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We introduce a translational and rotational invariant local representation for vector fields, which
can be employed in the construction of machine-learning energy models of solids and molecules.
This allows us to describe, on the same footing, the energy fluctuations due to the atomic motion,
the longitudinal and transverse excitations of the vector field, and their mutual interplay. The for-
malism can then be applied to physical systems where the total energy is determined by a vector
density, as in the case of magnetism. Our representation is constructed over the power spectrum of
the combined angular momentum describing the local atomic positions and the vector field, and can
be used in conjunction with different machine-learning schemes and data taken from accurate ab
initio electronic structure theories. We demonstrate the descriptive power of our representation for
a range of classical spin Hamiltonian and machine-learning algorithms. In particular, we construct
energy models based on both linear Ridge regression, as in conventional spectral neighbour anal-
ysis potentials, and gaussian approximation. These are both built to represent a Heisenberg-type
Hamiltonian including a longitudinal energy term and spin-lattice coupling.
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I. INTRODUCTION

The modelling of the structural, electronic and mag-
netic properties of materials at finite temperature re-
quires the exploration of complex energy surfaces, a task
that is usually performed in the configuration space or
through extensive time-dependent simulations. The gold
standard is set by ab initio methods, where one solves
directly an electronic problem, for instance through den-
sity functional theory. The accuracy of the method is
then given by the accuracy of the underline electronic
structure theory, which often can be determined by the
level of approximation taken. Notably, also the compu-
tational overheads are set by the electronic structure the-
ory, so that there is always a trade off between the accu-
racy of the prediction, the duration of the simulation and
the maximum size of the system to simulate. Real-time
time-dependent simulations of purely electronic quanti-
ties, such as the dynamics of spins [1–3], are limited to
a few atoms and a few hundreds of femtoseconds, while
ab initio molecular dynamics (MD) simulations can reach
well within the picosecond range and may involve several
hundreds of atoms.

The general strategy for extending the range of dynam-
ics simulations across both the time and length scale is to
abandon completely the ab initio description and replace
the solution of the electronic problem with some para-
metric functions, constructed to reproduce the ab-initio
potential energy surface, namely classical force fields [4].
In their most canonical form one describes the interac-
tion among the ions by introducing energy contributions
that account for the various physical forces at play (co-
valent bond, dispersive forces, etc.). Once the force field
is defined, only the atomic positions determine the total
energy. A similar approach has been recently introduced
for spin-dynamics. In this case one associates to each

atom a classical spin vector, Si, so that the total energy
is defined over a continuous vector field with values at the
atomic positions [5, 6]. The total energy then takes the
form of a classical Heisenberg model and may include
both anisotropy and friction terms. Furthermore, the
formalism can be extended to include spin-lattice cou-
pling [7], longitudinal spin fluctuations [8], and possibly
the effects of a spin current [9].

In general, force fields constructed in this way have
two main drawbacks. On the one hand, their accuracy
is significantly inferior to that of an ab initio electronic
structure theory, although this varies depending on the
class of compounds one wants to study. On the other
hand, they tend to be specific to the particular type of
bond they describe. In addition, spin-type force fields
may not be able to describe entire excitations types. For
instance, magnetic Stoner excitations are not part of the
spectrum of a classical Heisenberg model.

Recently, a new class of force fields, named machine-
learning force fields (MLFFs), have been shown to solve
both the accuracy and specificity issues. The general
philosophy of MLFFs is quite different from that of their
classical counterparts, since one does not pretend to con-
struct an energy function of the atomic coordinates with
terms baring a physical interpretation, but instead tries
to reproduce extremely accurately the ab initio potential
energy surface. MLFFs comprise of two parts, an ab-
stract representation of the atom density distribution [10]
and a machine-learning model that correlates such rep-
resentation to the system total energy. For the two parts
to work together the representation should be transla-
tional, atom-permutational and rotational invariant. The
first two conditions are usually met by local represen-
tations (also known as atomic-neighbour descriptions),
where the energy is expressed in terms of atomic contri-
butions, while the last condition is constructed in. Sym-
metry functions [11] and bispectra [12] are two examples

ar
X

iv
:2

20
2.

13
77

3v
2 

 [
co

nd
-m

at
.m

tr
l-

sc
i]

  8
 A

ug
 2

02
2



2

of such rotational invariant local representations.

Importantly, the spin degrees of freedom are not ex-
plicitly included in the representation, which typically
describes an atomic density only. For this reason MLFFs
are currently unable to describe the energy difference be-
tween inequivalent magnetic phases, for instance between
a ferromagnetic and an antiferromagnetic ground state,
unless the different phases are also associated to different
structures. This limitation can be addressed by combin-
ing the MLFF with a classic spin Hamiltonian in order to
create a model able to predict energies dependent on both
the atomic positions and the spin order. This route was
recently explored by Nikolov and co-workers [13], who
equipped a spectral neighbour analysis potential (SNAP)
with a classical Heisenberg Hamiltonian to compute ther-
modynamical properties (e.g. the Curie temperature) of
α-Fe.

