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Although the thermal conductivity of silicon has been studied before, current estimations for the

phonon mean free paths have not provided full explanation of the strong size effects experimentally

observed for various silicon micro and nanostructures. Since phonon relaxation time models are

mostly semi-empirical, the mean free paths cannot be determined reliably and questions remain as

to which polarizations, frequencies and wavelengths are dominant heat carriers. Here we have used

a combination of equilibrium molecular dynamics simulations and lattice dynamics calculations to

fully detail the spectral dependence of phonon transport properties in bulk silicon. By considering the

frequency dependence of the specific heat, group velocities and mean free paths, we address these

unresolved questions and examine the errors associated with isotropic and frequency averaged

approximations. Simulation details, such as the convergence of results on the simulation time and

extraction of phonon transport properties in different crystallographic directions, are also discussed.
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Conductivity.

1. INTRODUCTION

Phonons are quantized lattice vibrations that carry energy

h� and quasi momentum hk/2�, where h is Planck’s con-

stant � is the phonon frequency and k its wave vector.1–8

Phonons interact with each other, as well as boundaries,

impurities and other crystal imperfections through scatter-

ing events. Peierls1 showed that these scattering events,

which are subject to energy and momentum conservation

constraints, can be classified as either normal processes,

which conserve quasi-momentum, or umklapp process

which do not. Peierls work showed that umklapp processes

generate thermal resistance (finite thermal conductivity)

and are necessary for the crystal to obtain thermal equi-

librium. In most insulators and semiconductors, where the

conduction electron density is low, phonons are the dom-

inant energy carriers and quantitative understanding of

their interactions has become increasingly important for

micro/nanoscale applications. Phonon thermal conductiv-

ity, which we derive in the following section, depends

∗Author to whom correspondence should be addressed.

on three distinct phonon transport properties—the specific

heat, group velocity and mean free path (MFP). The spe-

cific heat for each mode and group velocities v can be

obtained from lattice dynamics, but the MFPs �, which

are related to the relaxation times � = v · � , have eluded

direct calculation for many years.1–8

For many nanoscale applications, the length scale reduc-

tion only has significant impact on the specific heat and

group velocities at cryogenic temperatures.9 The MFPs,

however, are greatly impacted by size effects over the

entire temperature range. Experiments have shown that

these size effects are highly important in both the micro

and nanoscale regimes, where thermal conductivity can

decrease by several orders of magnitude.10 Other scat-

tering effects at these length scales can also cause heat

conduction to deviate significantly from Fourier’s Law.11

As a result, emerging nanotechnological applications have

increased the demand for reliable quantitative results for

phonon MFPs in order to accurately understand these

effects—particularly for silicon, a highly important semi-

conductor material that is heavily used in semiconductor

industries.12 Size effects are crucial for microelectronic
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components, where thermal conductivity reduction leads to
increased resistance to heat dissipation and presents a seri-
ous obstacle to continued miniaturization.12 Size effects
are also especially important in thermoelectric applica-
tions, where the thermal conductivity reduction is used
to enhance the efficiency of nanostructured materials.13�14

For many technological applications involving bulk silicon
(T > 100 K), phonon–phonon scattering is the dominant
mechanism governing thermal conductivity. As the char-
acteristic device length decreases, thermal conductivity
decreases because boundary scattering increases and limits
the MFPs. The intermediate regime where both phonon–
phonon scattering and boundary scattering are important
spans three orders of magnitude (10−9 m–10−6 m). To
explain size effects in this regime, estimations of an effec-
tive phonon MFP due to phonon–phonon scattering have
been used to gain insight on the length scale where
boundary scattering becomes dominant. A standard kinetic
theory based approach, that uses the speed of sound and
bulk specific heat of silicon, yields a room temperature
MFP of 41 nm.15 It has been recognized, however, that the
average phonon velocity is much smaller than the speed of
sound and that optical phonons contribute much more to
the specific heat than to the thermal conductivity. Ju and
Goodson16 studied the thermal conductivity of various sili-
con thin films, and based on their modeling, estimated an
effective phonon MFP between 200–300 nm. These esti-
mations, which differ by almost an order of magnitude,
can be used in approximate models for the thermal con-
ductivity, but they provide insufficient explanation for the
strong size effects observed in silicon microstructures.17�18

