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Abstract

Early approaches to multiple-output Gaussian processes (MOGPs) relied on lin-
ear combinations of independent, latent, single-output Gaussian processes (GPs).
This resulted in cross-covariance functions with limited parametric interpretation,
thus conflicting with the ability of single-output GPs to understand lengthscales,
frequencies and magnitudes to name a few. On the contrary, current approaches to
MOGP are able to better interpret the relationship between different channels by
directly modelling the cross-covariances as a spectral mixture kernel with a phase
shift. We extend this rationale and propose a parametric family of complex-valued
cross-spectral densities and then build on Cramér’s Theorem (the multivariate
version of Bochner’s Theorem) to provide a principled approach to design multi-
variate covariance functions. The so-constructed kernels are able to model delays
among channels in addition to phase differences and are thus more expressive
than previous methods, while also providing full parametric interpretation of the
relationship across channels. The proposed method is first validated on synthetic
data and then compared to existing MOGP methods on two real-world examples.

1 Introduction

The extension of Gaussian processes (GPs [1]) to multiple outputs is referred to as multi-output
Gaussian processes (MOGPs). MOGPs model temporal or spatial relationships among infinitely-
many random variables, as scalar GPs, but also account for the statistical dependence across different
sources of data (or channels). This is crucial in a number of real-world applications such as fault
detection, data imputation and denoising. For any two input points x, ', the covariance function of
an m-channel MOGP k(z, z) is a symmetric positive-definite m x m matrix of scalar covariance
functions. The design of this matrix-valued kernel is challenging since we have to deal with the trade
off between (i) choosing a broad class of m(m — 1)/2 cross-covariances and m auto-covariances,
while at the same time (ii) ensuring positive definiteness of the symmetric matrix containing these
m(m+1)/2 covariance functions for any pair of inputs z, z’. In particular, unlike the widely available
families of auto-covariance functions (e.g., [2]), cross-covariances are not bound to be positive definite
and therefore can be designed freely; the construction of these functions with interpretable functional
form is the main focus of this article.

A classical approach to define cross-covariances for a MOGP is to linearly combine independent
latents GPs, this is the case of the Linear Model of Coregionalization (LMC [3]) and the Convolution
Model (CONYV, [4]). In these cases, the resulting kernel is a function of both the covariance functions
of the latent GPs and the parameters of the linear operator considered; this results in symmetric
and centred cross-covariances. While these approaches are simple, they lack interpretability of the
dependencies learnt and force the auto-covariances to have similar behaviour across different channels.
The LMC method has also inspired the Cross-Spectral Mixture (CSM) kernel [5], which uses the
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Spectral Mixture (SM) kernel in [6] within LMC and model phase differences across channels by
manually introducing a shift between the cosine and exponential factors of the SM kernel. Despite
exhibiting improved performance wrt previous approaches, the addition of the shift parameter in
CSM poses the following question: Can the spectral design of multiouput covariance functions be
even more flexible?

We take a different approach to extend the spectral mixture concept to multiple outputs: Recall that
for stationary scalar-valued GPs, [6] designs the power spectral density (PSD) of the process by a
mixture of square exponential functions to then, supported by Bochner’s theorem [7], present the
Spectral Mixture kernel via the inverse Fourier transform of the so-constructed PSD. Along the same
lines, our main contribution is to propose an expressive family of complex-valued square-exponential
cross-spectral densities, and then build on Cramér’s theorem [8, 9], the multivariate extension of
Bochner’s, to construct the Multi-Output Spectral Mixture kernel (MOSM). The proposed multivariate
covariance function accounts for all the properties of the Cross-Spectral Mixture kernel in [5] plus a
delay component across channels and variable parameters for auto-covariances of different channels.
Additionally, the proposed MOSM provides clear interpretation of all the parameters in spectral terms.
Our experimental contribution includes an illustrative example using a trivariate synthetic signal and
validation against all the aforementioned literature using two real-world datasets.

2 Background

Definition 1. A Gaussian process (GP) over the input set X is a real-valued stochastic process
(f(x))zex such that for any finite subset of inputs {z;}~_; C X, the random variables { f(x;)}¥,
are jointly Gaussian. Without loss of generality we will choose X = R".