Another possible strategy is to make the MLFF aware
of the spin configuration by including such information
in the input features of the model. This is a non triv-
ial task, since such features need to retain the aforemen-
tioned symmetries in order for the model to perform well.
A recent attempt along this direction consists in the in-
troduction of a novel definition of symmetry functions
carrying spin information [14]. Such reformulation was
constructed for the spin-collinear case and for fixed spin
magnitude (no longitudinal spin information is available).
Similarly, the atomic-cluster expansion method was re-
cently extended to vector fields [15], in a way that enables
the description of non-collinear spin configurations. No-
tably, by design both methods require a large number of
features for an accurate description of the magnetic envi-
ronment, making them particularly data hungry. Thus,
a compact representation describing a vector field, hence
able to compute atomic and magnetic excitations on the
same footing, still remains at large. Our paper aims to
fill the gap.

Here, we propose a new local representation for vector
fields, which can be used with either linear and non-linear
machine-learning models. This is based on the power
spectrum of the combined angular momentum describ-
ing the local atomic positions and the vector field. The
representation is rotationally invariant and can be fur-
ther generalised to tensorial densities. In order to test its
descriptive power, such representation is combined with
either linear Ridge regression and gaussian approxima-
tion to construct MLFFs describing the potential energy
surface of a Heisenberg model with longitudinal fluctu-
ations and spin-lattice coupling. Our results show that
extremely accurate energy predictions can be obtained
with a rather moderate number of training data.

II. METHODS

A. Density for a vector field

The starting point of any atomic-neighbour descrip-
tion of solids and molecules consists in defining the local
particle density associated to the i-th atom,

ρi(r) =
∑

rai<rcut

waha(r − rai) . (1)

Here, rai = ra − ri is the distance between the atoms at
the position ra and ri, rai = |rai|, so that the coordinates
of the i-th atom define the origin of the local reference
frame. The sum in Eq. (1) runs over all the atoms inside
a sphere of radius rcut with center at ri, while wa are
weights usually associated to the atomic species of the
a-th atom. In this expansion ha is a localisation func-
tion, such a Gaussian or a Dirac-delta, centred at ra,
whose specific shape, in general, can depend on the a-th
atom type. Atomic-neighbour descriptions are then con-
structed by defining rotationally invariant combinations
of the coefficients of expansion of ha over an appropriate
local basis [10].

In the same spirit, we can now define a local vector
density, ρ(r), through Eq. (1) by associating a vector va
to each position ra, namely

ρ(r) =
∑
a

waha(r − ra)va , (2)

where for simplicity we have dropped the index i. In
this formulation va may, for instance, represent the local
moment of the ions in a magnetic compound, so that
ρ(r) describes the local magnetisation field. In Eq (2)
the vector va is defined through its cartesian components

va = va,xêx + va,yêy + va,zêz =
∑

i=x,y,z

va,iêi , (3)

with êi being the unit vector along i = x, y, z. However,
it is convenient to replace the decomposition of Eq. (3)
with one using the spherical versors [16] ,

ê±1 = ∓ 1√
2

(êx ± iêy) and ê0 = êz , (4)

so va becomes,

va =
∑

q=0,±1

va,qêq with

va,±1 = ∓ 1√
2

(va,x ∓ iva,y) ,

va,0 = va,z .
(5)

This decomposition is a particular case of the more gen-
eral one for a tensor of order λ in its irreducible spherical
components. Therefore, the spherical components va,q
transforms under rotations as the spherical harmonic Y q1
[16, 17].

In order to construct covariant descriptors for the lo-
cal vector density of Eq. (2), one first needs to expand
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the spatial part, ha, over an orthonormal radial basis.
Here we use the product between a radial basis, Rnl(r),
and the three-dimensional spherical harmonics, Y ml (r̂),
where as usual n, l and m are, respectively, the prin-
cipal, the angular momentum and the third component
of the angular momentum quantum numbers. The local
vector density then becomes,

ρ(r) '
nmax∑
n=0

n∑
l=0

l∑
m=−l

∑
q=0,±1

cnlmqRnl(r)Y
m
l (r̂)êq , (6)

where the equality holds only for a complete basis but not
for the one truncated at nmax, and where the coefficients
of expansion are calculated as

cnlmq =
∑
a

wava,q

∫
drdr̂ r2Rnl(r)Y

m
l
∗(r̂)ha(r − ra) .

(7)
In this work we choose the radial-basis set introduced for
the Spherical-Bessel descriptors [18], namely Rnl(r) =
gn−l,l(r). These are orthonormal on the sphere and
smoothly vanish at the cut-off radius. Note that the
choice of the radial basis set is not unique or crucial
and alternative basis can be selected. The only practical
criterion is that they should approximate completeness
with a relative small number of basis functions, namely
the convergence must be rapid. Note also that, in what
follows, we will always assume orthonormality within the
radial basis set, although the expressions derived could
be easily generalised to the non-orthogonal case.

The use of the spherical components of a tensor has
been already exploited in the construction of covariant
kernels for vectorial and a tensorial properties related to
an atomic environment [19–21]. Here, we follow the same
basic idea and formalism, which stems from the decom-
position of a tensorial object into spherical components.
The main difference is that we cannot just associate a
tensorial object to our density, since the density itself is
the vectorial field. As such, we will avail of the same con-
cepts and methods that are typically used to describe the
coupling of angular momenta and vector fields in atomic
physics [16]. Another difference with existing literature
is that our primary target is the construction of invariant
quantities instead of covariant ones. A similar goal has
been already pursued in Ref. [15], where a vector field
was described using the same strategy employed in deal-
ing with the atomic positions. More explicitly, in [15]
the magnetic vectors are encoded in Dirac’s delta distri-
butions, which are then expanded on a suitable basis set
and coupled with the analogous expansion arising from
the positions of the atoms. Here, however we will pre-
serve the vectorial nature of the field at each step in the
derivation, a strategy that results in a simpler coupling
scheme, as it will be shown in detail below. With this
in mind, we will first proceed with deriving an invariant
power spectrum for the vector density of Eq. (2), and
then we will implement a linear regression to fit such
power spectrum. This second step is similar to what is

commonly done with the formalism of the spectral neigh-
bour analysis potentials (SNAPs) [22].