A body of theoretical work qualitatively explains
phonon thermal conductivity,1–8 yet it is difficult to under-
stand and predict the strength of size effects because quan-
titative results for phonon MFPs are lacking. The major
challenge is determining the relaxation times. Klemens2

developed an approach to calculate relaxation times using
a quantum scattering matrix and Fermi’s golden rule.
By assuming linear isotropic phonon dispersion, Klemens
estimated � ∝ �−2 · T −1 at high temperatures. Callaway3

developed a model that accounts for both normal and
umklapp processes, but neither Callaway nor Klemens’
models accurately capture the thermal conductivity’s tem-
perature dependence at higher temperatures. Although
Holland4 obtained better agreement by including phonon
dispersion and fitting to thermal conductivity data for
semiconductors, all of the semi-empirical models require
multiple fitting parameters that cannot be determined reli-
ably. This relative uncertainty in the relaxation times
for different polarizations has lead to lingering ques-
tions surrounding the dominant polarization. Hamilton and
Parrott19 addressed this issue using an alternative proce-
dure to the relaxation time approximation and solved the
Boltzmann equation by applying the variational principal.
By assuming a trial function and linear isotropic disper-
sion, Hamilton and Parrott studied the thermal conductivity

of Germanium and showed that transverse acoustic (TA)

phonons are responsible for 80–90% of the thermal con-

ductivity, while longitudinal acoustic (LA) phonons con-

tribute less than 20%. Based on their work18 it has been

widely accepted that TA phonons dominate. Savvides and

Goldsmid18 used Hamilton and Parrott’s conclusion that

TA phonons dominate to explain their experimental results

with a model that assumed TA phonons as the only heat

carriers. Ju and Goodson,16 on the other hand, have done

more recent experiments and modeling of silicon thin films

and provide the best explanation of their results by assum-

ing LA phonons are the only heat carriers. The conflicting

conclusions of these and other works have rendered the

issue of identifying the dominant polarization unresolved.

Srivastava20 showed that the off diagonal terms in three-

phonon collision operator play an important role at higher

temperatures, above the regime where boundary scatter-

ing dominates. Srivastava also assumed linear dispersion

in his work, but could not match the thermal conductiv-

ity trend at higher temperatures where 
 ∝ T −n, n > 1.

This issue was also encountered by Klemens,2 Callaway3

and Holland.4 Srivastava20 attributed the discrepancy to

the assumption of linear dispersion, temperature depen-

dent gruneissen parameter and possibly four-phonon or

higher order processes. More recently, however, Omini

and Sparavigna21 have developed the closest technique to

a first principle thermal conductivity calculation, which

solves the BTE through an iterative procedure. Their work

employed only a few minor assumptions and served to

clarify the role of optical phonons as well as the impor-

tance of each scattering mechanism. The common thread

between Omini and Sparavigna21 and the present work,

is that the effects of dispersion, interactions with opti-

cal phonons and temperature dependent anharmonicity are

all included. The various approaches chosen by different

authors have generated little conclusive agreement con-

cerning the role of different polarizations and which fre-

quencies are most important. As a result, analytical study

of phonon scattering has lead to unresolved questions con-

cerning the details of phonon transport, particularly in sili-

con. Here we used an approach to calculate relaxation

times without fitting parameters and show that when non-

linear dispersion and temperature dependent anharmonic-

ity are included in the modeling, the simpler relaxation

time approach leads to the same conclusions as Omini

and Sparavigna’s first principals calculation.21 By adopt-

ing the relaxation time approach, however, we are able

to explore the contributions of different phonon frequen-

cies, wavelengths and polarizations in greater detail to pro-

vide an explanation of the size effects observed in silicon

microstructures.

In the following sections we discuss numerical simu-

lation alternatives to analytical study of thermal conduc-

tivity and phonon transport properties. We first discuss

molecular dynamics (MD) simulations and the widely used

2 J. Comput. Theor. Nanosci. 5, 1–12, 2008
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Green-Kubo approach to calculating thermal conductivity.

We then derive an expression for thermal conductivity

in terms of frequency and polarization dependent phonon

transport properties, which can be used to understand

size effects through the spectral dependent contributions.

The remaining sections detail the simulation analysis

and procedures, concluding with a discussion of various

results from our simulations of bulk silicon. The numerical

approach used to calculate relaxation times here does not

distinguish between the effects of normal, umklapp, three-

phonon, four-phonon or even higher order scattering. In

this modeling approach, these various effects are combined

into a single relaxation time to represent the net effect of

phonon–phonon scattering, but with full order anharmonic

contributions.

2. GREEN-KUBO ANALYSIS OF
MOLECULAR DYNAMICS SIMULATIONS

Analytical study of phonon scattering has confronted dif-

ficult obstacles and numerical simulation has become an

increasingly popular alternative. One approach being used

to study the intrinsic characteristics of materials is molecu-

lar dynamics (MD) simulation, which treats atoms as point

particles and tracks their individual motions with time.

