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Abstract
We present a new framework for processing point-sampled objects
using spectral methods. By establishing a concept of local frequen-
cies on geometry, we introduce a versatile spectral representation
that provides a rich repository of signal processing algorithms.
Based on an adaptive tesselation of the model surface into regu-
larly resampled displacement fields, our method computes a set of
windowed Fourier transforms creating a spectral decomposition of
the model. Direct analysis and manipulation of the spectral coeffi-
cients supports effective filtering, resampling, power spectrum
analysis and local error control. Our algorithms operate directly on
points and normals, requiring no vertex connectivity information.
They are computationally efficient, robust and amenable to hard-
ware acceleration. We demonstrate the performance of our frame-
work on a selection of example applications including noise
removal, enhancement, restoration and subsampling.

Keywords: Signal processing, spectral filtering, subsampling,
Fourier transform, point-based representations

1 Introduction
Today’s range sensing devices are capable of producing highly
detailed surface models that contain hundreds of millions of
sample points. Due to a variety of physical effects and limitations
of the model acquisition procedure, raw range datasets are prone to
various kinds of noise and distortions, requiring sophisticated pro-
cessing methods to improve the model quality. In spite of recent
advances made in mesh optimization, traditional mesh processing
algorithms approach their limits, since triangle primitives implic-
itly store information about local surface topology including ver-
tex valence or adjacency. This leads to a substantial additional
overhead in computation time and memory costs. With increasing
model size we thus experience a shift from triangle mesh represen-
tations towards purely point-based surface descriptions. For
instance, recent work concentrated on point-based rendering pipe-
lines [18, 19], where point samples without connectivity are pro-
posed as rendering primitives. Surprisingly, however, little work

has been done so far on direct processing or manipulation of point-
sampled geometry. In this paper we present a new framework for
spectral analysis and processing of point-sampled objects. The
method operates directly on irregular point sets with normals and
does not require any a priori connectivity information. Our frame-
work extends so-called windowed Fourier transforms - a concept
being well known from signal processing - to geometry.

The Fourier transform is a powerful and widely used tool for
data analysis and manipulation. In particular, image processing
techniques successfully exploit frequency representations to
implement a variety of advanced spectral processing algorithms
comprising noise removal, enhancement, feature detection and
extraction, up/down-sampling, etc. [7]. Extending this approach to
general geometric models is difficult due to a number of intrinsic
limitations of the conventional Fourier transform: First, it requires
a global parameterization on which the basis functions are defined.
Second, most FT algorithms require a regular sampling pattern
[17]. These prerequisites are usually not satisfied by common dis-
crete geometry, rendering the standard Fourier transform
inoperable. A further limitation of traditional Fourier representa-
tions is the lack of spatial localization making it impractical for
local data analysis. We will show how these limitations can be
overcome and present a generalization of the windowed FT to gen-
eral 2-manifolds. The basic idea behind our framework is to pre-
process the raw irregular point cloud into a model representation
that describes the object surface with a set of regularly resampled
height fields. These surface patches form “windows” in which we
compute a discrete Fourier transform to obtain a set of local fre-
quency spectra. Although being confined to individual surface
patches, our windowed FT provides a powerful and versatile
mechanism for both local and global processing. The concept of
frequency on point-sampled geometry gives us access to the vast
space of sophisticated spectral methods resulting from tens of
years of research in signal processing. 

In this paper we will focus on two classes of such methods:
Spectral filtering and resampling. We will point out how sophisti-
cated filtering operations can be implemented elegantly by analyz-
ing and modifying the coefficients of the frequency spectrum.
Possible applications include noise removal, analysis of the sur-
face microstructure and enhancement. Further we present a fast
algorithm for adaptively resampling point-based geometry, using
the spectral representation to determine optimal sampling rates.
This method is particularly useful for reducing the complexity of
overly dense point-sampled models. By using FFT and other signal
processing algorithms our framework is efficient in computation
and memory costs, amenable to hardware acceleration and allows
us to process hundreds of millions of points on contemporary PCs.