For the remaining of the paper we will develop the for-
malism by using a conventional Dirac notation, which
allows one to appreciate better the structure of the rep-
resentation. In fact, as shown in reference [23], the Dirac
notation gives us a natural tool for dealing with local
atomic densities. In this way the expansion of the vector
density defined in Eq. (6) can be written in a compact
form as

|ρ〉 =
∑
nlmq

cnlmq |nlmq〉 , (8)

where

〈r|nlm〉 = gn−l,l(r)Y
m
l (r̂), and |q〉 ≡ êq . (9)

We can then express all the relevant quantities over the
the basis, |nl1JM〉, of the combined angular momenta,
L+ 1 = J , by using the standard addition scheme [17],

|nl1JM〉 =

l∑
m=−l

1∑
q=−1

CJMlm1q |nlmq〉 , (10)

where CJMlm1q are the Clebsch-Gordan coefficients. As
usual, J and M , are the quantum numbers for the total
angular momentum and its projection, while ‘1’ refers to
the angular momentum of 1, describing the vector nature
of the field. Hence, we have

|l − 1| ≤ J ≤ l + 1 and − J ≤M ≤ J . (11)

The states |nlJM〉, when projected over the position rep-
resentation, are the products of vector spherical harmon-
ics and radial functions. By inverting equation (10),

|nlmq〉 =
∑
JM

CJMlm1q |nlJM〉 , (12)

we can write the vector density as

|ρ〉 =
∑
nlJM

unlJM |nlJM〉 , (13)

with

unlJM = 〈nlJM |ρ〉 =
∑
mq

CJMlm1q 〈nlmq|ρ〉

=
∑
mq

CJMlm1qcnlmq. (14)

The last equality follows from the fact that the Clebsch-
Gordan coefficient are real and from the orthonormality
of the gn−l,l functions. The form of |ρ〉 given by Eq. (13)
contains the expansion of the vector density over the com-
bined angular-momenta basis. It should be noted that
the presence of the Clebsch-Gordan coefficients imposes
that the values of J and M must satisfy the conditions
(11). The Clebsch-Gordan coefficients impose also that
the non-zero terms in the double sum of (14) are such
that M = m+ q.
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FIG. 1. (Color online) The invariant power spectrum (right-hand side panel) for a pyramid-shaped set of atoms, where a
vector field is associated to each atom (left-hand side image). The power spectrum is evaluated with respect to the shown
centre of rotation (red dot) and it is invariant against the simultaneous rotation of the system and the vectorial field around
such centre. We chose the value nmax = 6 for this example. The number of independent power-spectrum components is given
by (nmax +1)(3nmax +2)/2 = 70. The x-axis labels the power-spectrum components, while the y-axis shows their actual value.

B. Invariant power spectrum for a vector field

In this section we are going to introduce an invariant
power spectrum for the density given in Eq. (13). Let us
initially restrict our formulation to the case in which we
ignore the atom at the origin of the local reference frame,
namely we assume that the magnitude of the vector field
is zero at the origin. One way to obtain the power spec-
trum, pnlJ , is through the construction of the following
inner product,

〈ρ|ρ〉 =
∑
nlJ

pnlJ , (15)

which explicitly reads

pnlJ =
∑
M

|unlJM |2 , (16)

where we have used the orthogonality of the |nlJM〉 ba-
sis. Since the vectors |nlJM〉 correspond to the coupled
angular momenta, they transform under system rotation,
R̂, as the spherical harmonics YMJ , namely

R̂YMJ =
∑
M ′

DJ
M ′M (R̂)YM

′

J , (17)

where DJ
MM ′(R̂) is the Wigner D-matrix associated to

the rotation R̂. It must be noted that, when one con-
siders the original angular momentum basis, the rotation
R̂ appears as a simultaneous rotation of both the posi-
tions of the atoms and the vector field. By applying this
rotation to the density in Eq. (13) we obtain

R̂ |ρ〉 =
∑
nlJM

unlJM R̂ |nlJM〉 =

=
∑
nlJM

unlJM
∑
M ′

DJ
M ′M (R̂) |nlJM ′〉 =

=
∑
nlJM ′

u′nlJM ′ |nlJM ′〉 , (18)

from which we can infer the transformation rule for the
expansion coefficients

R̂ : unlJM →
∑
M ′

unlJM ′DJ
MM ′(R̂) . (19)

Therefore under rotation R̂ the power spectrum, pnlJ =∑
M u∗nlJMunlJM , transforms as

R̂ : pnlJ →
∑
M ′M ′′

u∗nlJM ′unlJM ′′

∑
M

(
DJ
MM ′

)∗
DJ
MM ′′︸ ︷︷ ︸

=δM′M′′

=
∑
M ′

u∗nlJM ′unlJM ′ = pnlJ , (20)

where we have used the unitarity of the Wigner D-
matrices [note that we have shorten the notation
DJ
MM ′(R̂) into DJ

MM ′ ]. This proves that the power spec-
trum obtained from Eq. (16) is rotationally invariant for
simultaneous rotations of the atomic positions and the
vector field. Such invariance is shown numerically in
Fig. 1, where the power spectra computed for different ro-
tations are shown to perfectly overlap. In the Appendix,
we will briefly discuss the generalized power spectrum
connecting different radial channels. Furthermore, we
will also extend our construction to the more general case
of a tensorial density.