Classical MD simulations use empirical expressions to

model the interactions between atoms, which are typically

fit to data from quantum electronic structure calculations

and experiments. Several authors have used classical MD

simulations to calculate the thermal conductivity of exist-

ing materials,22�23 including silicon.24–26 The most common

approach uses the Green-Kubo formula,27 which expresses

the thermal conductivity tensor 
�� in terms of its internal

fluctuations, based on linear response theory


�� =
V

kBT
2

∫

〈

Q��t+ t′� ·Q�t�
〉

dt′ (1)

Expressions for the heat flux Q in terms of the quanti-

ties available in atomistic simulations have been derived in

several ways. The derivations start from energy conserva-

tion, �dE/dt�+� ·Q = 0, but differ in how the heat flux

divergence is treated. Some derivations23–26 write the heat

flux as

Q=
d

dt
�E · r� (2)

Authors following this approach23–26 have used expressions

such as

Q=
1

V

∑

i

[

Ei ·vi +
∑

j

(

Fij ·vi
)

rij

]

(3)

to determine the heat flux in a MD simulation. The second

term of Eq. (3) has variable interpretations for many-body

potentials, because it is written in terms of pair-wise force

interactions. Schelling et al.25 tested some of these inter-

pretations on the Stillinger-Weber potential for silicon, but

observed minimal impact on the resultant thermal conduc-

tivity. Hardy,28 however, has derived a heat flux operator

that uses a spatial weighting function to describe the local

energy density as a continuous function. Hardy’s result is

valid for any system where the energy is expressed in the

form

E =
∑

i

1

2
miv

2
i +�i (4)

where �i is the potential energy associated with a single

atom. Hardy’s result25 for the heat flux operator

Q=
1

V

∑

i

[

Ei ·vi +
∑

j

(

−�ri�j ·vi
)

· rij

]

(5)

also has two terms, but the interaction term subtly dif-

fers from Eq. (3). Hardy’s result is general and can be

applied to any empirical potential, provided the energy can

be written in terms of individual atoms.

Equation (1) is a general result, valid for any phase of

matter, but has been mostly used to calculate the thermal

conductivity of liquids and solids. Since Eq. (1) describes


 in terms of any system’s response to a perturbation,

the connection to phonon transport properties, such as the

relaxation time is unclear. To establish this connection

we seek an alternative framework that directly relates the

atomic trajectory to the phonon properties. The relaxation

times are calculated using the lattice wave description of

phonons, where the lattice wave attenuation corresponds

to phonon scattering and is studied by projecting the

atomic trajectory onto the system’s normal modes. This

transformation to normal mode coordinates generates time

dependent amplitudes,8 which are then used to extract

relaxation times for individual modes and can be expanded

to a full spectrum using interpolation and extrapolation. To

use this information to calculate thermal conductivity, we

first derive the thermal conductivity of a solid in terms of

frequency dependent phonon transport properties we can

determine from MD and lattice dynamics simulations.

3. PHONON THERMAL CONDUCTIVITY

Phonon scattering events create and annihilate phonons

under the constraints of energy and momentum

conservation.1–8 At equilibrium, these scattering events

result in an average occupation number for each phonon

state described by Bose-Einstein statistics

f0 =
1

exp �h�/kBT �−1
(6)

where kB is Boltzmann’s constant. When the system is

in nonequilibrium, there is a net energy transport and the

nonequilibrium occupation can be described by a solu-

tion to the Boltzmann transport equation (BTE). A typi-

cal approximation used to solve the BTE for phonons is

the single mode relaxation time approximation (SMRT),

J. Comput. Theor. Nanosci. 5, 1–12, 2008 3
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which assumes that the occupation decays exponentially

back to its equilibrium value through a single time con-

stant for each mode. By assuming that the time and spatial

derivatives of the distribution’s deviation from equilib-

rium f − f0 are negligible compared to the spatial varia-

tion of f0, we can solve the BTE for the nonequilibrium

distribution

f �r�k� p�= f0 −
df0

dT
·�T ·v · � (7)

where r is the location within the system, the phonon state

is described by wave vector k, polarization p, has relax-

ation time � and travels with velocity v. With this distribu-

tion we can write the net energy flux (heat flux) carried by

phonons in the x direction, by summing the contributions

of all phonon states with occupation f .

Jx�x�=
1

V

∑

p

�
∑

kx=−�

�
∑

ky=−�

�
∑

kz=−�

h� · f ·v · x̂ (8)

Taking the system to be large, we can convert the wave

vector summations to spherical integrals over k-space

using a discrete k-space interval of !
k
 = 2�/L, where

L is the system’s length in each direction.

Jx�x�=
∑

p

∫ �

0

∫ 2�

0

∫ �

0
h� · f ·vx ·

k2dk sin�$�d$d%

V · �2�/L�
3

(9)

Taking the k-space as isotropic, we substitute the density

of states D��� (the number of states within a differential

frequency interval), where �2�/L�3 is the k-space volume

occupied by each state, and write Eq. (9) as two spatial

integrals and an integral over the phonon frequencies.