Figure 1: Spectral processing pipeline. Processing stages are depicted as rectangles, rounded boxes represent input/output data of each stage. Gray back-

ground color indicates the preprocessing phase.
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1.1 Previous Work
Extending the concept of frequency onto geometry has gained
increasing attention over the last years. Conceptually, this general-
ization can be accomplished by the eigenfunctions of the Lapla-
cian. Taubin [20] pioneered spectral methods for irregular meshes
using a discrete Laplacian to implement iterative Gaussian
smoothing for triangle meshes. This method has later been
improved by Desbrun et al. [4] who tackled the difficulty of dis-
cretizing a geometric Laplacian by introducing curvature flow for
noise removal. Kobbelt [13] presented a novel concept for multi-
resolution variational fairing and modeling, where high mesh fre-
quencies are attenuated by iteratively solving discretized Laplacian
equations. While being based on signal processing methodology,
these algorithms do not compute an explicit spectral representation
of the object surface. Hence typical filters such as Gaussian
smoothing have to be implemented in the spatial domain. In con-
trast, our method generates a set of local Fourier spectra that can
be explicitly analyzed and manipulated. This supports more pow-
erful filtering, e.g. least-squares optimal or inverse, feature
enhancement and Fourier sampling. Specifically, we can examine
the power spectrum of the surface signal to estimate optimal filter
parameters or determine the noise level present in the data. 

Guskov et al. [9] introduced signal processing methods using
subdivision and pyramid algorithms. While they achieve qualita-
tively remarkable effects such as band-pass filtering and enhance-
ment, their notion of frequency is based on detail vectors between
different levels of a mesh hierarchy. Our scheme uses the Fourier
transform, which efficiently computes a projection into the space
of eigenfunctions of the Laplacian. Within this framework con-
cepts like natural vibration modes or spatial frequency are solidly
founded in the theory of differential calculus. This allows us to
exploit many results from the extensive work on Fourier theory
including Sampling or Parseval’s theorems. With the former we
obtain a profound means to determine optimal sampling rates,
while the latter supports local error control. 

Lately, Karni and Gotsman [12] introduced a method for spec-
tral compression of triangle meshes that is based on a fixed parti-
tioning of the mesh into submeshes. Effective compression is
achieved by a direct decomposition of these patches into the eigen-
functions of the Laplacian. While their notion of frequency is
strictly local, the explicit eigenvector computations are expensive
and potentially unstable, posing serious limits for the efficient pro-
cessing of large patch sizes.

All of the above methods focus on triangle meshes, relying
heavily on connectivity information between vertices. In contrast,
our method is purely point-based, requiring only vertex positions
and associated normals. This allows direct processing of scanned
data without the need to construct polygonal meshes, making it
particularly suitable for the very large models obtained with mod-
ern range scanners [15]. 

1.2 Algorithm Overview 
Fig. 1 gives a high-level overview of our spectral processing pipe-
line. In the first stage we split the point-sampled model into a num-
ber of overlapping patches. A patch is defined as a collection of
sample points that represents a connected region of the underlying
surface. The tesselation is done in such a way that the surface rep-
resented by each patch can be expressed as a displacement field
over a planar domain. The so generated patch layout forms the
basis of our windowed Fourier transform and the following stages
operate locally on individual patches. First the patch surface is
resampled on a regular grid using a fast scattered data approxima-
tion (SDA). Then we apply a Discrete Fourier Transform (DFT) to
obtain the spectral representation of the patch surface. Using
appropriate spectral filters we can directly manipulate the Fourier
spectrum to achieve a variety of effects such as de-noising or
enhancement. A subsequent inverse DFT reconstructs the filtered

patch surface in the spatial domain. We can then also utilize the
spectral information to adaptively resample the patch surface. At
the end of the pipeline is the reconstruction stage, where the pro-
cessed patches are stitched together to yield the final object sur-
face. This requires careful attention at the patch boundaries, where
we create a smooth transition by blending the overlapping parts of
adjacent patch surfaces. As indicated in Fig. 1, the processing
pipeline can be split into two phases: Patch layout generation,
SDA and DFT can be separated into a preprocessing step. We also
precompute the parameter mapping between adjacent patches and
the blending function used in the reconstruction. This leaves spec-
tral analysis, inverse DFT, resampling and reconstruction as the
actual processing stages. We will now describe the individual
stages of the processing pipeline in more detail, following the
order depicted in Fig. 1.

