact that the MUSIC
method is essentially a spectral estimation method.

Figure 1 shows an example of the application of the three described algorithms to the
return loss depicted with purple line, which is given by the following expression (in the
frequency band [ fmin, fMAX ] = [2, 3]GHz):

RL( f ) =

18 e
− ( f− ftrue)

2

2 (0.07 109)2 + 2, 2 GHz ≤ f ≤ ftrue

18 e
− ( f− ftrue)

2

2 (0.10 109)2 + 2, ftrue ≤ f ≤ 3 GHz
(14)

in which ftrue is the point of maximum, equal to 2.25 GHz in the current example. The
number of samples on the purple curve is equal to N f = 101. The three algorithms have
been implemented by using α = 0.1, β = 0.05, Nt = N̂ f = 512. It can be appreciated that all
algorithms provide a tighter final return loss, as compared to the initial one. In particular,
taking advantage from the additional steps, the iterative and the MUSIC-based algorithms
provide an even tighter final return loss than that given by the single-step algorithm.
However, it is even more important to compare the methods in terms of accuracy and
precision in the estimation of the resonant frequency. This specific aspect will be discussed
in the following section.

3. Methods Comparison

The following percentage error is chosen as a metric to compare the three sharpening
algorithms described in the previous section:
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PE(α, β, N f , Nt, N̂ f , ftrue) =

∣∣∣∣ ftrue − fest

ftrue

∣∣∣∣× 100% (15)

in which ftrue denotes the true value of the resonance frequency. As it can be seen, the
dependence of the percentage error on the different parameters involved in the various
algorithms and the true value of the resonance frequency has been explicitly stated. Then,
in the next section, the three algorithms are compared with respect to the values assumed
by such parameters. We specify that all the involved functions (i.e., RL( f ), RL( f ), R̃L( f ),
R̂L( f ), rl(t)) are uniformly sampled.

A Monte Carlo analysis is performed, where the parameters affecting expression (15)
are generated iteratively as uniform random variables. At each iteration, the percentage
error is determined by means of Equation (15), so that its cumulative distribution function
can be determined. Furthermore, the ties between PE and each of the six parameters are
also investigated by resorting to scatter plots.

The assessment described above refers to the case of synthetic signals, for which the
true resonance frequency is exactly known. When considering experimental contexts, such
a true value is not known at all, and so the algorithms under consideration perform a blind
resonance frequency estimation. In this case, the percentage error cannot be computed, so
that we perform the statistical characterisation of the estimated resonant frequency as a
function of the quintuple (α, β, N f , Nt, N̂ f ).

4. Numerical Results

As anticipated, this section presents the results of a stochastic assessment with respect
to signals generated ad hoc; subsequently, the dispersion of the resonance frequency
estimation with respect to experimental data (i.e., when the true resonance frequency value
is not known) is evaluated.

Let us start with the results related to synthetic signals. For this case, the continuous param-
eters are generated as uniform random variables, while the discrete ones are uniform multino-
mial random variables, within the following respective intervals: α ∈ [0.1, 0.9], β ∈ [0.05, 0.45],
N f ∈ [100, 900], Nt ∈ [512, 4608], N̂ f ∈ [512, 4608], ftrue ∈ [2.25, 2.75]GHz. For each subcase,
500 generations/computations are carried out. The synthetic signals are generated by means of
Equation (14) within the (initial) observation band [ fmin, fMAX ] = [2, 3]GHz. Since here ftrue
is a random variable, it follows that RL( f ) is a stochastic process, for which each synthetic
generated signal is a realisation (sample path).

Figure 2a refers to the single-step algorithm and shows six scatter plots, each depicting
the percentage error versus one of the parameters, when all other parameters assume
uniformly distributed random values. As can be readily noticed, a certain linear relationship
exists between PE and β, whereas it does not appear any particular dependence on the
other parameters. It can just be observed that for higher values of ftrue the maximum value
of PE decreases almost linearly, which is reasonable as PE is defined. However, such a
dependence is not as pronounced as the one between PE and β.

The above considerations are also supported by the scatter plots shown in Figure 2b,
referring to the case in which all the parameters are still randomly generated, except for
parameter β which is fixed at the value 0.05. In this case, a clear decrease of the percentage
error is observed. As a matter of fact, in the previous case PE reaches values equal to
0.9%, with the majority of observations concentrated approximately between 0.4% and
0.8%. Instead, in the fixed-β case, it can be observed that most of the observations are
concentrated below 0.2%, and only few points lie between 0.2% and 0.5%.