Jx�x�=
∑

p

∫ �max

0

∫ 2�

0

∫ �

0
h� · f ·vx ·D��� · sin�$�d$d%d�

(10)

By substituting Eq. (7) for the nonequilibrium occupation

and assuming isotropic velocities and relaxation times, we

can carry out the spatial integrals, resulting in

Jx�x�=−

{

∑

p

1

3

∫ �max

0

∫ 2�

0

∫ �

0

[

h� ·D���·
df0

dT

]

v2� ·d�

}

·
dT

dx

(11)

which has the same form as Fourier’s law of heat conduc-

tion, where

C���=
dE

dT
=

[

h� ·D��� ·
df0

dT

]

(12)

is the frequency dependent specific heat per unit vol-

ume. This leads to the following expressions for thermal

conductivity,


=
∑

p

1

3

∫ �max

0
C ·v2 ·� ·d�=

∑

p

1

3

∫ �max

0
C ·v ·�·d� (13)

where � is the phonon MFP. Equation (13) allows us to

investigate the spectral dependence of the phonon thermal

conductivity of solids. The summation over polarizations

also allows us to determine the separate contributions from

each branch and identify which polarizations dominate in

a particular material. In the following sections we discuss

the numerical techniques used to calculate the frequency

dependent phonon transport properties, using a combina-

tion of lattice dynamics and MD simulations.

4. SIMULATION ANALYSIS

4.1. Frequency Dependent Specific Heat

Equation (12) expresses the frequency dependent specific

heat, where the density of states is the only unknown.

Using lattice dynamics, we can solve the equations of

motion under the harmonic approximation and use a Taylor

expansion of the potential energy to determine the dynam-

ical matrix. Lattice dynamics determines the phonon fre-

quencies at any wave vector by solving for the eigen

values and eigen vectors of the dynamical matrix. This is

then used to calculate D���, by summing the number of

states in each direction. By discretizing a sub-region of the

Brillouin zone, outlined by the principal symmetry direc-

tions, we can directly count the number of phonon states

(dynamical matrix eigen values) that fall within a partic-

ular frequency interval. This provides a direct measure

of the frequency dependent density of states, which can

then be normalized for each polarization, summing to three

(3D) states per atom. If the counting procedure is done

using small frequency intervals, we can use the discretized

spectrum to calculate all the necessary phonon properties

numerically, which enables us to treat the integrations as

discrete summations with negligible error. A discrete rep-

resentation for frequency dependent phonon properties has

several advantages over analytical formulation. It accu-

rately captures nonlinear features in the data, particularly

for the relaxation times, it simplifies the process of inte-

gration and enables greater flexibility in reorganizing the

data for analysis. Lattice dynamics serves two purposes

in this analysis approach. First the eigen values are used

in determining the density of states and second the eigen

vectors are needed to transform the MD trajectory to nor-

mal mode coordinates. For this reason the lattice dynamics

calculations are prerequisite to the decomposition of the

MD trajectory into normal mode amplitudes, which will

be discussed in detail later.

4.2. Frequency Dependent Group Velocity

The frequency dependent group velocity can be deter-

mined from the lattice dynamics dispersion or can be well

approximated by the dispersion extracted from the MD

simulations, if enough modes are analyzed. The MD dis-

persion may be preferred if the temperature dependence

4 J. Comput. Theor. Nanosci. 5, 1–12, 2008
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of the group velocities is of interest, however the lattice

dynamics dispersion can be used with minimal error for

many applications. The group velocities can be numeri-

cally tabulated with respect to frequency and separately

stored for each polarization in different directions to allow

for detailed analysis of the specific contributions to ther-

mal conductivity.

4.3. Frequency Dependent Relaxation Time

The major advancement22�23 highlighted by this work is the

use of the MD trajectories to determine phonon relaxation

times in silicon crystals. The atomic trajectories generated

by MD simulations enable direct calculation of normal

mode decay times. By transforming the trajectory to nor-

mal mode coordinates, we obtain a time history of the

normal mode amplitudes A�k� p� t�.

A�k� p� t�=
∑

j

(

rj�t�− rj0

)

·pj�k� p� · exp
(

i ·k · rj0

)

(14)

The summation is carried out over the atoms j within

the system of interest, rj�t� is the atom’s position, rj0

its lattice position and pj�k� p� its corresponding polar-

ization vector (dynamical matrix eigen-vector) obtained

from lattice dynamics. Equation (14) gives the plane

(a)

(b)

Fig. 1. Normal mode autocorrelation function. (a) Normal mode decay

and exponential fit. (b) Closer view of the normal mode autocorrela-

tion oscillations. The autocorrelation oscillation frequency is double the

phonon frequency because the amplitude is squared.

wave amplitude for an individual mode.8 These time

varying amplitudes correspond to temporal variations in

the phonon occupation and the average mode energy is

proportional to the average occupation at equilibrium. It

is the temporal deviations from the average, however, that

characterize the interactions amongst the various phonons

within the system. The normal mode autocorrelation func-

tion describes the temporal amplitude attenuation and the

decay time constant is the relaxation time5 for the corre-

sponding phonon, written as22

��k� p�=

∫

�)A�k� p� t+ t′� ·)A�k� p� t��dt′

�)A�k� p� t�2�
(15)

where )A�k� p� t� is the deviation from the average normal

mode amplitude. Normal mode autocorrelation functions,

based on Eq. (14), decay with oscillations because they

only consider the mode’s potential energy. Figure 1 shows

an example normal mode autocorrelation function with the

corresponding decay time and phonon frequency indicated.