2 Creating the Patch Layout
We assume that the input sample points represent a smooth two-
manifold of arbitrary topology and possibly multiple connected
components. Further we require the sampling to be dense enough
in the sense that adjacent points in 3-space with similar normal ori-
entation belong to the same local neighborhood of the surface [1].
The goal is to describe the object surface with a set of patches that
can be represented as scalar height fields. To achieve this we grow
patches by accumulating adjacent sample points subject to a nor-
mal cone condition. This criterion states that the aperture angle of
the cone spanned by the normals of a patch’s sample points is less
than . Bounding the normal cone width guarantees that no
foldovers can occur, i.e. that we can bijectively map the patch sur-
face to a height field representation over a planar domain. In prac-
tice we choose  as maximum normal cone width, as this
provides a more uniform parameter mapping and thus makes the
following scattered data approximation more robust. We compute
the normal cone with an adapted version of Gärtner’s miniball
algorithm [3]. It determines the smallest enclosing sphere of a set
of normal vectors interpreted as points on the unit sphere. The vec-
tor through the center of the miniball gives the normal cone center
and its radius determines the aperture angle (see Fig. 2). 

Our algorithm for generating the patch layout proceeds in two
stages: The first stage creates an initial fine-grain patch layout by
clustering adjacent sample points, while the second stage merges
adjacent clusters into patches using an optimization approach (see
also Fig. 4). During this iterative growth we ensure at all times that
the normal cone condition is satisfied.

Clustering.  We first arrange the sample points in a binary space
partition (BSP) tree by recursively splitting the sampling set along
the longest axis of its bounding box. The BSP structure implicitly
encodes the 3D adjacency information, requiring approx. 10% of
the input model size in additional memory overhead. We choose
the leaves of the tree, which contain exactly one sample point, as
our initial clusters. Now we successively merge clusters with a
common parent in the BSP tree, since these are neighbors in 3-
space. However, as Fig. 3 illustrates, a cluster has potentially many
other neighbors and allowing only sibling clusters to be merged is
too restrictive to lead to a useful patch layout. Therefore we stop

Figure 2: The miniball algorithm provides an accurate estimation of the

cone spanned by a set of normal vectors (red).
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the clustering stage as soon as the clusters reach a suitable size
(typically 25-100 sample points, depending on model size). We
will call the patches created by clustering leaf patches, as they are
leaves of the final BSP tree.

Patch Merging.  At the beginning of the second stage we have to
compute local neighborhood information, i.e. for each leaf patch
we need to determine a list of all adjacent leaf patches. A leaf
patch is confined by six BSP split planes, each of which corre-
sponds to an internal node of the tree. In a first step we collect for
each split plane all leaf patches that border on either side of the
plane. Then we project the bounding boxes of these leaf patches
onto the split plane and check for overlaps of the projections. If an
overlap occurs, we mark the leaf patches as neighbors (see Fig. 3). 

Using the adjacency information of the leaf patches, we can now
apply a more sophisticated merging technique. The idea is to use
an optimization approach that merges patches according to a local
quality metric . Let  and  be neighboring patches such that

 is a potential merge candidate pair. Then 
gives a relative measure of the quality of the patch layout obtained
after merging  and , with small values of  indicating a high
quality. By iteratively merging the pair with the highest quality
gain we can locally optimize the patch layout. Merge candidate
pairs are arranged in a priority queue that is ordered by increasing

 and initialized with all pairs of neighboring leaf patches. Now
we successively remove the pair with the highest priority (i.e. low-
est ) from the queue and merge the two patches if their union sat-
isfies the normal cone condition. Then we update the priorities and
neighborhood information of all affected pairs accordingly.  is
determined using the following formula:

. (1)

Each factor of Eq. 1 seeks to optimize a specific quality feature of
the final patch layout. Since the individual quality measures are
difficult to normalize, we combine them in a product to yield .

