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Future multi-photon applications of quantum optics and quantum information science require
quantum memories that simultaneously store many photon states, each encoded into a different
optical mode, and enable one to select the mapping between any input and a specific retrieved mode
during storage. Here we show, with the example of a quantum repeater, how to employ spectrally-
multiplexed states and memories with fixed storage times that allow such mapping between spectral
modes. Furthermore, using a Ti:Tm:LiNbO3 waveguide cooled to 3 Kelvin, a phase modulator, and
a spectral filter, we demonstrate storage followed by the required feed-forward-controlled frequency
manipulation with time-bin qubits encoded into up to 26 multiplexed spectral modes and 97%
fidelity.

PACS numbers: 03.67.Hk, 42.50.Ex, 32.80.Qk, 78.47.jf

Further advances towards scalable quantum optics
[1, 2] and quantum information processing [3, 4] rely
on joint measurements of multiple photons that encode
quantum states (e.g. qubits) [3–5]. However, as pho-
tons generally arrive in a probabilistic fashion, either due
to a probabilistic creation process or due to loss dur-
ing transmission, such measurements are inherently inef-
ficient. For instance, this leads to exponential scaling of
the time required to establish entanglement, the very re-
source of quantum information processing, as a function
of distance in a quantum relay [6]. This problem can be
overcome by using quantum memories, which are gener-
ally realized through the reversible mapping of quantum
states between light and matter [7, 8]. For efficient opera-
tion, these memories must be able to simultaneously store
many photon states, each encoded into a different optical
mode, and subsequently (using feed-forward) allow se-
lecting the mapping between input and retrieved modes
(e.g., different spectral or temporal modes). This enables
making several photons arriving at a measurement device
indistinguishable, thereby rendering joint measurements
deterministic. For instance, revisiting the example of en-
tanglement distribution, a quantum relay supplemented
with quantum memories changes it to a repeater and,
in principle, the scaling from exponential to polynomial
[4, 9].

Interestingly, for such multimode quantum memories
to be useful, it is not necessary to map any input mode
onto any retrieved (output) mode, but it often suffices if a
single input mode, chosen once a photon is stored, can be
mapped onto a specific output mode (e.g. characterized
by the photon’s spectrum and recall time) [4, 10]. This
ensures that the photons partaking in a joint measure-
ment, each recalled from a different quantum memory,
are indistinguishable, as required, e.g., for a Bell-state

measurement. We emphasize that it does not matter if
the device used to store quantum states also allows the
mode mapping, or if the mode mapping is performed af-
ter recall using appended devices – we will refer to the
system allowing storage and mode mapping as the mem-

ory.

To date, most research assumes photons arriving at dif-
ferent times at the memory (i.e. temporal multiplexing),
and recall on demand in terms of variable storage time
[7, 8]. Here we show, with the example of a quantum
repeater, that it is also possible to employ spectrally-
multiplexed states and storage devices with fixed storage
times, supplemented with frequency shifts based on feed-
forward control. Furthermore, we report measurements
using a highly broadband solid-state memory [11] that
demonstrate the required mapping between input and
output modes with time-bin qubits encoded into up to
26 spectral modes and a fidelity of 0.97, thereby signifi-
cantly violating the classical bound of 2/3 [12].

It is worth noting that for applications requiring short
storage times, such as in linear optics quantum comput-
ing, a low-loss fibre could be sufficient to delay photons
until a feed-forward signal arrives. However, for applica-
tions, such as a quantum repeater, in which storage times
exceed around 10 µs, fibre transmission drops below 90%
and hence quantum state storage based on light-matter
interaction will be necessary. Additionally, light-matter
interaction affords more flexibility to perform processing
tasks other than delaying [13].

Much theoretical and experimental work aiming at the
development of quantum memory has been reported over
the past decade [7, 8, 14], and most criteria required for
such a memory to be suitable for the aforementioned ap-
plications have been independently met. However, at
most two (entangled) qubits have been stored simultane-
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ously in a way that allowed selecting the mode mapping
[15], and the scalability of the approach, which relied on
encoding information into four spatial modes, to tens or
hundreds of qubits and modes remains to be proven (we
note related work by Lan et al. [16] that, however, is not
based on memories as defined above).

Rare-earth-ion doped crystals cooled to cryogenic tem-
peratures have demonstrated to be promising storage ma-
terials, and many benchmark results have been reported
[11, 17–22]. We emphasize that, when such crystals
are used in conjunction with the atomic frequency comb
(AFC) protocol, the independence of the multimode (i.e.
multi-photon) capacity on optical depth constitutes an
important advantage compared to other protocols [23].
However, choosing the time of recall using control lasers
to perform the mode mapping in the storage device is
challenging with an AFC memory [21, 23].

Drawing from the well-known temporal multiplexing
approach, Fig. 1 shows, with the example of a quantum
repeater, how spectrally multimode quantum memories,
including frequency shifters and filters, allow rendering
photons indistinguishable without the need for a vari-
able storage time. While a repeater that employs tempo-
ral multiplexing assumes all qubits to feature the same
spectrum but to arrive at different times at the memory,
our new approach assumes all qubits to arrive at the same
time, but to feature distinct spectra (i.e. to be encoded
into different frequency bins). The retrieval of a desired
qubit at a given time and with a given spectrum can then
be achieved by retrieving all qubits after the same stor-
age time, selecting the shift of the spectra of all qubits
such that the desired qubit occupies a previously agreed-
upon frequency bin, and rejecting all other qubits using
a filtering cavity. To quantify the performance of a quan-
tum repeater based on spectral multiplexing, we calculate
the average rate of successful distributions of entangled
photon pairs over a lossy channel as a function of total
distance. The results, shown in Fig. 2, show that useful
performance can already be achieved with 100 spectral
modes, which is clearly feasible in near future. Further
information regarding the derivation of these results, and
comparison with the temporal multiplexing scheme are
contained in the Supplemental Material.