The temperature dependence of phonon frequencies can be

extracted in this manner, as frequencies typically decrease

with increasing temperature due to softening of the inter-

actions. McGaughey and Kaviany23 showed that smoothly

decaying autocorrelations are obtained by considering the

mode’s total energy as

E�k� p� t� =

(

A�k� p� t� ·A∗�k� p� t� ·*2

2

)

+

(

Ȧ�k� p� t� · Ȧ∗�k� p� t�

2

)

(16)

where * is the angular frequency obtained from lattice

dynamics and ∗ denotes the complex conjugate. Negligi-

ble error, however, is introduced by fitting the peaks of the

autocorrelation function (based on Eq. (14)) with an expo-

nential. McGaughey and Kaviany also used a factor of two

in their relaxation time calculations. We apply Eq. (15)

directly, similarly to Ladd et al.,22 taking the time con-

stant � in Eq. (15) to be equal to the phonon relaxation

time.

It is important to note that the relaxation times extracted

from MD simulations combine the effects of three, four

and higher order phonon scattering into a single relaxation

time. This is due to the comprehensive inclusion of tem-

perature dependent anharmonicity expressed through the

atomic trajectory, which is driven by a nonlinear inter-

atomic potential. As a result, this method of calculating

relaxation times, does not distinguish between normal,

umklapp or which polarizations are interacting, but pro-

vides a measure of the net phonon–phonon scattering

rate. Using the analysis tools described in the preceding

sections, we conducted various simulations of bulk silicon

to study the temperature dependence of its phonon trans-

port properties.

J. Comput. Theor. Nanosci. 5, 1–12, 2008 5
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5. SIMULATION PROCEDURES

We conducted microcanonical MD simulations using peri-

odic boundary conditions to replicate the effects of an

infinite medium. A large body of work has been invested to

develop empirical potentials for silicon, with varying suc-

cesses. For this study we chose the environment dependent

interatomic potential (EDIP)29 because of its innovative

functional form and explicit dependence on coordination.

EDIP was designed to reproduce properties of the bulk

phases of silicon, with strong emphasis on the elastic

constants and vacancy energies. To test whether EDIP

accurately captured the phenomena of interest, prelimi-

nary simulations were conducted using the Green-Kubo

method. All simulations used a timestep of 1 femtosec-

ond and a lattice constant of 0.54309 nm. The prelimi-

nary simulations indicated that a 1 femtosecond timestep

provided sufficient resolution to capture the highest fre-

quency oscillations and also showed that thermal expan-

sion effects generated minimal impact on the results.

Figure 2 shows how the thermal conductivity calculated

with the Green-Kubo method converged with longer simu-

lation time. Figure 2(a) shows that the amount of equilibra-

tion time before the heat flux is sampled has insignificant

impact on the results for long simulation times. Sun and

Murthy26 tested the convergence of thermal conductivity

using EDIP with increasing number of atoms at fixed sim-

ulation duration. Figure 2(b) shows that even larger simu-

lation sizes may require long times for convergence of the

heat flux autocorrelation function. We expected that shorter

simulation times would be required for larger systems,

yet the results do not clearly indicate faster convergence.

Figure 2(c) does, however, show that the convergence time

tends to decrease slightly with increasing temperature.

Based on the results in Figure 2, Green-Kubo simulations

were run for ten nanoseconds while similar testing was

done for relaxation time simulations. As a result relaxation

time simulations were run for five nanoseconds, and all

simulations allowed 100 picoseconds of equilibration time.

For the results corresponding to different symmetry

directions, it was observed that only specific wave vectors,

which repeated in accordance with the periodic boundary

conditions, generated consistent normal mode autocorrela-

tions. Long wavelength modes and other non-eigen modes

that do not share the same periodicity as the MD peri-

odic boundaries primarily oscillate at several frequencies

as opposed to the single frequency of the correspond-

ing mode. As a result the non-eigen mode autocorrela-

tions decayed more rapidly and behaved inconsistently. For

cubic domains this introduced constraints on the number

of modes that could be analyzed. To overcome the con-

straint, modified simulation cells, shown in Figure 3, were

used to reorient the direction of interest with the longest

edge of a rectangular domain. This proved advantageous

over cubic domains where fewer eigen modes are available

for analysis in diagonally oriented directions.