If we now take a localization function of the form

ha(r − ri) = δ(r − ra) , (21)

namely a Dirac-delta function centered on the a-th atom,
then the local vector density reads

ρ(r) =
∑
a

waδ(r − ra)va . (22)

In this case the expansion coefficients of Eq. (14) are
readily evaluated by using Eq. (7) as

unlJM =
∑
a

wagn−l,l(ra)
∑
mq

CJMlm1qY
m∗
l (r̂a)va,q . (23)
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In what follows, we will use this expression to explicitly
evaluate the power spectrum.

If we now consider a vector field having a vector-baring
atom at the origin, it can be proven (see the Appendix)
that the power spectrum is not generally invariant un-
der rotations. We can interpret this rotational-symmetry
breaking by noting that a vector field at the origin intro-
duces an inner preferential direction for the local refer-
ence frame. One pragmatic solution to recover the in-
variance is to always rotate the system so that the vector
field at the origin points along the z-axis. After such
alignment we obtain a power spectrum, which is invari-
ant under rotations around the z-axis. Another possible
solution, is to choose a suitable radial basis set so that
all the non-invariant terms are automatically removed.
As shown in the Appendix, we proved that the Spherical
Bessel functions have this property. In the following, we
will always consider power spectra with a central atom.
As an example of its explicit evaluation, it is useful to ob-
tain the complete expression for the pn0J power spectra.
The component un0JM is proportional to

un0JM ∝ δJ1

∑
a

wagn0(ra)va,M , (24)

where we used the equalities q = M and J = 1 enforced
through the Clebsh-Gordan coefficients CJM0010, and we
did not carry over the spherical harmonics values and
the Clebsh-Gordan coefficients which, in this case, are
unessential constants. The power spectrum is then pro-
portional to

pn0J ∝ δJ1

∑
ab

wawbgn0(ra)gn0(rb)
∑
M

va,Mv
∗
b,M ,

∝ δJ1

∑
ab

wawbgn0(ra)gn0(rb)va · vb . (25)

It is interesting to note that, if the vector field is made
of local spins, the pn0J power spectrum component will
have a structure similar to that of an Heisenberg model,
namely it depends on the inner product between the spins
with distances-only dependent coefficients.

Having derived a set of invariant power spectrum also
for the case of an atom at the origin, we can now
introduce the models used to test our formalism and
the machine-learning scheme that implements the power
spectrum.

C. Training a machine-learning model

The machine-learning model used here is a linear re-
gression constructed over the power spectrum {pnlJ}, fol-
lowing the same philosophy of SNAP [22]. Thus, let us
assume to have a system of N atoms, each one of them
bearing a local spin. Let us also define the power spec-
trum vector, p, as the one dimensional vector, whose
entries are the pnlJ components describing a specific lo-
cal neighborhood. Specifically, the i-th power spectrum

FIG. 2. The physical system investigated in the present work:
a tetrahedral cluster of bcc iron. The system is made of
7 stacked square-shaped layers of 5 or 6 atoms per side, as
shown in the insert. The total number of atoms is 219.

vector p(i) is the vector obtained by centring the local
reference frame on the i-th atom, and then by evaluating
the i-th power spectrum set {p(i)

nlJ} with respect to that
frame. Thus, given our N -atoms system, we obtain N
power spectrum vectors, p(i).

Our main working hypothesis is that the energy, or any
other quantity that we wish to represent, can be written
as the sum of short-ranged contributions, εi(qi), located
on each atoms [12], namely

E =
∑
i

εi(q
i) , (26)

where qi is a vector describing the local environment of
the i-th atom. Then, following the same idea behind the
SNAP [22], we further assume that the power spectrum
vectors p(i) form a suitable set of descriptors to repre-
sent such decomposition, so that the local energies can
be expressed as a linear combination of power spectrum
vectors,

E ' θ ·
∑
i

p(i) =
∑
nlJ

θnlJ
∑
i

p
(i)
nlJ . (27)

Here {θnlJ} is an appropriate set of weights. The validity
of these assumptions cannot be determined from the out-
set and must be tested on a case-by-case base. Within
our formalism, the power spectrum vectors can be seen
as the descriptors of a linear regression problem, where
the target is the energy of the system.

In what follows we will first calculate the energies of
several atomic and spin configurations obtained by dis-
placing the position of the atoms and the direction and
magnitude of the magnetic vectors. Then, we will eval-
uate the power spectrum vectors for each atom and for
each of the configurations considered. Finally, we will
train a Ridge regression and optimize the weights vec-
tor, θ, to predict the total energy. This will allow us to
investigate the descriptive power of our vectorial repre-
sentation and of the full method proposed. In the next
section we describe the different models investigated.
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D. The physical system investigated

In this work we consider a rectangular cluster of sites
arranged over a bcc lattice, containing 219 atoms of the
same species. The cell is rectangular with a six-atom
wide square base and no periodic boundary conditions,
as shown in Fig. 2. Each atom bares a local spin and can
be displaced from the ideal high-symmetry bcc site. The
training data, namely the atomic and spin configurations
and their associated total energies, may come from a suit-
able total energy theory. This is usual some ab initio
method such as spin-polarised density functional theory
or a quantum-chemistry wave-function scheme. Since the
generation of such dataset is rather time consuming, and
our objective here is simply that of introducing our vector
field representation, we use instead a range of analytical
energy models.