A GP [1] defines a distribution over functions f(x) that is uniquely determined by its mean function
m(z) := E(f(z)), typically assumed m(x) = 0, and its covariance function (also known as kernel)
k(x,2') := cov(f(z), f(z")), z,2’ € X. We now equip the reader with the necessary background
to follow our proposal: we first review a spectral-based approach to the design of scalar-valued
covariance kernels and then present the definition of a multi-output GP.

2.1 The Spectral Mixture kernel

To bypass the explicit construction of positive-definite functions within the design of stationary
covariance kernels, it is possible to design the power spectral density (PSD) instead [6] and then
transform it into a covariance function using the inverse Fourier transform. This is motivated by
the fact that the strict positivity requirement of the PSD is much easier to achieve than the positive
definiteness requirement of the covariance kernel. The theoretical support of this construction is
given by the following theorem:

Theorem 1. (Bochner’s theorem) An integrable' function k : R™ — C is the covariance function of
a weakly-stationary mean-square-continuous stochastic process f : R™ — C if and only if it admits
the following representation

k(r) = / '™ S(w)dw (1)
where S(w) is a non-negative bounded function on R™ and 1 denotes the imaginary unit.

For a proof see [9]. The above theorem gives an explicit relationship between the spectral density .S
and the covariance function k of the stochastic process f. In this sense, [6] proposed to model the
spectral density .S as a weighted mixture of () square-exponential functions, with weights w,, centres
/¢ and diagonal covariance matrices X, that is,

Q
1
S(w) :quW exp (—5(w = 1g) S Hw — 1)) - 2)

q=1

Relying on Theorem 1, the kernel associated to the spectral density S(w) in eq. (2) is given the
spectral mixture kernel defined as follows.

'A function g(z) is said to be integrable if Jen lg(@)|de < 400



Definition 2. A Spectral Mixture (SM) kernel is a positive-definite stationary kernel given by

Q
1
k()= qu exp <2TTZQT> cos(,unT) 3)
qg=1
where j1, € R", 3, = diag(ayz), e ,O’»Slq)) and wyg, 04 € Ry

Due to the universal function approximation property of the mixtures of Gaussians (considered
here in the frequency domain) and the relationship given by Theorem 1, the SM kernel is able to
approximate continuous stationary kernels to an arbitrary precision given enough spectral components
as is [10, 11]. This concept points in the direction of sidestepping the kernel selection problem in
GPs and it will be extended to cater for multivariate GPs in Section 3.

2.2  Multi-Output Gaussian Processes

A multivariate extension of GPs can be constructed by considering an ensemble of scalar-valued
stochastic processes where any finite collection of values across all such processes are jointly Gaussian.
We formalise this definition as follows.

Definition 3. An m-channel multi-output Gaussian process £(x) := (f1(x),..., fm(x)), z € X, is
an m-tuple of stochastic processes f, : X — RVp =1,...,m, such that for any (finite) subset of
inputs {x;}., C X, the random variables { fo;(x;)}XL, are jointly Gaussian for any choice of
indices c(i) € {1,...,m}.

Recall that the construction of scalar-valued GPs requires choosing a scalar-valued mean function and
a scalar-valued covariance function. Conversely, an m-channel MOGP is defined by an R™*-valued
mean function, whose ™ element denotes the mean function of the i channel, and an R™ x R™-
valued covariance function, whose (i, j)™ element denotes the covariance between the i and ;™
channels. The symmetry and positive-definiteness conditions of the MOGP kernel are defined as
follows.

Definition 4. A two-input matrix-valued function K(z,z') : X x X — R™*™ defined element-wise
by [K(z,2")],; = kij(x,2") is a multivariate kernel (covariance function) if it is:

(i) Symmetric, i.e., K(z,2') = K(z',z) ", Vo, 2’ € X, and

ii) Positive definite, i.e., VN € N,c € RV*™ x € XN such that, [c,; = ¢y, [X], = x,, we have
P P P P

m N
Z Z CpiCqikij(Tp, zq) > 0. @

4,j=1p,q=1

Furthermore, we say that a multivariate kernel (z, ') is stationary if K(z,2’) = K(xz — 2’) or
equivalently k;;(z,2") = k;j(x — 2") Vi, j € {1,...,m}, in this case, we denote 7 = = — .