(a)

(b)

(c)

Fig. 2. Convergence of simulation results based on Green-Kubo for-

mulation. (a) Percentage of the converged thermal conductivity of a

512 atom (4× 4× 4 unit cells) system with different amounts of equi-

libration time and total simulation time. (b) Percentage of converged

thermal conductivity value at 300 K for three systems of different size.

(c) Percentage of converged thermal conductivity value at 600 K for three

systems of different size.

The system sizes, for the Green-Kubo and relaxation

time calculations, ranged between 320 and 4096 atoms.

In each case, five independent simulations were conducted

at each temperature in each direction to improve aver-

aging. Once relaxation times were determined for modes

in the symmetry directions, we used linear interpolation

to calculate the relaxation times between data points. For

the acoustic relaxation times corresponding to phonon fre-

quencies below the lowest mode extracted, a � ∝ �−2 fit

to the data set (as predicted by Klemens2� was used. With

this scheme, a full spectrum of relaxation times for each

polarization was generated and used to calculate the ther-

mal conductivity and MFPs.

6 J. Comput. Theor. Nanosci. 5, 1–12, 2008
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(a)

[1,0,0]

(b)

[1,1,0]

(c)

[1,1,1]

Fig. 3. Modified simulation cells. Modified unit cells indicated by red

lines along different crystallographic directions, (a) [1,0,0], (b) [1,1,0],

(c) [1,1,1] (indicated by dotted arrows) aligned to the longest edge of the

simulation domain.

Fig. 4. Phonon dispersion. Phonon dispersion relations using

frequencies extracted from MD simulations (symbols and dotted lines)

and calculated with lattice dynamics (solid lines) as compared with

experiments (diamonds). Reprinted with permission from [27], J. Hansen

and I. McDonald, Theory of Simple Liquids, 2nd edn. (1986). © 1986,

Academic Press, London.

6. RESULTS AND DISCUSSION

The frequencies extracted from the MD simulations and
calculated from lattice dynamics are shown in Figure 4
with experimental values.30 The calculated dispersion
matches the trends and magnitudes observed in experi-
ments, but shows that the potential is overly stiff, which
is a noted issue with many silicon potentials.29 To fur-
ther test the accuracy of the potential, we conducted
Green-Kubo simulations with 512 and 1728 atoms at ten
temperatures. The results shown in Figure 5(a) capture the
magnitude and trends observed in experiments,31 suggest-
ing that EDIP is adequately suited for studying the thermal
conductivity of bulk silicon. The thermal conductivities
calculated from Eq. (13) are shown in Figure 5(b). These
results use the density of states summed over the Brillouin
zone in combination with the group velocities and relax-
ation times extracted from the symmetry directions. When
averaged, the results from each direction vary between
15–30%. This acts as an estimate of the error associated
with the assumption of isotropic phonon properties, which
was employed in deriving Eq. (13).

The panels of Figures 6 through 9 show our results for
the relaxation times at the ten temperatures considered,
for each polarization in each of the symmetry directions.
Each figure shows that the relaxation times are not gener-
ally monotonically decreasing with increasing frequency.
Ladd et al.22 as well as McGaughey and Kaviany23 also
observed similar non-monotonic behavior in their relax-
ation times for solid argon. The acoustic relaxation times
show very strong frequency dependence, that approaches
Klemen’s2 prediction of � ∝ �−2 at the lower frequen-
cies and higher temperatures. The more dispersive phonons
with higher frequencies, however, exhibit other nonlin-
ear characteristics that tend to relax as the temperature is

(a) (b)

Fig. 5. Thermal conductivity of bulk silicon. (a) Green-Kubo thermal

conductivity of a 512 atom (4×4×4 unit cell) and 1728 atom (6×6×6

unit cell system) compared with experiments. (b) Thermal conductivity

using the BTE approach compared with experiments. Reprinted with per-

mission from [28], R. Hardy, Phys. Rev. 132, 168 (1963). © 1963. The

plot shows results generated from the density of states, averaged over

the Brillouin zone, in combination with the phonon properties (group

velocities and relaxation times) extracted along each symmetry direction.

The average of the three directions is shown and the error bars indicate

the error (standard deviation) associated with assuming isotropic phonon

properties.

J. Comput. Theor. Nanosci. 5, 1–12, 2008 7



R
E
S
E
A
R
C
H
A
R
T
IC
L
E

Silicon Based on Molecular Dynamics Simulations and Lattice Dynamics Henry and Chen

(a) (b) (c)

Fig. 6. Longitudinal acoustic (LA) phonon relaxation times. (a) Longitudinal acoustic phonon relaxation times extracted from normal mode decay

times in the (a) [1,0,0] (b) [1,1,0] and (c) [1,1,1] directions at ten different temperatures.