Conjecturing similarly promising results for other
multi-photon applications, we now experimentally char-
acterize the feasibility of multimode storage and feed-
forward-controlled read-out in the frequency domain. A
schematic of our setup is depicted in Fig. 3. It performs
four tasks: First, to prepare the memory, laser light is
temporally and spectrally modulated, and then sent into
a Ti:Tm:LiNbO3 waveguide [11, 25], thus spectrally tai-
loring the inhomogeneous absorption line of thulium into
a series of equally-spaced absorption peaks – an AFC.
For multimode storage, the preparation procedure is re-
peated at different detunings with respect to the orig-
inal laser frequency, resulting in twenty-six, 100 MHz-

wide AFC’s that are, with the exception of the region
around zero detuning, spectrally separated by 200 MHz
gaps (see Fig. 4). Second, our setup simultaneously gen-
erates many time-bin qubits of the form |ψ〉 = α|e〉+β|l〉,
encoded into single-photon-level, phase randomized laser
pulses of different intensities, in up to 26 frequency bins.
Here, |α|2 + |β|2 = 1, and |e〉 and |l〉 describe early or
late emitted laser pulses, respectively. Third, the qubits
are sent into the waveguide memory, where the absorp-
tion of each photon occupying a specific frequency bin
leads to a collective excitation shared by the atoms form-
ing the corresponding AFC. After a preset storage time
Ts = 1/∆ (where ∆ is the AFC peak spacing), the pho-
tons are emitted in their original state and spectral mode
[23]. For selecting the recalled mode, the spectra of all
simultaneously recalled photons are frequency shifted us-
ing another phase modulator [26], and all but the desired
photons are rejected using a filter cavity with fixed res-
onance frequency [27]. Finally, projection measurements
onto time-bin qubit states |e〉 or |l〉, or (|e〉 ± |l〉)/

√
2 are

performed. As we describe in detail in the Supplemental
Material, we post-process the measured data to assess a
key figure of merit – the lower bound on the storage fi-

delity F (1)
L – only from laser pulses containing exactly one

photon. This procedure justifies the use of attenuated
laser pulses instead of single photons to encode qubits for
the purpose of our investigation. Further details about
the AFC preparation, qubit generation, measurements
and fidelity calculations, as well as current limitations
resulting in a 1.5 × 10−4 overall memory efficiency are
contained in the caption of Fig. 3 and the Supplemental
Material.
In the first experiment we simultaneously store 26

qubits, alternating between |e〉 and |l〉, each prepared
in one of the 26 spectral bins containing AFCs. All
qubits are recalled after 60 ns, and subsequently fre-
quency shifted and spectrally filtered. Fig. 4 shows his-
tograms of detections as a function of time for 30 different
frequency shifts, for which the cavity filtering is expected
to select the recall of at most one qubit. Our results in-
dicate that, with little cross-talk from the directly neigh-
boring frequency bins, we can simultaneously store many
qubits featuring disjoint spectra, and recall each qubit in-
dividually. We note that the total storage bandwidth of
Tm:LiNbO3 exceeds 300 GHz [28], which, in principle, al-
lows expanding the current AFC to comprise more than
1000 spectral bins.
Next, to further examine the effect of cross-talk be-

tween spectral modes, we first store and retrieve a ’test’
qubit prepared in |l〉 in the spectral bin having 1350 MHz
detuning (with vacuum in all other spectral bins). We
shift the test qubit into cavity resonance, and measure
the probability to detect it in an early or a late temporal
mode, which allows calculating the fidelity Fl of the re-
called state with the input state (here and henceforth, the
subscript index indicates the qubit’s originally prepared
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FIG. 1: (color online) Quantum repeater. a, Block diagram of a section of a quantum repeater that does not employ qubit
multiplexing. A source generating entangled pairs of photons (PPS) is located at the end-point of each elementary link (i.e.
node). One member per pair is stored in a quantum memory (QM), and the second member is sent over a ’quantum channel’
to the centre of the link where it meets a member of an entangled pair generated at the other end of this link. The two
photons’ joint state undergoes a Bell-state measurement (BSM) – comprised of a beam splitter (BS) and two single photon
detectors (SPDs), and the result is communicated over a ’classical channel’ back to the end-points to herald the establishment
of entangled quantum memories by means of entanglement swapping [4, 9, 24]. Entanglement is stored until the two memories
that are part of an adjacent link, are also entangled. Then, photons are recalled from neighboring memories and subjected to
BSM’. This results in the establishment of entanglement across the two links, and, by continuing this procedure with other
links, entanglement is established between the end-points of the entire channel. b (c), Operation of a repeater node assuming
temporal (spectral) multiplexing. Members of entangled photon pairs, each featuring the same spectrum (temporal profile
and arrival time) but separated in time (frequency), are simultaneously stored in multimode quantum memories. A heralding
(feed-forward) signal, derived from a successful BSM at the centre of each elementary link, indicates which of the stored photons
is to be used for the remaining step of the protocol. The heralded photons are then recalled from adjacent memories such that
they arrive indistinguishably at the BSM’. For temporal multiplexing, memories that allow adjusting the recall time as well
as time-resolved detection are required, while for spectral multiplexing, the memories must incorporate adjustable frequency
shifts (FS) and spectral filtering (F), and the BSM must distinguish different frequency bins.

state). We then increase the number of simultaneously
stored qubits by creating them in neighboring spectral
bins, and repeat the fidelity measurement with the test
qubit. Note that all additional qubits are prepared in
the orthogonal |e〉 state, such that the reduction of the
fidelity of the test qubit due to cross-talk is maximized.
The result, further described in the Supplemental Mate-
rial, shows that cross-talk (due to the Lorentzian-shaped
cavity resonance line) is restricted to qubits separated by
at most two frequency bins.

Finally, we quantify the storage and recall fidelity for
arbitrary qubit states stored in the AFC with multiple
spectral bins shown in Fig. 4. Supported by the pre-
vious result, we create and simultaneously store time-
bin qubits prepared in five spectral bins located between
750 and 1950 MHz detuning. A test qubit in state
|ψ〉 ∈ [|e〉, |l〉, 1√

2
(|e〉+|l〉), 1√

2
(|e〉−|l〉)] is prepared in the

central bin (at 1350 MHz detuning), and, for the reason
already described above, the qubits in the four neighbor-

Photon input Fe/l F+/−

µ = 0.5 (94.67± 0.43)% (94.52± 0.67)%

µ = 0.1 (91.56± 1.35)% (85.14± 2.73)%

n = 1 (94.03± 1.87)% (97.76± 5.54)%

TABLE I: Storage and recall fidelities, Fe/l and F+/−, for test
qubits encoded into attenuated pulses of mean photon num-

ber µ, and lower bounds F
(1)

L,e/l and F
(1)

L,+/− on storage and

recall fidelities for qubits encoded into single-photon states
(n = 1) derived using decoy state analysis [29]. One-standard-
deviation uncertainties are calculated from statistical uncer-
tainties of photon counts.

ing bins are prepared in the orthogonal state. We set the
frequency shift to recall only the test qubit, and calculate
the fidelity with its original state. This measurement is
performed with mean photon numbers per qubit of 0.5,
0.1 and zero. Each measurement is taken over 60 s and
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FIG. 2: (color online) Simulation of spectrally multiplexed
quantum repeater performance. Optimal average entangle-
ment distribution rate as a function of total distance. We
assume loss of 0.2 dB/km, maximally entangled photon pairs
emitted with 90% probability per attempt, quantum memo-
ries with 90% efficiency and total storage bandwidth of 300
GHz, and single-photon detectors with 90% efficiency and
negligible dark counts. Bi-coloured curves – where a change in
shading indicates the addition of an elementary link – repre-
sent (a) 102 (shown in red), (b) 103 (shown in green), and (c)
104 (shown in blue) spectral modes. The dotted line repre-
sents the direct transmission of members of entangled photon
pairs produced at 10 GHz.

the cavity resonance was set to a detuning of 3 GHz.