�  assigns a high priority to small patches and thus reduces
undesirable fragmentation:

, 

where  is the number of samples in patch .

�  penalizes the increase in normal cone width of the
merged patch :

,

where  is the aperture angle of the normal cone of .
This leads to a better adaptation of the patch layout to the local
curvature of the underlying surface, since flat regions are
quickly merged into large patches, while highly curved regions
will be covered by smaller patches.

�  is introduced to control the boundary of the patches:

,

where  counts the number of leaf patches of , while
 counts only those leaf patches that lie on its boundary1.

Thus  seeks to minimize the length of the patch boundary
relative to the patch area. This will favour roughly circular-
shaped patches, which is beneficial for the later SDA and DFT
processing stages.

�  is used to regularize the patch distribution:

,

where  is a spring energy term.

It is derived by placing a spring with tension  on each edge

from the center  of  to the center of all

neighboring patches .

The merging process terminates as soon as no more patches can be
merged without violating the normal cone condition. To have addi-
tional control over the granularity of the patch layout, the user can
specify a maximum patch size in terms of number of sample points
or spatial extent. One could also assign different weights to each of
the individual quality measures by using additional exponents in
Eq. 1. In practice we found, however, that equal weights generally
lead to satisfactory results. Fig. 4 illustrates the two stages of the
patch layout generation for the simple example of a sphere.
Figs. 13, 15 and 16 show the final patch layout for more complex
point-sampled models. Observe how the distribution and shape of
the patches adapts to the geometry, i.e. in regions of high curvature
we have more and smaller patches than in flat parts of the surface. 

3 Scattered Data Approximation
The patch generation algorithm does not require nor create any
connectivity information of individual samples. At this point a
patch is simply a set of irregular sample points without any addi-
tional knowledge about the spatial relations between them. The
goal of the next stage of the processing pipeline is to create a con-
tinuous surface representation that describes the patch surface as a
scalar displacement field sampled at regular intervals.

Functional Mapping.  The first step in doing so is to define the
local coordinate frame of the height field representation. We call
the plane specified by the center of a patch’s normal cone its base
plane (see Fig. 2). It defines a coordinate transformation  that
maps a sample  given in world coordinates to

, where  is the displacement from the base
plane at parameter values . Then we compute the smallest
enclosing box of all  pairs on the base plane [6], so that we
can optimally align the sampling grid to the sample points (Fig. 5).

Overlap.  As mentioned before, we need to let patches overlap to
handle boundary effects during the reconstruction stage. This is
achieved by increasing the size of the parameter rectangle and
including all sample points from neighboring patches that map into
the enlarged parameter domain (see Fig. 5, right). We check for
each boundary point, if it satisfies the normal cone condition. Here

Figure 3: Neighborhood information for leaf patches (2D for illustration).

Thick lines (resp. black dots) indicate the BSP split planes that confine the

green patch. Patch 1 and 6 are neighbors because their projections onto the

split plane overlap. Note that neighbors can be distributed over the whole

BSP tree.
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it has proven useful to increase the maximum normal cone width

for boundary points by , allowing more information from the

underlying surface to be included in the overlap region. For the

applications of this paper we found an overlap size of 10% of the

interior parameter box sufficient for creating a smooth transition at

the boundaries during reconstruction.

Regular Sampling.  As Fig. 5 illustrates, the sampling pattern on

the base plane is in general irregular. Standard spectral transforms

such as Cosine or Fourier transforms require regularly sampled

input data, however. Therefore we apply a fast, hierarchical scat-

tered data approximation, which projects the displacement field

onto a regular grid. We use linear B-Spline basis functions cen-

tered at each grid point, such that the support of each basis touches

the center of its eight neighboring basis functions. Linear B-

Splines allow for efficient evaluation due to their compact support,

and interpolate the original samples provided the sampling rate is

sufficiently high. We utilize the scattered data approximation

method presented by Gortler et al. [8] for image based rendering

and refer to there for details. As shown in Fig. 6, this algorithm

proceeds in three phases: 

� Splatting computes weighted averages of the sample points to

create an initial approximation of the coefficients of the basis

functions. Due to the irregularity of the sample points this first

approximation may still contain holes, i.e. undefined regions,

that need to be filled.