The design of the MOGP covariance kernel involves jointly choosing functions that model the
covariance of each channel (diagonal elements in K) and functions that model the cross-covariance
between different channels at different input locations (off-diagonal elements in K). Choosing these
m(m + 1)/2 covariance functions is challenging when we want to be as expressive as possible and
include, for instance, delays, phase shifts, negative correlations or to enforce specific spectral content
while at the same time maintaining positive definiteness of /. The reader is referred to [12, 13] for a
comprehensive review of MOGP models.

3 Designing Multi-Output Gaussian Processes in the Fourier Domain

We extend the spectral-mixture approach [6] to multi-output Gaussian processes relying on the
multivariate version of Theorem 1 first proved by Cramér and thus referred to as Cramér’s Theorem
[8, 9] given by

Theorem 2. (Cramér’s Theorem) A family {k;;(T) i1 of integrable functions are the covariance

functions of a weakly-stationary multivariate stochastic process if and only if they (i) admit the



representation
kij(T)z/ e TS i(w)dw Vi je{l,...,m} (5)
Rﬂ,

where each S;; is an integrable complex-valued function S;; : R™ — C known as the spectral density
associated to the covariance function k;;(T), and (ii) fulfil the positive definiteness condition

Z ZZjSij(w) Z 0 V{Zl, ey Zyn} - (C7 wER" (6)
i,j=1
where Z denotes the complex conjugate of z € C.

Note that eq. (5) states that each covariance function k;; is the inverse Fourier transform of a spectral
density S;;, therefore, we will say that these functions are Fourier pairs. Accordingly, we refer to
the set of arguments of the covariance function 7 € R" as time or space Domain depending of the
application considered, and to the set of arguments of the spectral densities w € R"™ as Fourier or
spectral domain. Furthermore, a direct consequence of the above theorem is that for any element
w in the Fourier domain, the matrix defined by S(w) = [S;;(w)]i"_; € R™*™ is Hermitian, i.e.,

i,=1
Sij(w) = Sji(w) Vi, j, w.

Theorem 2 gives the guidelines to construct covariance functions for MOGP by designing their
corresponding spectral densities instead, i.e., the design is performed in the Fourier rather than the
space domain. The simplicity of design in the Fourier domain stems from the positive-definiteness
condition of the spectral densities in eq. (6), which is much easier to achieve than that of the covariance
functions in eq. (4). This can be understood through an analogy with the univariate model: in the
single-output case the positive-definiteness condition of the kernel only requires positivity of the
spectral density, whereas in the multioutput case the positive-definiteness condition of the multivariate
kernel only requires that the matrix S(w), Vw € R™, is positive definite but there are no constraints
on each function S;; : w — S (w).

3.1 The Multi-Output Spectral Mixture kernel

We now propose a family of Hermitian positive-definite complex-valued functions {S;;(-) };";_;, thus
fulfilling the requirements of Theorem 2, eq. (6), to use them as cross-spectral densities within MOGP.
This family of functions is designed with the aim of providing physical parametric interpretation and
closed-form covariance functions after applying the inverse Fourier transform.

Recall that complex-valued positive-definite matrices can be decomposed in the form S(w) =
R (w)R(w), meaning that the (i, j)™ entry of S(w) can be expressed as S;;(w) = RE (w)R.;(w);
where R(w) € CO*™, R.;(w) is the i® column of R(w), and (-)¥ denotes the Hermitian (transpose
ang conjugate) operator. Note that this factor decomposition fulfils eq. (6) for any choice of R(w) €
CExm:

2

> FHRI(W)R W)z = || ziRa(w)|| = ||Rw)z|]* >0 Vz=[z1,...,2m] €C™ weR"
i,j=1 i=1

@)
We refer to () as the rank of the decomposition, since by choosing ) < m the rank of S(w) =
R (w)R(w) can be at most Q. For ease of notation we choose’ ) = 1, where the columns of
R(w) are complex-valued functions {R;}" ;, and S(w) is modeled as a rank-one matrix according
to S;j(w) = R;(w)R;(w). Since Fourier transforms and multiplications of square exponential (SE)
functions are also SE, we model R;(w) as a complex-valued SE function so as to ensure closed-form

expression of its corresponding covariance kernel, that is,
1
R;(w) = w; exp (4(w — ui)TZi_l(w — ul)) exp (fL(GiTw + gbz)) , i=1,....m (8
where w;, ¢; € R, 11;,0; € R" and 3; = diag([0Z,...,02,]) € R"*™. With this choice of the

functions {R; }, the spectral densities {S;;}{";_; are given by

1 _ ..
Sij(w) = wyj exp (—2(w — uij)TZijl(w — ;) + L(@;l;w + gzﬁij)) , 4,5=1,....m (9

2The extension to arbitrary @ will be presented at the end of this section.



meaning that the cross-spectral density between channels ¢ and j is modeled as a complex-valued SE
function with the following parameters:

e covariance: ¥;; = 25;(%; + X;) 7Y,

e mean: p1;; = (X; + ;)N (Sipns + ;)

e magnitude: w;; = w;w; exp (—%(,Ui - Nj)T(Ei + Ej)fl(”i - “j))
e delay: 6,; =6, — 0;

e phase: ¢;; = ¢; — ¢,

where the so-constructed magnitudes w;; ensure positive definiteness and, in particular, the auto-
spectral densities .S;; are real-valued SE functions (since 6;; = ¢;; = 0) as in the standard (scalar-
valued) spectral mixture approach [6].

The power spectral density in eq. (9) corresponds to a complex-valued kernel and therefore to a
complex-valued GP [14, 15] . In order to restrict this generative model only to real-valued GPs, the

proposed power spectral density has to be symmetric with respect to w [16], we then make .S;; (w)

symmetric simply by reassigning S;;(w) — 3(S;;(w) + Sij(—w)), this is equivalent to choosing

R;(w) to be a vector of two mirrored complex SE functions.

The resulting (symmetric with respect to w) cross-spectral density between the i and ;™ channels
S;;(w) and its corresponding real-valued kernel k;; (1) = F~1{S;;(w)}(7) are the following Fourier
pairs

Sij(w) _ % <e(21(w_l’b’ij)-rzijl(W_Hij)-"_L(e;rij’_(bij)) + e(21(UJJ’_M’U)TEijl(W+M’ij)+l’(_oi—;w+¢ij))>

1
kij(T) = a;j exp (—2(T +0i5) " S (7 + Qij)) cos (14 0i5) " pij + ¢45) (10)

where the magnitude parameter a;; = w;;(27)% |;;|'/2 absorbs the constant resulting from the
inverse Fourier transform.

We can again confirm that the autocovariances (¢ = 7) are real-valued and contain square-exponential
and cosine factors as in the scalar SM approach since a;; > 0 and 6;; = ¢;; = 0. Conversely,
the proposed model for the cross-covariance between different channels (i # j) allows for (i) both
negatively- and positively-correlated signals (o;; € R), (ii) delayed channels through the delay
parameter 6;; # 0 and (iii) out-of-phase channels where the covariance is not symmetric with respect
to the delay for ¢;; # 0. Fig. 1 shows cross-spectral densities and their corresponding kernel for a
choice of different delay and phase parameters.

Cross
Covariances

-5 0 5 -5 0 5 -5 0 5 =5 0

Figure 1: Power spectral density and kernels generated by the proposed model in eq. (10) for different
parameters. Bottom: Cross-spectral densities, real part in blue and imaginary part in green. Top:
Cross-covariance functions in blue with reference SE envelope in dashed line. From left to right:
zero delay and zero phase; zero delay and non-zero phase; non-zero delay and zero phase; and
non-zero delay and non-zero phase.



The kernel in eq. (10) resulted from a low rank choice for the PSD matrix .5;;, therefore, increasing
the rank in the proposed model for S;; is equivalent to consider several kernel components. Arbitrarily
choosing () of these components yields the expression for the proposed multivariate kernel:

Definition 5. The Multi-Output Spectral Mixture kernel (MOSM) has the form:
Q
1
kij(T) = Z ozl(;-]) exp (—2(7' + 91(?))TEE?) (r+ 95}1))) cos ((7‘ + 95?)%5-?) + (bz(jq-)) (11)
qg=1

where agg) = wl(?) (2m)% |E§g) |1/2 and the superindex (-)9 denotes the parameter of the ¢ compo-

nent of the spectral mixture.