The resulting fidelities Fe/l and F+/−, averaged over

each set of basis vectors (e.g. Fe/l = 1
2 (Fe + Fl)), for

mean photon numbers of 0.5 and 0.1 are displayed in
Table I. In addition, the table shows the lower bounds
on the fidelities that we would have obtained if, with no
other things changed, we had performed our experiments
with qubits encoded into individual photons. These

bounds, denoted by F (1)
L,e/l and F (1)

L,+/−, are derived us-

ing a decoy state method that underpins the security
of quantum key distribution based on attenuated laser
pulses (further explanation of this method is found in the
Supplemental Material and [29]). We find that all fideli-
ties exceed the maximum value of 2/3 achievable using a
classical memory [12]. Deviations from unity fidelity are
due to the limited frequency shift efficiency of the phase
modulator, limited suppression of the cavity, limited vis-
ibility and stability of the Mach-Zehnder interferometer
used for certain projection measurements, and remain-
ing laser frequency and power fluctuations. Furthermore,
the measurements with mean photon number of 0.1 are
impacted by system loss and detector dark counts. Fi-
nally, by averaging the single-photon fidelities over all
(properly weighted) input states, we derive our key figure
of merit – the lower bound on the single-photon fidelity

F (1)
L = 1

3F
(1)
L,e/l +

2
3F

(1)
L,+/− = 0.97± 0.04. It exceeds the

classical bound by 7.5 standard deviations, proving our
memory to be suitable for applications of quantum optics
and quantum information science.

MC   

Piezo

   D
   SPD

3

Laser

to MZI 
lock setup

AOM   

from MZI 
lock setup

MZI

Phase Modulator

Switch

Beam splitter

Neutral Density Filter

Mirror Coupler   

Fibre or Beam   

1/4 and 1/2-wave plate

Beam block

Cryostat

Ti:Tm:LiNbO

FIG. 3: (color online) Schematics of the experimental set-
up. The output of a frequency-stabilized continuous-wave
laser at 795.4 nm wavelength is amplitude modulated with
an AOM and serrodyne chirped [26] over disjoint frequency
intervals using a phase modulator (PM). During 5 ms the laser
light creates a broadband multimode AFC (see Fig. 4) in a
Tm:Ti:LiNbO3 waveguide located inside a 3 Kelvin cryostat
and exposed to a magnetic field of 88 Gauss [11, 25]. After
a 2 ms wait time, during the next 5 ms, the AOM generates,
with 4 MHz repetition rate, up to 26 spectrally multiplexed
pairs of 15 ns-long Gaussian-shaped pulses (pulses in the pairs
are separated by 20 ns), whose relative phases and central fre-
quencies are set using the PM. The subsequent attenuator, or
beam block, reduces the mean number of photons per pulse
pair to 0.5, 0.1, or zero, respectively. The resulting time-
bin qubits are then sent into the waveguide, and stored for
60 ns. Frequency-selective recall is achieved by means of a
second PM, combined with a monolithic cavity (MC) having
70 MHz line-width [27]. Finally, the recalled photons are de-
tected using a Si-avalanche photodiode-based single photon
detector (SPD) (allowing projections onto |e〉 and |l〉), or a
phase-stabilized Mach-Zehnder interferometer (MZI) followed
by a SPD (allowing projections onto 1√

2

(

|e〉 ± |l〉
)

).

In conclusion, we have shown for the first time that it
is possible to combine the simultaneous storage of multi-
ple qubits with feed-forward controlled mapping between
input and output modes using a protocol that allows scal-
ing the number of qubits to many hundreds. This is likely
to accelerate the development of quantum repeaters, lin-
ear optics quantum computing, and advanced quantum
optics experiments, in particular if our frequency-based
approach is combined with multiplexing using other de-
grees of freedom. For instance, considering as few as 10
frequency, 10 temporal and 10 spatial modes, photons in
1000 different modes can be multiplexed, which already
suffices for a quantum repeater. Or, considering 500 fre-
quency, 10 spatial [16] and 400 temporal modes [30], one
could simultaneously store 106 qubits. Note that any
multiplexed degree of freedom can be manipulated to ren-
der photons indistinguishable – in our demonstration we
used frequency.
This work is supported by Alberta Innovates Tech-

nology Futures (AITF), the National Sciences and
Engineering Research Council of Canada (NSERC),
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FIG. 4: (color online) Multimode storage and frequency se-
lective recall. Histogram of arrival times of 26 simultaneously
stored qubits, each containing 0.5 photons on average. Qubits
are prepared in separate spectral modes and alternating tem-
poral modes (i.e. |e〉 and |l〉), and are each recalled individ-
ually. The cavity resonance was set to 200 MHz detuning.
No recall of qubits is observed in spectral modes at ±150 and
±4350 MHz detunings where no AFCs were prepared. The
back panel and inset show the multi-binned AFC absorption
profile utilized. Modulation outside of the individual combs
is due to higher order effects from the phase modulation.
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SUPLEMENTAL MATERIAL

A: PERFORMANCE OF SPECTRALLY
MULTIPLEXED QUANTUM REPEATER

In the main text we briefly described an approach to
quantum repeaters based on multiplexing in the spectral
domain. We consider quantum memories with pre-set
storage times, as discussed in detail in the main text. In
this section we will first describe our architecture in more
detail and then describe some of the calculations used to
generate Fig. 2 in the main text: the average rate of
successful entanglement creation across a lossy quantum
channel.
In our architecture there exists a lossy quantum chan-

nel with length L and loss coefficient of α. We split
this channel into n elementary links, each of length L/n.
The goal of our architecture is, first, to nearly determin-
istically create entanglement between the ends of each
elementary link, which we will refer to as elementary-