(a) (b) (c) (d)

Fig. 7. Transverse acoustic (TA) phonon relaxation times. (a) Transverse acoustic phonon relaxation times extracted from normal mode decay times

in the (a) [1,0,0] (b) [1,1,0] (c) [1,1,0] and (d) [1,1,1] directions at ten different temperatures. The transverse modes in the [1,1,0] direction are

non-degenerate. (c) Corresponds to the second TA branch of the dispersion, where the frequencies are not monotonically increasing.

8 J. Comput. Theor. Nanosci. 5, 1–12, 2008
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(a) (b) (c)

Fig. 8. Longitudinal optical (LO) phonon relaxation times. (a) Longitudinal optical phonon relaxation times extracted from normal mode decay times

in the (a) [1,0,0] (b) [1,1,0] and (c) [1,1,1] directions at ten different temperatures.

(a) (b) (c)

Fig. 9. Transverse acoustic (TO) phonon relaxation times. (a) Transverse optical phonon relaxation times extracted from normal mode decay times

in the (a) [1,0,0] (b) [1,1,0] and (c) [1,1,0] (non-degenerate) directions at ten different temperatures.

J. Comput. Theor. Nanosci. 5, 1–12, 2008 9
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increased. By fitting the acoustic relaxation times with a

� = A ·�−2 ·T −b model we find A= 5,32 ·1018 (K1,49/sec),

b = 1,49 for LA phonons and A = 5,07 · 1018 (K1,65/sec),

b = 1,65 for TA phonons. Some of the previous analyti-

cal approaches2–4�20 to relaxation times have not predicted

the stronger temperature dependence of thermal conduc-

tivity at higher temperatures. Srivasatava20 attributed this

to temperature dependent anharmonicity, nonlinear disper-

sion and possibly four-phonon interactions. Calculating

relaxation times with MD simulations includes all of these

effects and captures the stronger temperature dependence.

Omini and Sparavigna considered the effect of temperature

dependent anharmonicity and showed stronger temperature

dependence closer to what is observed in experiments,

suggesting that any remaining discrepancy may be due

to higher order interactions, which are included in our

calculation. Srivastava also considered optical phonons in

his work,20 using the Einstein approximation (constant

optical frequency), and showed they significantly reduce

thermal conductivity by scattering acoustic phonons, but

do not alter the temperature dependence. Our results for

optical phonon relaxation times exhibited weak frequency

dependence (approximately constant) and were about an

order of magnitude smaller than the acoustic relaxation

times. The temperature dependence is similar to the trends

observed for acoustic relaxation times, which agrees with

Srivastava’s calculations. The transverse optical phonon

relaxation times for the [1,1,1] direction have been omit-

ted because they were lower than other optical relaxation

times by an order of magnitude and exhibited very incon-

sistent behavior.

Our frequency and polarization dependent methodology

allowed for direct evaluation of the contributions from

different branches of phonon states. Our results indicate

that LA phonons contribute roughly 45% to the thermal

conductivity, which is in excellent agreement with Omini

and Sparavigna21 and also qualitatively agrees with Ju and

Goodson’s deduction from experimental observations.16

The results indicate that on average the two TA polar-

izations contribute roughly 30% (TA-1) and 20% (TA-

2) individually, while the optical polarizations contribute

the remainder. The strong frequency dependence of the

acoustic relaxation times implies that effective or fre-

quency averaged values for the MFPs can inaccurately

represent the characteristics of phonon transport. To exam-

ine the idea further we recalculated the thermal conduc-

tivity using different combinations of frequency averaged

phonon transport properties. As a qualitative measure of

the error introduced by neglecting the spectral dependence

of each component to the thermal conductivity (specific

heat, group velocity and relaxation time), we compared the

thermal conductivity with different combinations of effec-

tive values to the BTE-average thermal conductivity (in

Fig. 5(b)), where each component’s frequency dependence

was included. To define an effective or frequency averaged

property -̄p we integrated over the frequency spectrum,
using the density of states as a weighting function, to gen-
erate an arithmetic average over phonon states (effective
value) for each polarization

-̄p =

∫ �max

0
-p��� ·Dp��� ·d�

∫ �max

0
Dp��� ·d�

(17)

where -p = h� ·�df0/dT � for the specific heat, -p = vp���

for the group velocities -p = �p��� for the relaxation times
and the subscript p implies that we have retained the polar-
ization dependence. This effective value, a constant for
each polarization, was then used to calculate the thermal
conductivity with the full frequency dependence consid-
ered for the remaining properties inside the integral of
Eq. (13). This provided a qualitative measure of the rela-
tive error associated with effective or frequency averaged
treatment of a particular phonon property. Figure 10 shows
the percentage difference of the thermal conductivities
from the BTE-averaged values when effective properties
are used. The legend lists the properties that retained their
frequency dependence in the integral (Eq. (13)). Figure 10
shows that preserving the frequency dependence of the
group velocities and relaxation times together leads to
the least amount of error. Treating other combinations of
properties as frequency independent, leads to ∼20%–40%
error, except when all three properties are treated as fre-
quency independent, in which case the thermal conductiv-
ity is over predicted by ∼95%. The results in Figure 10
generally show that considering the frequency dependence
of the phonon properties is highly important as we qualita-
tively show that the use of frequency averaged properties
can lead to slightly larger errors than the assumption of
isotropic phonon properties.