This multivariate covariance function has spectral-mixture positive-definite kernels as auto-
covariances, while the cross-covariances are spectral mixture functions with different parameters for
different output pairs, which can be (i) non-positive-definite, (ii) non-symmetric, and (iii) delayed with
respect to one another. Therefore, the MOSM kernel is a multi-output generalisation of the spectral
mixture approach [6] where the positive definiteness is guaranteed by the factor decomposition of .S;;
as shown in eq. (7).

3.2 Training the model and computing the predictive posterior

Fitting the model to observed data follows the same rationale of standard GP, that is, maximising
log-probability of the data. Recall that the observations in the multioutput case consist of (i) a
location = € X, (ii) a channel identifier i € {1,...,m}, and (iii) an observed value y € R; therefore,
we denote N observations as the set of 3-tuples D = {(x,i.,y.)}2_;. As all observations are
jointly Gaussian, we concatenate the observations into the three vectors x = [z1,...,z N]T e XN,
i=[i5,...,in]" € {1,....om}N, andy = [y1,...,yn]" € RY, to express the negative log-
likelihood (NLL) by

N 1 1+
~logp(ylx, ) = - log 27 + 5 log [Kaxi| + gyTKxfy (12)

where all hyperparameters are denoted by O, and K; is the covariance matrix of all observed samples,
that is, the (7, s)™ element [K;]s is the covariance between the process at (location: x,., channel:
1,-) and the process at (location: x4, channel: ¢,). Recall that, under the proposed MOSM model, this
covariance [Ky;l, is given by eq. (11), that is, k; ;, (2, — 25) + 07 0ie04,4,. Where o7 . isa
diagonal term to cater for uncorrelated observation noise. The NLL is then minimised with réspect to

0 = {w?, {7 % @ @) a?’noise}ﬁ’?q:l, that is, the original parameters chosen to construct

R(w) in Section 3.1, plus the noise hyperparameters.

Once the hyperparameters are optimised, computing the predictive posterior in the proposed MOSM
follows the standard GP procedure with the joint covariances given by eq. (11).

3.3 Related work

Generalising the scalar spectral mixture kernel to MOGPs can be achieved from the LMC framework
as pointed out in [5] (denoted SM-LMC). As this formulation only considers real-valued cross spectral
densities, the authors propose a multivariate covariance function by including a complex component
to the cross spectral densities to cater for phase differences across channels, which they call the Cross
Spectral Mixture kernel (denoted CSM). This multivariate covariance function can be seen as the
proposed MOSM model with p1; = pj, i = %5, 0; = 0; Vi, j € {1,...,m} and ¢; = p; 1, for
1; € R™. As a consequence, the SM-LMC is a particular case of the proposed MOSM model, where
the parameters p;, 3;, 0; are restricted to be same for all channels and therefore no phase shifts and
no delays are allowed—unlike the MOSM example in Fig. 1. Additionally, Cramér’s theorem has
also been used in a similar fashion in [17] but only with real-valued t-Student cross-spectral densities
yielding cross-covariances that are either positive-definite or negative-definite.

4 Experiments

We show two sets of experiments. First, we validated the ability of the proposed MOSM model in
the identification of known auto- and cross-covariances of synthetic data. Second, we compared



MOSM against the spectral-mixture linear model of coregionalization (SM-LMC, [3, 6, 5]), the
Gaussian convolution model (CONYV, [4]), and the cross-spectral mixture model (CSM, [5]) in the
estimation of missing real-world data in two different distributed settings: climate signals and metal
concentrations. All models were implemented in Tensorflow [18] using GPflow [19] in order to make
use of automatic differentiation to compute the gradients of the NLL. The performance of all the
models in the experiments was measured by the mean absolute error given by

N
1 N
MAE : ﬁ;m ~ i) (13)
where y; denotes the true value and ¢; the MOGP estimate.