level entanglement, and, second, create entanglement be-
tween the ends of the entire quantum channel via en-
tanglement swapping between the elementary links. The
number of elementary links n is then optimized based
on the length and loss of the channel as well as the
performance of other elements used in the architecture,
such as detectors and quantum memories, to maximize
the rate of entanglement creation. To deterministically
create elementary entanglement we place a spectrally-
multimode quantum memory at each end of the elemen-
tary link, as seen in Fig. 1 of the main text. Imme-
diately beside each quantum memory we place a source
that generates two-photon entanglement in many spec-
tral modes simultaneously (i.e. a spectrally-multimode
two-photon entanglement source). Note that the two-
photon entangled state in each mode is independent of
all other spectral modes (e.g. the source may generate
the maximally-entangled |ψ−〉 Bell state in each spectral
mode: |Ψ−〉 = |ψ−〉ω1

|ψ−〉ω2
...|ψ−〉ωm

) and that each
source must use the same, pre-agreed upon, set of spec-
tral modes. One photon from each mode on each side of
the elementary link is immediately stored in the quantum
memory while the second photon of each pair travels to
the centre of the elementary link.
At the centre of the elementary link is a centre sta-

tion that attempts a Bell-state measurement (BSM) on
each spectral mode, using one photon from each source.
In general the BSM is probabilistic due to channel loss,
limited detector efficiencies, the use of linear optics for
the BSM [31] and loss in other optical elements. How-
ever, as photons were emitted in many spectral modes
simultaneously, the probability that at least one mode
yields a successful BSM can be made arbitrarily close to
1 given a sufficiently large number of spectral modes. In
essence, a successful BSM in spectral mode j heralds el-

http://arxiv.org/abs/1404.3489
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ementary entanglement in mode j between the quantum
memories (multiple simultaneous BSM successes are ig-
nored for simplicity). The centre station sends a classical
feed-forward signal informing the quantum memories of
the spectral mode in which they now share entanglement.
Finally, to establish entanglement between the end

points of the entire quantum channel, neighbouring ele-
mentary links must perform entanglement swapping, in-
volving a BSM’ at the intersection of neighbouring ele-
mentary links – where the prime serves to distinguish this
BSM from the one performed at the centre station. As
neighbouring links likely have elementary entanglement
in different spectral modes, a frequency conversion is nec-
essary before the entanglement swapping BSM’. Then, if
the intersection of all elementary links successfully per-
forms a BSM’ (again probabilistic), entanglement is cre-
ated between the end points of the quantum channel.
The calculation of the average rate of entanglement

creation across the quantum channel can be broken down
into three parts: The first part is to calculate the proba-
bility to create elementary entanglement across all n sin-
gle elementary link, denoted P(elementary). The second
part is to calculate the probability to successfully create
entanglement across the entire quantum channel, denoted
P(success), and the third part is to calculate the time be-
tween successive attempts, whose inverse gives the rate
of entanglement creation, denoted R(success). To begin
with P(elementary), we discuss the case where all sources
are probabilistic single-pair entanglement sources (e.g. a
source that with probability ρ emits 1 pair of maximally
entangled photons and with probability (1−ρ) emits vac-
uum. Note that if one includes multi-pair emissions typ-
ical in entanglement sources based on spontaneous para-
metric downconversion, four-wave mixing, etc. then one
will never create maximally entangled states across the
channel. In which case, one must set some kind of toler-
ance on how much deviation from maximal entanglement
is acceptable, such as requiring a fidelity over 90%. The
operating conditions of the repeater architecture could
then be optimized to meet this requirement, as done in [4]
or in [32] for the closely related quantum relay.
Considering a single elementary link, using only one

spectral mode, the probability of a successful BSM at
the centre station is given by

P(1 mode) =
1

2
×
(

ηd1 × ρ× 10−αL/2n
)2

, (1)

where ηd1 is the efficiency of the centre station’s detec-
tors, α is the loss coefficient of the channel and L/2n
is the length that each photon must travel. The square
arises as two photons must travel L/2n distance each and
both must be detected. Furthermore, we have assumed
that the detectors are noiseless, that the BSM is carried
out with linear optics (i.e. is at most 50% successful and
hence the pre-factor of 1/2, although in principle this
can be made 100% with non-linear optics), and that the

visibility of the two-photon measurement is perfect.

Thus, if each source instead emits m spectral modes
simultaneously, the probability that all modes result in
unsuccessful BSMs is given by

P(m modes, all fail) =

(

1− 1

2

(

ηd1ρ10
−αL/2n

)2
)m

.

(2)

In general, an extra device to distinguish the different
spectral modes (e.g. wavelength-divsion-multiplexers,
highly dispersive media, etc.) has to be used and will
introduce extra loss. This could be included by appro-
priately lowering the detection efficiencies or by including
another multiplicative term (within the innermost paren-
theses). Then, the probability that at least one spectral
mode results in a successful BSM, which creates the ele-
mentary entanglement, is

P(m modes, not all modes fail) =

1−
(

1− 1

2

(

ηd1ρ10
−αL/2n

)2
)m

. (3)

It is clear from Eq. 3 that by choosing the number of
spectral modes m sufficiently high, one can guarantee
elementary entanglement with probability approaching
one on every attempt. Then, the probability that all n
elementary links successfully create entanglement is

P(elementary) =

(

1−
(

1− 1

2

(

ηd1ρ10
−αL/2n

)2
)m)n

.

(4)

Secondly, once all elementary links have established el-
ementary entanglement, entanglement swapping between
the links is attempted. This involves recalling photons
from the memories including the frequency shifting and
filtering of all but one mode with total efficiency ηmem,
and a BSM’ (50% efficiency) with inefficient detectors
(with detection efficiency ηd2). Note that ηmem is de-
fined here as the probability that a photon is stored, is
retrieved at the later time and is not lost during fre-
quency shifting and filtering. If there are n elementary
links there are (n − 1) such entanglement swappings to
perform, giving

P(m modes, n links, all links successful & swapped) =
(

1

2
η2memη

2
d2

)(n−1)

× P(elementary). (5)

The entanglement is only useful if it can be recalled
from the memories at the ends of the quantum chan-
nel and detected, and thus the probability, P(success),
of generating entanglement across the entire quantum
channel is given by Eq. 5 ×(η2memη

2
d2) or (with minor
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Distance [km]

FIG. 5: The probability to create entanglement across the
entire channel per attempt, P(success), as a function of total
distance, for reasonable values (m = 1000 modes, ηmem =
ηd1 = ηd2 = ρ = 90% and α = 0.2 dB/km). Each curve is for
a different number of elementary links n = 1...4.

simplification):

P(success) =

(ηmemηd2)
2n

2n−1
×

(

1−
(

1− 1

2
η2d1ρ

210−αL/n
)m)n

. (6)