Similar arguments can be made for the results provided by the other two algorithms,
which are reported in Figures 3 and 4. However, it should also be noted that the iterative
algorithm gives a more modest improvement in the percentage error levels in the fixed-β
case (Figure 3b), as compared to the other two algorithms. In any case, it can be observed
that, for the fixed-β case, higher values of Nt are more convenient for all three algorithms,
since higher values of PE are associated with lower values of Nt; in the other way, which
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turns out to be counter-intuitive, choosing lower values of N f (i.e., the number of samples
of the return loss acquired by the measurement instrumentation) increases the probability
of cutting out higher values of PE. In conclusion, by comparing the scatter plots of
Figures 2b, 3b and 4b, it can be stated that the single-step algorithm is the best-performing
one in terms of estimation accuracy of the resonance frequency, since the maximum value
of PE is lower than that achieved with the two other algorithms.

The results observed in Figures 2–4 are condensed in Figure 5, which shows the
distributions of PE for the six considered cases.

Solid lines in Figure 5 represent the case in which all parameters are random variables,
summarizing what is visible in Figures 2a, 3a and 4a. It can be seen that, roughly for all
three algorithms, the value ξ = 0.2 represents the 5th percentile, whereas the value ξ = 0.8
is the 95th percentile. The median is around ξ = 0.6.

Dashed lines in Figure 5 represent the fixed-β cases, summarizing what is seen in
Figures 2b, 3b and 4b. As it can be appreciated, these lines are shifted to the left with
respect to the solid ones, which indicates that parameter PE assumes lower values, and
therefore more accurate estimates are provided. Furthermore, the dashed lines distributions
also show a faster growth rate than the solid ones, which therefore means less dispersion of
the observations, and therefore higher precision. As a matter of fact, in the fixed-β case the
5th percentile is obtained at ξ < 0.05 for all three algorithms. Regarding the 95th percentile,
with the single-step and the MUSIC-based algorithms, it stays around ξ = 0.2, whereas
with the iterative algorithm it is close to ξ = 0.7, which is coherent with the result shown in
Figure 3b.
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Figure 2. Performance evaluation of the single-step algorithm: (a) Scatter plots between PE and
the various setting parameters, when the latter are all uniform random variables (b) Scatter plots
between PE and the various setting parameters, when β = 0.05 and all other parameters are uniform
random variables.
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Figure 3. Performance evaluation of the iterative algorithm: (a) scatter plots between PE and the
various setting parameters, when the latter are all uniform random variables; (b) scatter plots
between PE and the various setting parameters, when β = 0.05 and all other parameters are uniform
random variables.
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Figure 4. Performance evaluation of the MUSIC-based algorithm: (a) scatter plots between PE and
the various setting parameters, when the latter are all uniform random variables; (b) scatter plots
between PE and the various setting parameters, when β = 0.05 and all other parameters are uniform
random variables.
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Figure 5. Cumulative distribution functions of the percentage error related to the three sharpening
algorithms.

5. Experimental Results

In the present Section, the evaluation of results coming from the analysis of experi-
mental data is carried out. The measurement setup is illustrated in Figure 6, where the
microwave-resonant sensor is immersed into a water-glucose solution, and connected to
the Vector Network Analyzer (VNA) Anritsu VectorStar, in order to acquire the return loss
(amplitude of the reflection scattering parameter). This represents the output response of
the sensor, clearly exhibiting a pronounced resonance at a specific frequency within the
Industrial, Scientific, Medical (ISM) band. The sensor configuration, described in [10], is
represented by a standard inset-fed resonant microstrip patch antenna, printed on a thin
(0.762 mm height) dielectric substrate, having a high permittivity (εr = 10), in order to
reduce the effect of the environmental properties as much as possible [10]. The sensor
design is optimised, in terms of its resonant response, by means of the Ansys software,
after a preliminary dielectric characterization of water-glucose solutions, from which an
accurate dielectric model for the blood is derived [17]. In particular, an optimum matching
condition (i.e., resonant condition) for the microwave sensor is properly achieved at the
frequency f0 = 2.4 GHz.

Figure 7 shows the return losses provided by the microwave sensor in correspondence
to three different values of the glucose concentration (GC). The number of samples, equis-
paced in the band [2, 3]GHz, is equal to N f = 101. Consequently, the frequency sampling
step is fixed to ∆ f = 10 MHz.