� Pull iteratively generates lower resolution approximations

through hierarchical convolution filtering.

� Push fills the holes in the final patch by successively blending

approximations at different resolutions.

We set the grid size  proportional to the number  of interior

and boundary points of the patch: , ,

where  with oversampling factor  (see Fig. 5).

For all our models we chose , which leads to an approxima-

tion error1 of less than 0.01%. Note that substantially smaller grid

sizes introduce some noticeable low pass-filtering due to the aver-

aging of the splatting phase. As explained above, our patch layout

describes a surface by a set of scalar-valued displacement coeffi-

cients. A similar approach was taken for displaced subdivision sur-

faces [14] and normal meshes [10] that achieve staggering mesh

compression rates. Both methods, however, require the costly

computation of a coarse triangle mesh to obtain the base domain

for the displacements. In addition, nontrivial parameterizations are

mandatory to keep track of coefficients. This creates a substantial

computational overhead, making both representations less suitable

for our purposes. The patch layout scheme is much more simple

and neither requires triangle meshes nor mesh simplification. The

described procedures operate directly on point clouds, making

them fast and efficient even for very large datasets (see Table 1).

4 Discrete Fourier Transform

The surface representation created by the SDA describes a point-
sampled model with a set of overlapping patches, each of which
satisfies the Fourier requirements of regular sampling distribution
and Euclidean domain. We can thus apply a discrete Fourier trans-
form (DFT) using a 2D box window function2 to obtain a spectral
decomposition of the surface model. In order to better understand
what follows, we give a brief introduction of the DFT, mentioning
only those properties that we directly exploit in our algorithms. For
more details we refer to textbooks such as [2].

The two-dimensional DFT is essentially a basis transform into
the space of eigenfunctions of the Laplacian. Given a real-valued
input signal  defined on a regular grid of size , the coeffi-
cients of the DFT  can be written as

, (2)

where  and  are the discrete fre-
quencies. Using a 2D Fast Fourier transform (FFT), we can com-
pute the DFT in  operations, instead of

 operations required for the direct evaluation of Eq. 2
[5]. Fundamental for the implementation of the spectral filters
described below is the convolution theorem. It relates a convolu-
tion  of two signals  and  in the spatial domain with a
multiplication in the spectral domain: .
Instead of doing a computationally expensive (filtering) convolu-
tion in the spatial domain, we can thus perform a cheap multiplica-
tion in the frequency domain using the DFT and its inverse.

Power Spectrum.  The power spectrum  is the Fourier trans-
form of the autocorrelation function, i.e. ,
where the asterisk denotes the complex conjugate. Power spectrum
estimation is a widely used tool in data analysis. As illustrated in
Fig. 7, it allows to estimate the signal-to-noise ratio and can thus
be used to optimize filter characteristics such as cut-off frequency

Figure 5: Left: Smallest enclosing box of the interior sample points in the

parameter plane. Right: extended parameter domain with regular sampling

grid. The red dots indicate boundary points that have been included from

neighboring patches.

1measured as the RMS error between original sampling points

and reconstructed points from the SDA surface.
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or pass- and stop-band. Using the convolution theorem, we can
directly compute  from the spectral coefficients, i.e.

 with .

Error Estimation.  Another important result from Fourier theory
is Parseval’s theorem

, (3)

which relates the signal energy in spatial and frequency domains.
We can utilize this property for estimating the error introduced by
filtering the spectral coefficients: Suppose  is a filtered
version of the spectrum . Then the -norm of the dif-
ference  is given by

. (4)

Thus we have explicit control over the error introduced when mod-
ifying the spectral coefficients.