Here, P(success) has been grouped into two terms cor-
responding to, first, the probability to successfully swap
entanglement to connect elementary links and, second,
P(elementary) – the probability to create entanglement
across all elementary links. It is clear that all the “loss”
– or deviation from deterministic success – is contained
within the the first term (connecting elementary links),
while the second term is almost independent of loss, pro-
vided, again, that m is sufficiently high. This is depicted
in Fig. 5 where we plot P(success) as a function of dis-
tance for m = 1000 and various n. At low distance, for
all n, P(success) is constant as m is high enough to keep
the second term close to 1. Notice that in this flat region,
for higher n, P(success) decreases. This is because using
more elementary links requires more memories, detectors
and BSMs, all with limited efficiency, which decreases the
first term of P(success). For each n there is a distance
where P(success) drops sharply, which is where the sec-
ond term begins to significantly drop below 1 (i.e. m
is not sufficiently large to ensure elementary entangle-
ment). However, for larger n, this sharp decrease occurs
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FIG. 6: R(success) as a function of total distance, for reason-
able values discussed in the text. Bi-coloured curves, where
a change in colour indicates that the optimal value of n has
increased by one, represent (a) 102 (shown in red), (b) 103

(shown in green) and (c) 104 (shown in blue) spectral modes.
The dotted line represents direct transmission of members of
entangled photon pairs produced at 10 GHz.

at a larger distance. This is because for larger n (and a
given total channel length L) the length of each elemen-
tary link is smaller and then P(elementary) ≈ 1. Thus,
at larger distances it becomes advantageous to use more
elementary links.

Lastly, we calculate the actual rate of entanglement
creation R(success), which is equal to P(success) divided
by the time between successive attempts. If the quan-
tum memories are limited to storing only one qubit per
spectral mode at a time, then the attempt rate would be
limited by the communication time across the elementary
link (L/(nc), where c is the speed of light), as quantum
memories cannot use their elementary entanglement un-
til they learn the result of the BSM at the centre sta-
tion. However, if the quantum memories can store many
qubits in each spectral mode simultaneously (along with
m spectral modes) then the attempt rate is limited by the
device with the smallest operating bandwidth, assuming
that all photons are Fourier-transform-limited (the spec-
tral bandwidth of a device determines the shortest pulse
duration the device can handle without loss, which de-
termines the time between successive pulses). As opti-
cal fibre and other standard optical components already
operate over many nanometers, and single-photon detec-
tors with 10 ns recovery time have been built [33], it
is reasonable to assume that quantum memories will be
the bandwidth-limiting device. Assuming that quantum
memories have a total bandwidth of B and, again, thatm
spectral modes will be used (which limits the bandwidth
per mode) and allowing for a bandwidth inefficiency w
as many implementations will not be able to use the en-
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tire memory bandwidth, the time between successive at-
tempts is given by (w ×m)/B. Therefore,

R(success) =

B × (ηmemηd2)
2n ×

(

1−
(

1− 1

2
η2dcρ

210−αL/n
)m)n

wm× 2n−1
.

(7)

Knowing values for all parameters we can calculate the
rate of entanglement generation for any distance and any
number of elementary links n. We choose the n that
gives the highest rate and plot the entanglement genera-
tion rates in Fig. 6 (identical to Fig. 2 in the main text).
We have performed this optimization for m = 100, 1000
or 10000 spectral modes using B = 300 GHz (according
to the zero-phonon line of a Tm:LiNbO3 crystal [28]),
w = 10, ηmem = ηd1 = ηd2 = ρ = 90% and α = 0.2
dB/km. In Fig. 6 we have also included the rate of suc-
cess for direct transmission assuming a 10 GHz pulsed
entanglement source. By direct transmission we specif-
ically envisage placing a source of two-photon entangle-
ment at one end of the quantum channel and then sending
one photon from the entangled pair across the quantum
channel. If the travelling photon arrives at the other end
then entanglement creation has been successful. This
probability is simply R(success) = R(attempt)×10−αL.
Note that w = 10 is reasonable for our implementation,
given that AFC with rare-earth-ion doped crystals re-
quire shelving space (in the spectral domain) for ions
(roughly a factor of 2) and that time-bin qubits are com-
posed of two temporally-separated pulses (roughly a fac-
tor of 4).
One can see that our architecture scales consider-

ably better than direct transmission even for as little as
m = 100 spectral modes. At shorter distances, when
channel loss is minimal, one sees that the rate of success
is optimized with fewer spectral modes, as this allows
for a higher attempt rate (more bandwidth per spectral
mode allows for shorter pulses). However, at longer dis-
tances, more spectral modes become advantageous. This
is because more spectral modes allows for longer elemen-
tary links, which decreases the main source of loss – inef-
ficient entanglement swapping between elementary links.
In fact, the limited success probability for entanglement
swapping between elementary links creates exponential
scaling in distance for our architecture (albeit consider-
ably better scaling than direct transmission), but this
could be avoided with further advances. For instance,
we assumed earlier that if elementary entanglement was
established in multiple spectral modes on a single elemen-
tary link during an attempt, then only one pair was used
for swapping. If every pair could be used for swapping
[34] then exponential scaling could be avoided if every at-
tempt generated many pairs of elementary entanglement
per attempt, which could be achievable by increasing m.

For comparison with temporal multiplexing architec-
ture [4], it is evident that, with ideal resources, temporal
multiplexing would perform similar to spectral multiplex-
ing. This is because given a total available bandwidth B
one can subdivide it into m spectral bins and store m
spectral modes of duration tm = m/B for spectral mul-
tiplexing. Conversely, one may utilize the entire band-
width to store m pulses (temporal modes) of duration
t1 = 1/B during the same time tm for temporal mul-
tiplexing (for simplicity we have ignored the factor w,
which impacts both protocols similarly). Hence, during
a set time the two approaches afford the same number
of attempts to succeed at entanglement swapping at the
elementary link level, and therefore feature comparable
performance. Yet, this is not true any more if we take
material limitations into account.

For a more realistic comparison, let us take into ac-
count two key material properties of rare-earth ion doped
materials. The first is the inhomogeneous broadening of
the zero-phonon line, which determines the total avail-
able bandwidth. The second is the ground level split-
ting, which limits the bandwidth of the individual spec-
tral bins. Tm:LiNbO3 has a particularly large inhomoge-
neous broadening of 300 GHz and, as shown in Fig. 7 in
the Supplemental Material, we can achieve a splitting of
the Zeeman ground levels of at least 500 MHz by appli-
cation of a sufficiently large magnetic field. This is more
than the largest bin width of 300 MHz used in our sim-
ulations (for m = 100). Hence, the predicted repeater
performance in the case of spectral multiplexing is not
impeded by the properties of our storage material.