Figure 8 shows the distributions of parameter fest for the three examined algorithms
at different glucose concentrations. The distributions are obtained under the settings
N f = 101, β = 0.05, and generating the other parameters as random uniform variables
in the ranges α ∈ [0.1, 0.9], Nt ∈ [512, 4608] and N̂ f ∈ [512, 4608]. As it can be seen, the
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single-step algorithm provides less dispersed data, and is therefore equipped with greater
precision, since the blue lines are more “vertical” than the others. Furthermore, it can be
observed that for GC = 100 mg/dL the distribution related to the iterative algorithm (red
line) shows a long left tail, due to the presence of some outliers around 2.4163 GHz. By
looking at Table 1, it can be recognised that although MUSIC-based algorithm presents
almost the same dispersion as the multiple-iteration one (for example, in terms of difference
between the 5th and 95th percentiles), both procedures give a value of 0.5 approximately
in correspondence of the same value of ξ of the single-step algorithm. Accordingly, the
single-step and the MUSIC-based algorithms provide approximately the same median for
parameter fest; the same situation does not hold for the iterative algorithm. Furthermore,
another interesting consideration is that the sample mean and the sample median are
almost coincident for each individual case (e.g., referring to Table 1, for GC = 100 mg/dL
the single-step algorithm gives µ = M = 2.4346 GHz). By comparing data shown in
Figure 7 with those of Figure 8 and Table 1, it can be intuitively concluded that parameter
µ provides a good estimate of the resonance frequency, and the difference P95% − P5% is
definitely lower than the initial sampling step ∆ f = 10 MHz. Finally, for the assumed cases,
no distribution associated with a given GC value overlaps with another one associated
with a different GC (for example, the black curve related to GC = 100 mg/dL reaches its
maximum value before ξ = 2.4400 GHz, while the black curve related to GC = 150 mg/dL
presents values greater than zero after ξ = 2.4410 GHz).

A final consideration must be taken into account in relation to the computational
cost. The single-step and the MUSIC-based algorithms involve roughly comparable run-
ning times, while the iterative algorithm requires a longer running time, as it can be
easily guessed.

Figure 6. Measurement setup into ERMIAS Lab at University of Calabria [10].
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13
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Figure 7. Return loss measured by the microwave-resonant sensor for different glucose concentra-
tions.
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Figure 8. Cumulative distribution functions of the resonant frequency estimate for the three sharpen-
ing algorithms, as a function of the glucose concentration.

Table 1. Statistics of fest for three different values of the glucose concentration (GC). Symbols µ, σ,
M, P5% and P95% denotes sample mean, standard deviation, median, 5th percentile, 95th percentile
of fest, respectively. The parameters are: β = 0.05, N f = 101; α ∈ [0.1, 0.9], Nt = [512, 4608] and
N̂ f ∈ [512, 4608] are uniform random variables. The values of GC are in mg/dL and those of the
statistics are in GHz.

Single-Step Iterative MUSIC-Based

GC µ M P5% P95% µ M P5% P95% µ M P5% P95%

100 2.4346 2.4346 2.4345 2.4347 2.4336 2.4340 2.4316 2.4350 2.4346 2.4346 2.4332 2.4364
150 2.4435 2.4435 2.4434 2.4436 2.4433 2.4432 2.4426 2.4441 2.4435 2.4436 2.4427 2.4444
200 2.4506 2.4506 2.4505 2.4507 2.4505 2.4504 2.4499 2.4511 2.4506 2.4506 2.4501 2.4512

6. Conclusions

In this work, three different algorithms have been analyzed and compared to increase
the accuracy of microwave-resonant sensors for potential applications in the reconstruction
of blood glucose concentrations. The first two algorithms are based on pairs of direct-
inverse Fourier transformations. In particular, the first one just adopts a single pair, while
the second one consists of multiple iterations of this. In particular, the third algorithm is
mainly based on a super-resolution spectral estimation method, i.e., the MUSIC algorithm.
The comparison of the above procedures has been performed using Monte Carlo analysis,
and treating the various involved optimisation parameters as random variables. Firstly, the
analysis has been carried out by using synthetic data; then, experimental data obtained by
a ISM-resonant microwave sensor from water-glucose solutions have been also considered.
From the achieved results, all methods have revealed satisfactory performances in terms of
accuracy and precision in the estimation of the resonant frequency, and thus in the recon-
struction of the blood glucose concentration. More specifically, the single-step algorithm
is revealed to provide the best performance. Furthermore, a major result emerging in
the work is related to the possibility to obtain a very accurate estimation of the resonant
frequency, even when considering a limited number of acquired samples, thus avoiding
the need for sophisticated and expensive measuring hardware.
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