5 Spectral Analysis
The frequency spectrum obtained by the DFT provides us with a
spectral representation of the patch surface. The basis functions in
the spectral domain represent natural vibration modes of the sur-
face, thus relating specific surface features to certain frequency
intervals. Low frequencies, for instance, represent the overall geo-
metric shape, while high frequencies account for small geometric
detail and noise. With these semantics we can perform elaborate
filtering operations by manipulating the frequency spectrum.
Fig. 8 shows various such filters with the corresponding transfer
functions. Low-pass filtering eliminates high frequencies and thus
leads to surface smoothing. Observe that the ideal low-pass filter
with its sharp cut-off frequency produces the well-known ringing
artefacts [7], which are clearly visible as surface ripples in the
image. This phenomenon can easily be explained with the convo-
lution theorem: Multiplying the frequency spectrum with the box
function of the ideal filter is equivalent to convolving the original
surface with a sinc function (see Fig. 9, left image). When using a
Gaussian transfer function for surface smoothing, no ringing arte-
facts occur, since the corresponding filter kernel in the spatial
domain is also a Gaussian (Fig. 9, right). The lower left image of
Fig. 8 shows a band-stop filter that attenuates middle frequencies.
This leads to overall surface smoothing while still retaining the
microstructure of the surface material. We can also enhance certain
features of the surface by scaling the frequency spectrum appropri-
ately (Fig. 8, lower right).

Signal Restoration.  Real imaging systems often introduce some
undesirable low-pass filtering since the physical apparatus does
not have a perfect delta-function response. This blurring can be
reduced with an inverse filter that amplifies high frequencies.
Inverse filtering, however, tends to instabilities and is extremely
sensitive to noise. To restore the object surface in the presence of
blur and noise we apply a least-squares optimal filter or Wiener fil-
ter [11]. Suppose we have a blurred and noisy input signal  and

we want to reconstruct the underlying original signal . Applying
the spectral filter function  to the Fourier transform of  yields
the filtered signal . The goal is to determine 
such that 

(5)

is minimized. As shown in [11] this can be achieved by power
spectrum analysis, yielding

, (6)

where ,  and  are the estimated power spectra of the
blurred signal, noise and imaging system response, respectively
(see Fig. 7, right). Note that effective Wiener filtering relies on an
accurate estimation of these quantities, which often requires some
knowledge of the system’s impulse response (see also Fig. 13).

Figure 7: Power spectrum estimation. Normalized logarithmic plot of the

power spectrum of a typical patch surface (left). The annotation at each cir-

cle indicates the relative amount of power contained within the circle. On

the right an idealized illustration for signal-to-noise ratio estimation. 

P
P x( ) X 2= X F x( )=

0

1

f

P

input signal

noise level

extrapolated

estimated 
original signal

N
2

S
2

xn m,

2

m
∑

n
∑

1

NM
--------- Xk l,

2

l

∑
k

∑=

Y F y( )=
X F x( )= L2

x y–

x y– 2

1

NM
--------- Xk l, Yk l,–

2

l

∑
k

∑=

x'

Figure 8: Spectral filters applied to the St. Matthew dataset. The corre-

sponding 2D transfer function is obtained by rotating the shown 1D function

around the vertical axis.

Figure 9: Convolution filter kernels in the spatial domain. 

1

Original

Ideal low-pass

0 1

Gaussian low-pass

Enhancementband-stop

0

1

1

0

1

1 0

1

2

3

1

0

1

1

0

1

1

e
x

2
–

∼
xsin

x
----------∼

x

x

ideal low-pass Gaussian low-pass

x
φ x'

y F
1–

φ F x'( )⋅( )= φ

y t( ) x t( )–
2

td∫ Y f( ) X f( )–
2

fd∫=

φ f( )
S f( )

2

S f( )
2

N f( )
2

+
--------------------------------------

1

R f( )
2

----------------⋅=

S
2

N
2

R
2



6 Resampling
After manipulating the frequency spectrum, an inverse DFT takes
us back into the spatial domain. If we only want to filter the input
model without affecting the sampling pattern and density, we sam-
ple the filtered patch surface at the parameter values of the original
sample points. However, for many applications it is desirable to
have some mechanism for adaptively refining a surface through
upsampling or reducing the model size through subsampling. The
latter is particularly important when dealing with very large data-
sets, which often cannot be handled well in their full resolution. 