Realizing temporal multiplexing with recall on de-
mand in AFC memories requires mapping of optically
excited coherence onto long lived ground state coher-
ence (often called spin-wave mapping see [21, 35–37]
for recent progress). Please recall that the maximal
bandwidth of a high-efficiency AFC is determined by
the ground-level splitting, which is around 10 MHz in
the materials used to date to implement the protocol
(much less than 300 GHz, as needed for repeater
performance comparable with that derived above for
a spectral-multiplexing-based architecture). We point
out that the value of 10 MHz is also utilized in [4] to
calculate the average entanglement distribution time for
a temporal multiplexing protocol with m = 100 modes
and all other parameters as in our simulations. The
simulations in [4] show that the temporally multiplexed
repeater out-performs a 10 GHz direct transmission
protocol at around 510 km fibre length. From Fig. 6 in
our Supplemental Material (also Fig. 2 in our main text)
it is clear that our proposed architecture outperforms
the temporal multiplexing scheme quite convincingly.
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B: PREPARATION OF THE MULTIMODE
ATOMIC FREQUENCY COMB (AFC)

Each AFC, present over the bandwidth of each spec-
tral bin, is comprised of a periodic modulation of the
optical depth composing the 795 nm, inhomogeneously
broadened 3H6 ↔ 3H4 absorption line in Tm. It is gen-
erated by optically pumping ions to off-resonant nuclear
Zeeman levels [11, 25], and from troughs in the AFC
to neighbouring peaks (as we will describe below, this
approach limits the efficiency of the AFC memory to ap-
proximately 17%). Optical pumping is achieved by inten-
sity and frequency modulating laser light via an AOM
and phase modulator, respectively (refer to Fig. 3 in
main text). We implement frequency sweeps by driving
our phase modulator with sawtooth-shaped (i.e. serro-
dyne) waveforms originating from a 20 GS/s arbitrary
waveform generator, and simultaneously drive the AOM
with a 350 MHz signal when optical pumping is desired.
The memory storage time Ts is set by the AFC peak spac-
ing ∆ = 1/Ts between neighbouring teeth composing the
AFC. In most experiments, the parameter ∆ is set to 17
MHz, yielding 60 ns storage time. The only exception are
the measurements leading to the results shown in Fig. 7
where ∆ = 100 MHz, yielding Ts = 10 ns.

To create a multi-spectral-binned (i.e. multimode)
AFC, we program the phase modulator to quickly shift
the laser frequency to detunings where combs are desired
and repeat the AFC preparation procedure (see Fig. 4
in the main text for the resultant absorption profile). To
achieve greater contrast, and hence more efficient AFCs
[23], the described preparation procedure is repeated 30
times leading to an overall optical pumping duration
of 5 ms. A 2 ms wait time follows the preparation –
it corresponds to 25 times the radiative lifetime of the
3H4 excited level, and ensures that no luminescence
masks the retrieved photons. Although a zero-phonon
line of hundreds of GHz is available in Ti:Tm:LiNbO3

[25, 28], our multimode AFC only takes advantage
of approximately 10 GHz. This bandwidth is set by
the sampling rate of our waveform generator and the
operating bandwidth of our phase modulator. Referring
to Fig. 4 in the main text, signatures of bandwidth
limitations are indicated by the generation of AFCs over
intervals between desired spectral bins, which is due to
higher order frequency modulations, and by reduced
AFC quality at larger frequency detunings, which is
due to reduced energy in the first-order modulation
sideband. At the end of each multimode AFC prepara-
tion sequence we sweep the laser frequency over a 200
MHz bandwidth around zero detuning. This results
in widening a spectral hole (from a linewidth of a few
MHz to 200 MHz) that is created during the AFC
preparation procedure. This ensures that unmodulated
(i.e. zeroth order) light accompanying our multimode
qubits is not temporally stretched, via interaction with

the spectral hole, and produce noise counts that re-
duce the measured storage and retrieval fidelity of qubits.

C: LIMITATIONS TO MEMORY EFFICIENCY

The memory efficiency (i.e. the probability for a pho-
ton to be stored and recalled) is currently approximately
1.5 × 10−4. The efficiency is determined by the trans-
mission, or efficiency, respectively, of each element con-
stituting our quantum memory. This includes: imperfect
optical mode matching between the input and output fi-
bres and the waveguide quantum memory, leading to a
fibre-to-fibre transmission of 0.2; limited optical depth
and AFC comb finesse, resulting in a probability for an
incoming photon to be absorbed and re-emitted of 0.01;
50% insertion loss into our phase modulator; average
efficiency of serrodyne shifting of 0.6; imperfect mode
matching into and out of the filtering cavity, resulting in
additional 75% loss.

To increase the total system efficiency, as required for a
practical quantum memory, the following improvements
can be made. First, better optical mode matching at
both fibre-to-waveguide interfaces can raise fibre-to-fibre
coupling in principle from 20% up to 100%. Alter-
natively, using bulk rare-earth-ion doped crystals and
fibres with gradient-index lenses, transmission can also
be raised to near unity. Second, the insertion loss of our
phase modulator can be overcome by integrating it with
our waveguide Ti:Tm:LiNbO3 crystal. Alternatively,
the frequency of the recalled photons can be shifted by
means of sum-frequency generation [38] using a pump
beam of variable frequency. This can in principle be
done with 100% conversion efficiency [39]. Third, higher-
bandwidth modulators and driving electronics would
allow employing less distorted serrodyne waveforms,
resulting in more efficient frequency chirps. Fourth, the
filtering cavity needs to be optimized for the particular
application (we used an already existing cavity). Finally,
in regards to the AFC itself, the quantum memory
protocol theoretically allows for 100% efficiency [23].
Improvements from our current 1% rely on increased
comb contrast and comb finesse F = ∆/γ (where ∆ is
the teeth spacing and γ is the linewidth of each tooth
[23]), and the preparation of a spatio-spectral grating
[40] or embedding of the rare-earth-ion-doped crystal
into an impedance-matched cavity [20, 37, 41, 42]. We
note that the possibility to increase the finesse, as well
as to achieve longer storage times, relies on minimizing
the parameters ∆ and γ. Since both are limited by the
homogeneous linewidth of Tm, this can be achieved by,
for example, reduced operating temperatures [28].
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D: CREATING HIGH FINESSE AFCS

The AFC shown in Fig. 4 of the main text is generated
by optically pumping atomic population from troughs
(i.e. the regions of transparency between teeth) into ad-
jacent teeth [11, 22]. Towards this end, we apply a mag-
netic field along the C3-axis of Tm:LiNbO3. The ground
and excited state of the 3H6 ↔ 3H4 transition in Tm
then split into two pairs of nuclear Zeeman levels [25, 28],
which are tuned such that the frequency difference be-
tween pairs is ∆/2. While this approach maximizes the
probability for a photon to be absorbed (all atoms con-
tinue to contribute to the absorption), it also results in
the creation of an AFC with finesse of two. Assuming
the use of an impedance-matched cavity [20, 41, 42], the
memory efficiency η – in the limit of the AFC optical
depth to finesse ratio being much lower than one – is
given by