In particular, we assume that the total energy is de-
termined by the Hamiltonian,

H = HH +HL , (28)

where 
HH = −1

2

∑
〈i,j〉

Jij(rij)Si · Sj ,

HL =
∑
i

(
AS2

i +BS4
i + CS6

i

)
.

(29)

Here, HH describes an Heisenberg model, where the ex-
change parameter between the pair of atoms 〈i, j〉, bar-
ing spin Si and Sj , depends on the atoms distance rij .
Note that the spin vectors are in units of ~, so that
Si = Mi/geµB, with Mi being the i-th local magnetic
moment and µB the Bohr magneton. In particular, in
this work we choose the following functional form [24]
for Jij

Jij(rij) = Jn(1−∆rij/rn)3, with ∆rij = rij−rn,
(30)

where the index n indicates that the atoms i and j form
a n-th neighbours pair. The distance rn is that between
two n-th neighbour atoms in the undistorted bcc lattice
(the n-th neighbour equilibrium distance). Similarly, the
constants Jn are the Heisenberg coupling elements be-
tween two n-th neighbours at equilibrium. It should be
noted that HH describes coupling between the position
and the spin degrees of freedom by mean of the coupling
constants, Jij(rij). The Hamiltonian is then completed
by a Landau-like term, HL, which describes the depen-
dence of the energy on the longitudinal local magnetiza-
tion (the magnitude of local spins) [8], where A,B and
C are constants to be determined.

In this work we set the various parameters to de-
scribe bcc iron [8]. Thus, the Heisenberg exchange
interaction extends to second nearest neighbours with
J1 = 22.52 meV and J2 = 17.99 meV, while the Lan-
dau parameters are chosen to be A = −440.987 meV,

B = 150.546 meV and C = 50.769 meV. We will now
proceed to show how our descriptors are able to cap-
ture the potential energy surface of the Hamiltonian of
Eq. (28).

III. NUMERICAL SIMULATIONS

The Hamiltonian given in Eq. (28) consists in two qual-
itatively different terms, HH and HL. The first describes
transverse energy excitations and spin-lattice coupling,
while the second accounts for longitudinal excitations.
In order to investigate the descriptive power of the power
spectrum and of our linear energy model over these two
different types of excitation, we first consider only the
Heisenberg term with fixed magnetic momenta lengths,
Mi = 2.2 µB, and later the full model.

A. Representing the Heisenberg Model with
spin-lattice interaction

The dataset has been built by displacing the atomic
positions from the ideal equilibrium bcc structure and by
choosing different orientations of the local magnetic mo-
ments. For the atomic positions we have chosen three
sets presenting a different maximum displacement of 5%,
10% and 20% of the lattice constant, respectively. The
sampling of the displacements is uniform in space. In
contrast, we have used two different strategies to define
the spin structure. In the first one, we align the ma-
jority of the spins along the z-axis, while the remaining
magnetic moments point in a random direction. More
specifically, out of the available 219 magnetic moments,
we randomly choose always more than 200 spins (the ac-
tual number is between 200 and 219, and it also randomly
selected), to be aligned along the z-axis, thus forming an
almost-ferromagnetic structure (this training set is called
the ‘ferromagnetic’ one). The second strategy, instead,
consists in assigning to all the magnetic moments a ran-
dom orientation (‘random’ training set). Considering the
three different choices for the maximum atomic displace-
ment, and the two for the spins alignment, we have thus
built a total of 6 datasets, each made of 100 configura-
tions.

In order to test the predictions made by our fitted spin
potentials, we build three further test-sets for each of the
6 dataset explored. The first set consists of 219 configu-
rations; the n-th configuration having n randomly-chosen
spins aligned along the z-axis, while the remaining ones
being randomly oriented in space. In this case the lattice
is chosen to be pristine bcc (no atomic displacements)
so to test independently the vectorial character of the
potential. In contrast, the second and the third test-sets
are designed to investigate also the atomic displacements.
They consist of 50 configurations each, and the atomic
displacement has the same maximum magnitude of that
of the dataset used to train the model. The spins config-
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uration of the second test-set has 200 randomly-chosen
spins aligned along the z-axis while the remaining ones
are randomly oriented in space. The third test-set, in-
stead, has all the spins randomly oriented in space. As
such, these sets have been designed to test the predic-
tions on a mostly-ferromagnetic environment and on a
paramagnetic one, respectively.

FIG. 3. (Color online) Predicted against actual energies for
a Ridge linear regression trained on the ferromagnetic dataset
with 10%maximum atomic displacement. The actual energies
are from the Heisenberg model with spin-lattice coupling. The
results are tested against three different test-sets. The red
dots represent the configurations with undistorted bcc atomic
positions and progressively z-aligned magnetic moments. The
other dots represent different displacements of the atoms for
near to ferromagnetic and paramagnetic configurations, re-
spectively. The figure demonstrates the good agreement of
the potential also for configurations, which are energetically
far from that used in the training (blue region). Zoom-in
around different energy regions are displayed in the inserts.