4.1 Synthetic example: Learning derivatives and delayed signals

All models were implemented to recover the auto- and cross-covariances of a three-output GP with
the following components: (i) a reference signal sampled from a GP f(z) ~ GP(0, Kgps) with
spectral mixture covariance kernel K g, and zero mean, (ii) its derivative f’(x), and (iii) a delayed
version f5(z) = f(x — §). The motivation for this illustrative example is that the covariances and
cross covariances of the aforementioned processes are known explicitly (see [1, Sec. 9.4]) and we
can therefore compare our estimates to the true model. The derivative was computed numerically
(first order through finite differences) and the training samples were generated as follows: We chose
N7 = 500 samples from the reference function in the interval [-20, 20], No = 400 samples from the
derivative signal in the interval [-20, 0], and N3 = 400 samples from the delayed signal in the interval
[-20, 0]. All samples were randomly uniformly chosen in the intervals mentioned and Gaussian
noised was added to yield realistic observations. The experiment then consisted in the reconstruction
the reference signal in the interval [-20, 20], and the imputation of the derivative and delayed signals
over the interval [0, 20].

Fig. 2 shows the ground truth and MOSM estimates for all three synthetic signals and the co-
variances (normalised), and Table 1 reports the MAE for all models over ten realisations of the
experiment. Notice that the proposed model successfully learnt all cross-covariances cov(f (), f'(x))
and cov(f(x), f(z — 0)), and autocovariances without prior information about the delayed or the
derivative relationship between the two channels. Furthermore, MOSM was the only model that
successfully extrapolated the derivate signal and the delayed signal simultaneously, this is due the fact
that the cross-covariances needed for this setting are not linear combinations of univariate kernels,
hence models based on latent processes fail in this synthetic example.

Synthetic Example: MOSM Cov: Reference

5.0 25 0.0 2.5 5.0

Cov: Derivative Cov: Reference and Derivative

5.0 25 0.0 2.5 5.0 5.0 25 0.0 2.5 5.0

Cov: Delayed Cov: Reference and Delayed

ks (T) = kg (7)

=
=0
S
KaA

Input

Figure 2: MOSM learning of the covariance functions of a synthetic reference signal, its derivative
and a delayed version. Left: synthetic signals, middle: autocovariances, right: cross-covariances.
The dashed line is the ground truth, the solid colour lines are the MOSM estimates, and the shaded
area is the 95% confidence interval. The training points are shown in green.



Table 1: Reconstruction of a synthetic signal, its derivative and delayed version: Mean absolute error

for all four models with one-standard-deviation error bars over ten realisations.

Model Reference Derivative Delayed

CONV 0.211 £0.085 0.759 £ 0.075 0.524 £ 0.097
SM-LMC 0.166 +0.009 0.747 £ 0.101  0.398 4 0.042
CSM 0.148 £ 0.010 0.262 +0.032 0.368 £ 0.089
MOSM 0.127 £0.011 0.223 £0.015 0.146 £ 0.017

4.2 Climate data

The first real-world dataset contained measurements® from a sensor network of four climate stations
in the south on England: Cambermet, Chimet, Sotonmet and Bramblemet. We considered the
normalised air temperature signal from 12 March, 2017 to 16 March, 2017, in 5-minute intervals
(5692 samples), from where we randomly chose N = 1000 samples for training. Following [4],
we simulated a sensor failure by removing the second half of the measurements for one sensor and
leaving the remaining three sensors operating correctly; we reproduced the same setup across all
four sensors thus producing four experiments. All models considered had five latent signals/spectral
components.

For all four models considered, Fig. 3 shows the estimates of missing data for the Cambermet-failure
case. Table 2 shows the mean absolute error for all models and failure cases over the missing data
region. Observe how all models were able to capture the behaviour of the signal in the missing range,
this is because the considered climate signals are very similar to one another. This shows that the
MOSM can also collapse to models that share parameters across pairs of outputs when required.

w— MOSM CONV

— CSM

Temperature [°C]
°

Time [Days]

Figure 3: Imputation of the Cambermet sensor measurements using the remaining sensors. The red
points denote the observations, the dashed black line the true signal, and the solid colour lines the
predictive means. From left to right: MOSM, CONV, SM-LMC and CSM.