η = e−
7
F 2 , (8)

which limits the efficiency for an F = 2 AFC to 17%.
Note that this equation assumes each AFC tooth has a
Gaussian shape[41], and ignores decay between nuclear
Zeeman levels (causing loss). The latter can be approx-
imated when operating at sufficiently low temperatures
[28].
Since improvements in efficiency rely on increased

comb finesse F , we create and measure a multimode
AFC having F = 8 in a separate experiment (see
Fig. 7). Towards this end, we increase the magnetic
field to 0.2 Tesla, and hence increase the difference in
the aforementioned ground and excited-state Zeeman
splitting to more than the separation between troughs
and neighboring peaks. This allows optical pumping of
Tm ions out of the bandwidth occupied by an AFC,
and potentially a larger memory efficiency. However, as
briefly described above, this also results in a reduction
of effective optical depth. Yet, if an impedance-matched
cavity is used, according to Eq. 8, this results in an
efficiency of ηF=8 = 90%.

E: GENERATION OF QUBITS IN MANY
SPECTRAL MODES

Multimode time-bin qubits are generated by intensity
and frequency modulating laser light using the afore-
mentioned AOM and phase modulator. Each qubit
consists of one (early or late), or two (early and late),
15 ns-long Gaussian-shaped pulses, generated using the
AOM and separated by 20 ns, with each pulse having
a frequency bandwidth matching that of an AFC (i.e.
a spectral bin). The fibre frequency of each qubit is
defined by driving the phase modulator with a sinusoidal

signal, whose frequency (more precisely: the positive-
detuned first order sideband) defines that of the spectral
mode to be occupied by the qubit. Furthermore, the
sinusoidal signal’s phase can be changed in between the
generation of the first and second temporal mode, which
allows creating various qubit states. Multimode qubit
generation is accomplished by simultaneously driving
the phase modulator with many independent sinusoidal
signals. To generate the qubits shown in Fig. 4 of the
main text, each sinusoidal signal was used to generating
two qubits in spectral bins with with opposite-signed
detunings.

F: MEASUREMENT OF FIDELITY

The fidelity F quantifies how close a recalled quan-
tum state is with respect to the originally created state.
In our experiment, we employ time-bin qubits in states
|ψ〉 ∈ [|e〉, |l〉, |+〉, |−〉], where |±〉 ≡ 1√

2
(|e〉 ± |l〉). Be-

cause we employ the decoy state analysis - described in
the next section - it is possible to speak of qubit states en-
coded into the attenuated laser pulses that we use in our
experiments. The average fidelity is quantified by F =
1
3Fe/l+ 2

3F+/− where, for example, Fe/l = 1
2 (Fe+Fl) and

Fe(l) is the fidelity of an |e〉 (|l〉) state. The parameter Fl
is calculated as Fl = Cl|l/(Ce|l+Cl|l) where, for example,
Ce|l denotes the number of early detection events given |l〉
was originally encoded. The parameters Fe, F+, and F−
are calculated in a similar way. The fidelity of time-bin
qubits prepared in |e〉 or |l〉 are measured by recording
photon arrival times using single photon detectors based
on Si-avalanche photodiodes. Measuring qubits prepared
in |+〉 or |−〉 requires detecting photons that have passed
through an interferometer. This measurement as well as
steps to stabilize and phase-align the interferometer are
discussed next.

First, preceding each measurement, the phase of a
fibre-based Mach-Zehnder interferometer having 4 m
path-length difference (corresponding to 20 ns travel-
time difference) and 98% intrinsic visibility is aligned to
allow projection measurements onto 1√

2
(|e〉+ |l〉). Specif-

ically, qubits prepared in 1√
2
(|e〉+ |l〉), each having mean

photon number of 20, are sent into the interferometer and
the resultant interference signal at one particular output
of the interferometer is maximized by stretching the fibre
in one arm of the interferometer using a piezo actuator.
To keep the phase stable, we then send light from our
continuous-wave laser into the interferometer, detect the
interference signal at the output of the interferometer us-
ing a linear photodetector (shown as ’D’ in Fig. 3 of the
main text), and keep the signal constant using feedback
to the piezo actuator. This feedback is applied during
each AFC preparation sequence, i.e. for 2 ms every 12
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FIG. 7: Multimode AFC of finesse >2. Eight 500 MHz-wide AFCs, each having finesse of eight, prepared over a total
bandwidth of 9 GHz. The optical depth at the centre of each comb tooth is approximately 0.35 – it is limited by our preparation
method, Zeeman level lifetimes, and decay mechanisms present in our crystal. The reduced comb depths that are seen at larger
detunings are due to reduced efficiency of the phase modulator. The magnetic field is set to 0.2 Tesla. The inset shows the
AFC at the spectral bin between 2.5 and 3 GHz detuning.

ms, which is sufficient to avoid thermal drifts. The inter-
ferometer stabilization setup is indicated by ”to (from)
MZI lock setup” in Fig. 3 of the main text.

After these steps, the measurement sequence begins
by reducing the mean photon number per qubit to the
single-photon level (either 0.5, 0.1, or zero photons per
qubit), creating and storing photons in the desired quan-
tum states (either |+〉 or |−〉), recalling photons from the
AFC memory, and subsequently projecting them onto
|+〉 and |−〉. The latter corresponds to detections in the
interferometer output mentioned above, or detections in
this output after having introduced an additional π phase
shift using the interferometer’s piezo actuator.

Finally, we note that frequency shifting of time-bin
qubits by an amount ∆ν comes along with a modification
of the phase ϕ that determines the superposition of
early and late temporal modes: ∆ϕ = 2π∆ν∆t, where
∆t denotes the difference between early and late. We
use the phase modulator that preceds the filtering cavity
to both frequency shift and correct any phase shifts
introduced when recalling qubits.

G: BOUNDING THE SINGLE-PHOTON
FIDELITY USING DECOY STATE ANALYSIS

Decoy state analysis allows implementing quantum key
distribution protocols using phase-randomized attenu-
ated laser pulses without compromising the protocol’s
security due to photon number splitting attacks [43, 44].
It ensures that the final key stems only from attenuated
laser pulses containing one photon. The application of
this analysis can be further generalized to allow any ex-
periment performed with weak coherent states, such as
attenuated laser pulses, to mimic an experiment using a
much more elaborate setup that incorporates single pho-
ton (Fock) states. For the purpose of proving the quan-
tum nature of e.g. memories, as in our experiment, the
decoy state analysis provides an avenue for simpler ex-
perimental demonstrations of complex protocols. Here
we provide a brief outline of how we employ the decoy
state analysis to our experiment. It follows the original
work by Ma et al. [29].