In Fig. 3 we shown the results for the ferromagnetic-
trained potential with a 10% maximum atomic displace-
ment, for which we explicitly report the procedure and
the results. The results on the other training sets are
reported in the Supplementary Informations. The op-
timal potential parameters are found to be nmax = 4,
corresponding to 35 features only, and rcut = 1.4 (lattice
units), while the regularization constant of the Ridge-
regression is α = 3.2× 103. In the cross-validation pro-
cedure, we split the dataset in training- and test-sets
five times with a 80-20 ratio with respect to the to-
tal dataset. We obtain an energy mean absolute error
(MAE) of (4.83 ± 0.15) × 10−5 eV/atom on the train-
ing set, and of (6.8 ± 0.7) × 10−5 eV/atom on the test
one, which roughly corresponds to an error smaller than
0.1%. When looking more specifically at the model pre-
dictions, the analysis on the first test-set (red points in

Fig. 3) returns us a MAE of 5.6× 10−4 eV/atom (∼ 1%).
Notably we find that the MAE of configurations with an
energy above −0.01 eV/atom, namely those that are fur-
ther away from the energy range of the training set, is
8.2× 10−4 eV/atom. This means that the prediction of
the model is still effective also in the portion of the con-
figuration space far from that of the training. The MAEs
on the second (green points in Fig 3) and third test-sets
(blue points in the Figure) are respectively 1.9× 10−4

eV/atom and 6.0× 10−4 eV/atom. This suggests that
the model can extrapolate rather well across the config-
uration space.

The remaining trained models show us MAEs simi-
lar to that reported above, when the training is per-
formed over the ferromagnetic datasets. In contrast,
when training on the three training sets denoted as “ran-
dom” spin configurations, we notice a significantly larger
MAEs for large atomic displacements. Explicitly, the
MAE is 1.3× 10−4 eV/atom for the random training set
with 5% maximum atomic displacement, but this already
increases to 2.5× 10−3 eV/atom for 10% maximum dis-
placement and reaches up to 0.01 eV/atom for 20% max-
imum displacement. The failure for the largest maxi-
mum displacement can be attributed to the fact that the
random dataset explores a much smaller portion of the
energy landscape of the model. This is because the ran-
dom configurations are all characterized by a small total
magnetization and hence rather similar energies. For all
the other cases, the good agreement obtained between
our model and the true potential energy surface, demon-
strates that the Heisenberg model including spin-lattice
coupling is accurately described by our potential, which
is able to extrapolate the entire energy landscape. It
is crucial to remark at this point that we did not intro-
duce any prior knowledge of the functional dependence of
the coupling constant on the pair-wise distance between
the atoms, namely the model and the descriptors are
able to autonomously interpolate the spin-phonon cou-
pling. Moreover, given the modest size of the dataset, we
found quite remarkable that simultaneous using a small
datasets and a reduced number of features are able to
reach the accuracies reported here.

Next we will consider the full Hamiltonian, including
HL, describing both transverse and longitudinal spin ex-
citations.

B. Heisenberg Model with longitudinal excitations

The investigation of the model described by the com-
plete Hamiltonian of Eq. (28) follows the same approach
used for the analysis on the Heisenberg part. In this case
we build a dataset corresponding only to one maximum
displacement of the atomic positions, namely 10% of the
lattice constant. The spin configurations correspond to
the “ferromagnetic” case described in the previous sec-
tion. However, having to deal with longitudinal excita-
tions as well, we also vary the magnetic moment’s length.
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FIG. 4. (Color online) Predicted against actual energies
for both a Ridge linear regression (red circles) and a GAP
(blue triangles) constructed to predict the potential energy
surface of the full Hamiltonian of Eq. (28) (Heisenberg model
with spin-lattice coupling and longitudinal spin fluctuations).
Results are presented for the test set. While the accuracy of
the two models is similar for energies in the training set region,
this becomes significantly different for the high-energy data
points. In particular, the linear model accurately predicts
energies up to about -0.26 eV/atom, but then significantly
deviates from the parity line (dashed black line). In contrast,
the GAP, while it appears to slightly underestimate the actual
energies, outperforms the linear model at extrapolating away
from the training set region.

In particular, the magnetic moments aligned along the
z-axis are chosen to be 2.25 µB, while the randomly ori-
ented ones have a length randomly chosen in the range
1.8-2.3 µB.

When testing the predictions, we build an additional
test-set, corresponding to the first one presented in the
previous section, namely containing an increasing num-
ber of aligning spins. In this case, the length of the z-
aligned magnetic moments are again fixed to 2.25 µB,
while the randomly oriented ones have a length in the
range 1.9 − 2.3 µB. Also the cross-validation procedure
is similar to the one employed before with a five-time
split of the dataset into training and test sets, with a
80-20 ratio. The parameters chosen are then nmax = 4,
rcut = 1.4 (lattice constant), α = 2× 105.

The MAEs obtained in this case are (4.9 ± 0.1) ×
10−4 eV/atom and (6.0 ± 0.5) × 10−4 eV/atom, respec-
tively for the training and test set. These values are
about one order of magnitude larger than those obtained
previously for the Heisenberg model with spin-lattice
coupling. We can understand such accuracy loss by notic-
ing that the descriptors are quadratic in the spin magni-
tude, as evident from Eqs. (16), (23) and (25). There-

fore, a linear machine-learning model, as employed here,
will not be able to capture the energy contributions to
the fourth and sixth power in the magnetization, which
defines the longitudinal part of the Hamiltonian, HL. In
fact, it may be surprising that the model still performs
accurately even in this case. This is because we are ex-
ploring a region of the potential energy surface relatively
close to the minimum, where the energy contributions in
S4 and S6 remain modest.