To understand the strength of size effects we used
isotropic and polarization averaged phonon MFPs, which
span seven orders of magnitude over three orders of mag-
nitude in frequency. This large spread of phonon MFPs
is due to the diverging � ∝ �−2 dependence at low fre-
quencies and phonons with group velocities that approach

Fig. 10. Deviation in thermal conductivity from frequency averaged

properties. Percentage change in thermal conductivity when compared to

the spectral dependent (directionally averaged) BTE values. The figure

legend lists the variables that remained inside the frequency dependent

integral. The remaining variables, not listed in the legend, were replaced

by a constant equal to the average over phonon states as described in

Eq. (20).
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zero near the Brillouin zone boundary. In Figure 11(a)

we show (in arbitrary units) the number of phonon states

corresponding to the range of MFPs, noting that at room

temperature most phonons have a MFP between 10 nm

and 1 micron. In Figure 11(b) we show the thermal con-

ductivity and its accumulation with respect to the average

phonon MFPs.9

1



·
∑

p

1

3

∫ �′

0
C ·v ·���′� ·dv (18)

This plot shows that the relatively few states that have

MFPs much longer than 1 micron contribute ∼35% to

the thermal conductivity at room temperature. This con-

trasts the commonly held notion that thermally important

phonons only have MFPs on the order of micron at cryo-

genic temperatures. Our results show that only a small

number of phonon states carry energy beyond 1 micron,

yet they are large contributors to the thermal conductiv-

ity and are thus impacted by boundaries at the micrometer

length scale. Figure 11(b) shows that at room tempera-

ture phonons with MFPs between 100 nm and 10 micron,

which represent a minority of the phonon states, comprise

∼70% of the thermal conductivity at room temperature.

Figure 12 shows the contributions to thermal conduc-

tivity with respect to polarization averaged wavelengths.

This figure shows that 80% of the thermal conductivity is

attributed to phonons with wavelengths less than 10 nm.

300 K

1000 K

1000 K

300 K

(b)

(a)

Fig. 11. Density of states and thermal conductivity accumulation with

respect to MFPs. (a) The density of phonon states (arbitrary units) with

respect to the average phonon MFPs at 300 K (solid line) and 1000 K

(dashed line). (b) Percentage of thermal conductivity accumulation at

300 K (solid line) and 1000 K (dashed line).

300 K

1000 K

Fig. 12. Thermal conductivity accumulation with respect to wavelength.

Percentage of thermal conductivity accumulation at 300 K (solid line)

and 1000 K (dashed line).

These results provide new explanation of the strong
size effects observed for silicon microstructures.17�18 Our
results in Figures 11 and 12 also indicate that even though
the MFPs are much shorter at 1000 K, the spectral depen-
dence is not a strong function of temperature and the same
phonons are responsible for the energy transport.

7. CONCLUSION

A major obstacle to analytical study of phonon–phonon
scattering has been the relative scaling of the contributions
from different polarizations. Although previous works
have generated semi-empirical expressions for relaxation
times, the fitting parameters could not be determined reli-
ably and questions have continued to linger. As an alterna-
tive we have presented a numerical simulation technique
that reliably provides the details of phonon transport prop-
erties and can be applied to any crystalline solid. In our
various simulations of bulk silicon we were able to extract
relaxation times for each polarization in different direc-
tions and investigated the spectral dependence of silicon’s
thermal conductivity. Our results indicate that the con-
tribution from longitudinal acoustic phonons is compara-
ble to that of the two transverse acoustic branches. Our
study of the spectral dependence showed that effective or
frequency averaged phonon transport properties can lead
to significant errors ∼20–40%, while anisotropy causes
properties to vary by 15–30%. Our MFP results indi-
cate also that relatively few phonons with MFPs greater
than 1 micron contribute 35% to the thermal conductiv-
ity. Such strong contributions from these phonons provide
explanation for the size effects observed in various silicon
microstructures.17�18 The relaxation time results also pro-
vide useful insight for understanding size effects in silicon
while providing more reliable input for other modeling
and simulation techniques to study micro/nanoscale heat
transfer.
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