In order to show the quantum nature of our spectrally
multimode memory, we must verify that the fidelity of the
recalled state with the input state is higher than the clas-
sical bound of 2/3 [12]. However, this bound is only valid
when using genuine qubits, i.e. for quantum states en-
coded into single photons. When using attenuated laser
pulses, the classical bound has to be increased to account
for the statistical distribution of the number of photons
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in a pulse and is also impacted by the memory efficiency
[45, 46]. To be able to apply the 2/3 classical bound, we
use a decoy state method to find a lower bound for the fi-
delity for the single photon component of the attenuated
laser pulse. The derivation assumes a Poissonian photon
number distribution in the light such as in the attenu-
ated laser pulses at our memory’s input. Furthermore,
the pulses need to be phase randomized, which results in
a states described by

ρ =

∞
∑

n=0

P (n)|n〉〈n| , (9)

where P (n) is the Poissonian distribution and |n〉〈n| de-
notes an n-photon Fock state.
As a first step we define the error rate

Eψ = Cψ⊥|ψ/(Cψ⊥|ψ + Cψ|ψ) , (10)

where, as in the preceding section, Cψ⊥|ψ denotes the
number of detection events corresponding to the state
|ψ⊥〉 given the state |ψ〉 was originally encoded. Since
|ψ⊥〉 corresponds to a state orthogonal to |ψ〉, a count of
this type constitutes an error. Comparing to the expres-
sion for the fidelity it is furthermore clear that F = 1−E.
Using Eq. (25) from [29] the error rate E(1) for the

single photon component of the coherent pulses is upper

bounded by E
(1)
U , which is given by

E(1) ≤ E
(1)
U =

E(µd1)Q(µd1)eµd1 − E(µd2)Q(µd2)eµd2

(µd1 − µd2)Y
(1)
L

=
E(µd1)Q(µd1)eµd1 − E(0)Y (0)

µd1Y
(1)
L

, (11)

where Y (0) and Y
(1)
L are the zero-photon yield and the

lower bound for the single photon yield (defined below),
respectively, µd1 = 0.1 and µd2 = 0 are mean photon
numbers for the two decoy states used in our experiment,
and E(µd1) and E(µd2) = E(0) are the corresponding er-
ror rates, which can be estimated from measurements
using Eq. (10). (The second line of Eq. (11) specifically
assumes that µd2 = 0, i.e. the second decoy state is a
vacuum state.) The gain Q(µ) is the probability that a
detector registers a count and depends on the mean pho-
ton number µ at the (memory) input and the loss up until
the detector including the detector’s quantum efficiency.
Hence the gain can be directly calculated from the total
number of counts accrued and the repetition rate of the
pulses.
For phase randomized coherent states with a Poisso-

nian photon number distribution the gain can be ex-
pressed as

Q(µ) =

∞
∑

n=0

Y (n)µ
n

n!
e−µ , (12)

where the yield of an n-photon state Y (n) denotes the
conditional probability of a detection given that an n-
photon state was sent. The yields can generally not
be directly measured without sources of photon number
(Fock) states. An exception is the yield of the vacuum
state, for which Y (0) = Q(0). This fact is used to simplify
Eq. (13) and in the second line of Eq. (11). Instead one

can derive a lower bound Y
(1)
L for the single photon yield

(used in Eq. (11)), which for the specific case of µd2 = 0
is given by [47]

Y (1) ≥ Y
(1)
L =

µs
µsµd1 − µ2

d1

(

Q(µd1)eµd1 (13)

− µ2
d1

µ2
s

Q(µs)eµs − µ2
s − µ2

d1

µ2
s

Y (0)

)

where µs = 0.5 is the mean photon number of the signal

state. The right-hand sides of equations (11) and (13)
now contain directly measurable values and thus allow

us to calculate the upper bound on the error rate E
(1)
U .

By means of Eq. (10) we can compute the lower bound
on the fidelity

F (1) = 1− E(1) ≥ 1− E
(1)
U ≡ F (1)

L , (14)

which thus allows us to calculate the values in Table I in
the main text.
This covers the essence of the decoy state analysis. Us-

ing it we derive a bound on the fidelity that we would
have achieved if – all other things the same – we had uti-
lized true single photons to encode qubits at the memory
input.

H: MEASUREMENT OF CROSS-TALK
BETWEEN SPECTRAL MODES

To examine the effect of cross-talk between spectral
modes, we first store and retrieve a ’test’ qubit prepared
in |l〉 in the spectral bin having 1350 MHz detuning
(refer to Fig. 4 of the main text). We then shift the test
qubit into cavity resonance having 2.85 GHz detuning,
measure the probability to project it onto |l〉 and calcu-
late Fl. We then increase the number of simultaneously
stored qubits by creating them in neighbouring spectral
bins, and repeat the fidelity measurement with the test
qubit. Note that all additional qubits are prepared
in the orthogonal |e〉 state, such that the reduction
of the fidelity of the test qubit due to cross-talk is
maximized. The results are shown in Figure 8. We
find that while there is a small amount of cross-talk
between neighbouring modes, it is only significant when
considering qubits separated by at most two spectral
bins. Improvements in the fidelity can be achieved, for
example, by increasing the separation between spectral
bins, or by employing a filtering cavity with a steeper
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FIG. 8: Measurement of cross-talk. Dependence of stor-
age and recall fidelity of the test qubit on the number of simul-
taneously stored qubits in neighboring spectral bins. The test
qubit in |l〉 occupied the spectral bin having 1350 MHz detun-
ing, while orthogonal qubits were added one-by-one to neigh-
boring spectral bins in the following order: 1650 MHz, 1050
MHz, 1950 MHz, 750 MHz, etc. The cavity resonance was set
to 2.85 GHz detuning. We find that the fidelity is constant
when storing more than 5 modes simultaneously (shown in the
white region of the plot). Hence, crosstalk (due to the Loren-
zian linewidth of the cavity) is limited to coming from the
nearest and second-nearest neighbour (shown in the shaded
region of the plot). A further reduction in fidelity is due to
limited frequency shift efficiency of our phase modulator, and
is independent of the number of qubits simultaneously stored.
Each projection measurement was taken over 60 s, the mean
photon number per qubit was 0.6, and uncertainty (one stan-
dard deviation) was calculated from error propagation using
statistical uncertainties of photon counts (not shown as it is
smaller than the symbol size).

transition from resonance.
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