In order to corroborate this hypothesis, we evaluate the
model predictions on a test set containing progressively-
aligned spins, for which we obtain a MAE of 6.0× 10−3

eV/atom. These results are shown as red dots in Fig. 4,
where it is clear that the Ridge regression performs
poorly as we progressively explore energy regions away
from the training range. Such behaviour must be associ-
ated to the limit of the machine-learning linear model
constructed over our description. In more detail, we
find that the low-energy regions are still well described,
with a MAE of 7.1× 10−4 eV/atom for energies smaller
than less than -0.32 eV/atom (in the training range). In
contrast, the potential rapidly departs from the parity
line at higher energies, where we compute a MAE of
1.0× 10−2 eV/atom for data above -0.26 eV/atom.

We can improve on the error and go beyond the
quadratic nature of our descriptors by combining the
power-spectrum representation of the atomic and vec-
tor field with a non-linear machine-learning model. In
particular, we consider here a Gaussian approximation
potential (GAP) [25]. GAP expresses the atomic energy
of the i-th atom as

εi =

Ntrain∑
t=0

θtS(pi,pt) =
∑
t

θte
− 1

2σ (pi−pt)2 (31)

where the sum is extended over all the atoms in the train-
ing set, and where pi and pt are the power spectrum,
respectively of the i-th atom and of the training set. The
non linearity of the similarity kernel, S, allows us to de-
scribe energy contributions going beyond the quadratic
order in the spin magnitude.

The GAP predictions obtained over the test-set are
shown in Fig. 4 as blue triangles. We notice that the
MAE associated with the configurations having energy
smaller than -0.32 eV/atom remains very close to that
obtained with ridge regression. However, the total MAE
decreases to 4.5× 10−4 eV/atom and, most importantly,
the MAE for energies larger than -0.26 eV/atom is now
reduced to 5.8× 10−3 eV/atom, namely is halved. In
fact, the figure clearly shows that the non-linear GAP
improves the ability of the model to extrapolate away
from the training set range. Since, the actual potential
energy surface for a spin system, as the one obtainable
from density functional theory, is expected to include en-
ergy contributions going beyond a quadratic dependence
on the magnetization, we conclude that the best use of
our representation will be in conjunction with non-linear
machine-learning models.
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IV. CONCLUSION

In this work we have introduced a new invariant power
spectrum representation for vectorial fields. After hav-
ing presented an in-depth analysis of its rotational in-
variance and basic properties, we have designed a linear
energy model, closely following the SNAP [22] approach.
Such spin SNAP has then be put to the test against a bcc
iron model described by an Hamiltonian containing spin-
lattice coupling and both transverse and longitudinal en-
ergy excitations. Spin-lattice coupling is introduced by
mean of a Heisenberg model with exchange parameters
depending on the interatomic distance, while the longitu-
dinal spin excitations are described by a simple Landau
term containing even powers of the magnetization.

We have then trained a first potential, linear in the
power spectrum, for the situation where the longitudinal
spin excitations are neglected. This was trained over a
dataset obtained by displacing the atomic positions and
the orientations of the atomic-magnetic moments, com-
prising a total of only 100 different configurations. Our
results showed that the power spectrum is able to de-
scribe the entire energy surface, by accurately extrapo-
lating far beyond the energy range covered by the train-
ing set. This proves that a linear model using the power
spectrum is sufficient to describe both the Heisenberg
model and the spin-lattice coupling, already from a small
dataset. Crucially, no prior information on the depen-
dence of the exchange constants on the atomic position
were used by the model.

We have then repeated the exercise for the complete
Hamiltonian, containing also the Landau term, by train-
ing over a dataset containing spins of different magni-
tude. Our results are highly accurate for configurations
with energies within the range explored by our training
set, but the model does not perform well in extrapolat-
ing. We have attributed this result to the inability of
the power spectrum, combined with a linear machine-
learning model, to describe energy contributions scaling
beyond a quadratic dependence on the spin magnitude.
Such shortcoming can be recovered by employing a non-
linear model. Thus, we have investigated a Gaussian ap-
proximation potential and shown that extrapolation over
a much-larger portion of the energy landscape is indeed
possible.

All in all, our analysis has shown that a power spec-
trum representation of the magnetization field can be
used, together with non-linear machine-learning models,
as an efficient descriptor of spin potential energy sur-
faces. This can now be used in conjunction with training
sets obtained from accurate electronic structure theory
to predict finite temperature properties of magnets.

ACKNOWLEDGMENTS

This work has been supported by the Irish Research
Council Advanced Laureate Award (IRCLA/2019/127),

and by the Irish Research Council postgraduate program
(MC). We acknowledge the DJEI/DES/SFI/HEA Irish
Centre for High-End Computing (ICHEC) and Trinity
Centre for High Performance Computing (TCHPC) for
the provision of computational resources.