Table 2: Imputation of the climate sensor measurements using the remaining sensors. Mean absolute
error for all four experiments with one-standard-deviation error bars over ten realisations.

Model Cambermet Chimet Sotonmet Bramblemet

CONV 0.098 & 0.008 0.192 +£0.015 0.211 &20.038 0.163 & 0.009
SM-LMC 0.084 +=0.004 0.176 =£0.003 0.273 £0.001 0.134 = 0.002
CSM 0.094 +0.003 0.129 +0.004 0.195 +£0.011 0.130 & 0.004
MOSM 0.097 £0.006 0.137 £0.007 0.162 £0.011 0.129 = 0.003

These results do not show a significant difference between the proposed model and the latent processes
based models. In order to test for statistical significance, the Kolmogorov-Smirnov test [20, Ch.
7] was used with a significance level o = 0.05, concluding that for the Sotonmet sensor we can
assure that the MOSM model yields the best results. Conversely, for the Cambermet, Chimet and
Bramblemet sensors, MOSM and CSM provided similar results, though we cannot confirm their
difference is statistically significant. However, given the high correlation of these signals and the

3The data can be obtained from www . cambermet . co.uk. and the sites therein.


www.cambermet.co.uk.

similarity between the MOSM model and the CSM model, the close performance of these two models
on this dataset is to be expected.

4.3 Heavy metal concentration

The Jura dataset [3] contains, in addition to other geological data, the concentration of seven heavy
metals in a region of 14.5 km? of the Swiss Jura, and it is divided into a training set (259 locations)
and a validation set (100 locations). We followed [3, 4], where the motivation was to aid the prediction
of a variable that is expensive to measure by using abundant measurements of correlated variables
which are less expensive to acquire. Specifically, we estimated Cadmium and Copper at the validation
locations using measurements of related variables at the training and test locations: Nickel and Zinc
for Cadmium; and Lead, Nickel and Zinc for Copper. The MAE—see eq. (13)—is shown in Table 3,
where the results for the CONV model were obtained from [4] and all models considered five latent
signals/spectral components, except for the independent Gaussian process (denoted IGP).

Observe how the proposed MOSM model outperforms all other models over the Cadmium data,
which is statistical significant with a significance level a = 0.05. Conversely, we cannot guarantee a
statistically-significant difference between the CSM model and the MOSM in the Copper case. In
both cases, testing for statistical significance against the CONV model was not possible since those
results were obtained from [4]. On the other hand, the higher variability and non-Gaussianity of
the Copper data may be the reason of why the simplest MOGP model (SM-LMC) achieves the best
results.

Table 3: Mean absolute error for the estimation of Cadmium and Copper concentrations with one-
standard-deviation error bars over ten repetitions of the experiment.

Model Cadmium Copper

IGP 0.56 = 0.005 16.5+£0.1
CONV 0.443 £0.006 7.45+0.2
SM-LMC 0.46 £0.01 7.0+0.1
CSM 0.47 +£0.02 74+£0.3
MOSM 0.43£0.01 7.3+0.1

5 Discussion

We have proposed the multioutput spectral mixture (MOSM) kernel to model rich relationships
across multiple outputs within Gaussian processes regression models. This has been achieved by
constructing a positive-definite matrix of complex-valued spectral densities, and then transforming
them via the inverse Fourier transform according to Cramér’s Theorem. The resulting kernel provides
a clear interpretation from a spectral viewpoint, where each of its parameters can be identified with
frequency, magnitude, phase and delay for a pair of channels. Furthermore, a key feature that is unique
to the proposed kernel is the ability joint model delays and phase differences, this is possible due to
the complex-valued model for the cross-spectral density considered and validated experimentally
using a synthetic example—see Fig. 2. The MOSM kernel has also been compared against existing
MOGP models on two real-world datasets, where the proposed model performed competitively in
terms of the mean absolute error. Further research should point towards a sparse implementation of
the proposed MOGP which can build on [4, 21] to design inducing variables that exploit the spectral
content of the processes as in [22, 23].
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