Appendix A: Atom-centered power spectrum

Let us prove that, if the vector field has an atom at the
origin, the power spectrum of (16) will not be generally
rotationally invariant. For simplicity we can consider first
the trivial case in which our system is made of just a
single atom, e.g. there are no other atoms inside the cut-
off radius. The component un100 of the coefficients of
Eq. (23) reads

un100 = w0Rn1(0)
∑
mq

Y m∗1 (0)C00
1m1qvq ,

∝ Rn1(0)
∑
q

C00
101qvq ,

∝ Rn1(0)v0 , (A1)

where in the first step we have used the fact that the
spherical harmonics along the z-axis vanish unlessm = 0,
and in the second step we have considered the equality
q = M − m implemented through the Clebsch-Gordan
coefficients (for simplicity we do not carry over unessen-
tial constant). The power spectrum component for this
case then is simply

pn10 ∝ |Rn1(0)v0|2 . (A2)

Equation (A2) establishes that the n10 component of the
power spectrum is proportional to the magnitude of the z
component of the vector field at the origin. Crucially, for
a general rotation of the reference frame, the z compo-
nent becomes mixed with the other components, so that
it changes its value. We then deduce that the power spec-
trum is not rotational invariant, if the vector field does
not vanish at the origin of the local reference frame. It
is worth stressing that this proof holds, since the origin
is a fixed point for the rotation. If the center or rotation
is not the origin, then also the argument of the spherical
harmonics will rotate, making the m 6= 0 terms relevant
too. This proof can be generalized also to the case in
which there are other atoms within the cutoff radius. As
pointed out in the main text, we can however recover a
cylindrical symmetry by simply rotate the system so that
the vector fields in the origin points in the same direc-
tion as the z-axis. Another possible solution stems from
the presence of the radial-basis set in Eq. (A2) which,
if carefully chosen, could remove the symmetry breaking
terms of the power spectrum. Spherical Bessel functions
are suitable for this purpose, as we will show now. We
first notice that for l 6= 0 the function vanishes at the ori-
gin, namely gn−l,l(0) = 0. This is a consequence of the
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fact that the basis set is defined in terms of the spherical-
Bessel functions jl(x), which also vanish at the origin for
non-zero l. Thus, for l 6= 0 all the contributions arising
from an atom at the origin are removed, ensuring the ro-
tational invariance. We are then left to prove that the
power spectrum is invariant also for l = 0. This is easily
done by noticing that the spherical harmonic Y 0

0 is just
a constant, with no angular dependence, completing the
demonstration.

Appendix B: Power spectrum connecting different
radial channels

Following the same approach used in reference [12], we
can generalize the expression for the power spectrum so
that different radial channels are coupled. A generalized
expression for the power spectrum may read

pnn′lJ =
∑
M

u∗nlJMun′lJM . (B1)

The rotational invariance is still ensured by the fact
that the transformation rules for the expansion coeffi-
cients unlJM involve only the Wigner D-matrix belonging
to the angular momentum J [see Eq. (18)]. However, it
is apparent that the number of components defining the
descriptors are increased with this coupling choice. Note
that we must ensure the same l for the two factors in the
sum above, so that the resulting quantity is real: the only
complex part are found in the angular dependent terms
being the radial functions real.

Appendix C: Generalization to a tensorial density

In this appendix we generalize our formalism from a
vectorial field to a tensorial one. In this case, the local
density reads

ρ(r) =
∑
a

waha(r− ra)T naa , (C1)

where T naa is a na-rank tensor associated to the a-th
atom. Note that tensors associated with different atoms
can have different ranks as, for example, when dealing
simultaneously with a scalar field and a vector field. We
can then use the spherical decomposition of the tensors

and write T naa in Dirac notation as

|T naa 〉 =

na∑
λ

λ∑
µ=−λ

(Ta)µλ |λµ〉 , (C2)

where (Ta)µλ is the spherical component of the tensor T naa
relative to the spherical basis |λµ〉. This is analogous to
va,q and |q〉 for the case of a vectorial field. The compo-
nents (Ta)µλ transform as the the spherical harmonic Y µλ
under rotation. We can then write the density as

|ρ〉 =

nmax∑
n=0

n∑
l=0

l∑
m=−l

Λ∑
λ=0

λ∑
µ=−λ

cnlmλµ |nlmλµ〉 , (C3)

where the expansion has been truncated at nmax, and
with Λ = maxa(na) being the highest rank of the ten-
sors in the tensorial field additional zero coefficients can
be introduced to have an homogeneous representation in
the highest-tensorial rank. The expansion coefficients are
then obtained by projection as

cnlmλµ =
∑
a

wa(Ta)µλ

∫
drdr̂r2Rnl(r)Y

m∗
l (r̂)ha(r−ra),

(C4)
with (Ta)µλ = 0 if λ > na. Following the same procedure
outlined previously for the case of a vectorial field, we
can express the density over the coupled basis as

|ρ〉 =
∑

nlλJM

unlλJM |nlλJM〉 , (C5)

by mean of the coupling scheme,

|nlλJM〉 =

l∑
m=l

λ∑
µ=−λ

CJMlmλµ |nlmλµ〉 , (C6)

with |l − λ| ≤ J ≤ l + λ. The coupled-basis coefficients
are given in terms of the uncoupled ones as

unlλJM =
∑
mµ

CJMlmλµcnlmλµ . (C7)

Finally, the power spectrum is again given by squaring
the coefficients

pnlλJ =
∑
M

|unlλJM |2, (C8)

and it is invariant under simultaneous rotations of the
frame of reference and the tensorial field. A further gen-
eralization to multi-channel coupling can be obtained by
using the same argument presented in Appendix B.
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