Fourier Sampling.  The Fourier spectrum provides us with an
elegant way to estimate the optimal sampling rate when subsam-
pling the patch surface. Suppose we have a bandlimited signal 
with Nyquist frequency , i.e. all coefficients associated with fre-
quencies greater than  are zero. Then the sampling theorem of
Fourier theory states that we can reconstruct  exactly, if the sam-
pling interval is less than or equal to . Thus to uniformly
subsample the patch surface we proceed as follows: First we low-
pass filter the frequency spectrum to obtain a bandlimited signal.
Using the power spectrum and error estimation described in Sec-
tion 4, we adjust the filter parameters to match the desired maxi-
mum error. Then we apply the sampling theorem to compute the
optimal sampling interval for the filtered signal. Thus we can con-
trol the sampling rate by specifying the maximum error tolerance.

Sampling Points and Normals.  To determine a patch surface
point at arbitrary parameter values, our current implementation
uses bilinear interpolation and computes the corresponding nor-
mals with first order divided differences. Higher order schemes
can easily be implemented as well. Alternatively, we could use the
subdivision scheme presented in [14], where the scalar displace-
ments are interpreted as subdivision coefficients.

7 Reconstruction
At this stage of the processing pipeline we need to reassemble the
object surface by stitching together the processed patches. Some
care needs to be taken here, since individual processing of patches
can lead to discontinuities at the patch boundaries. To create a
smooth transition between patches we blend the patch surfaces in
their regions of overlap. The blending is done by computing a con-
vex combination of corresponding points of neighboring patches
using weights given by a precomputed blending function. 

Parameter Mapping.  To blend points from neighboring patches
we need to define a mapping between the different parameter
domains in the regions of overlap. Suppose we have an interior
point  in patch  and that the overlap of patch

 also covers . The corresponding parameter values 
can be determined by first mapping  to world space using the
inverse mapping transform of . This gives us the point ,
which is then projected onto the base plane of . Now we sample

 at  to obtain , which is mapped to world coordinates
to yield . The blended sample point  is then computed as the
convex combination , where 
and  are the weights given by the blending functions at 
and , respectively. Multiple patch overlaps are handled
analogously. To improve performance we can store the parameter
mapping in multi-layered texture maps using bilinear interpolation
to compute the parameter correspondence of intermediate points.

Blending function.  The blending function for a patch is gener-
ated by first splatting all interior samples (see Fig. 5) onto a regular
grid. This grid is aligned to the sample points in the same manner
as the SDA grid, but can be of different resolution. Subsequent
convolution filtering with a Gaussian kernel creates a smooth
decay to zero at the patch boundary (see Fig. 10). Thus the more
we approach the rim of the overlap region of the patch, the smaller
will the influence of the sample point be in the convex combina-
tion of the blended sample. Splatting can be done using conven-

tional graphics hardware with splat size equivalent to the size of
the convolution matrix. The latter is chosen to match the size of the
overlap as defined in Section 3, which for all our test cases was
sufficient to guarantee hole-free reconstruction. Note that blending

function and parameter correspondence are generated in the pre-
processing phase, i.e. operate on the original sample points prior to
spectral filtering. 

Blending Normals.  A smooth boundary transition of normals is
achieved analogously to the convex blending used for geometric
position. Substantial changes of the shape of the patch surfaces,
however, may cause this simple method to fail. Consider the situa-
tion of Fig. 11, where the patch processing has created a significant
gap between the two surfaces. While the blending of position

works fine, the blended normals do not adequately describe the
tangent plane of the surface. We detect such cases using a simple
conservative heuristic that takes into account the positions of the
initial and blended points. The correct normal can then be approxi-
mated by sampling a small number of points in the vicinity of the
considered sample and fitting a least-squares tangent plane
through these points. While computationally more expensive, this
normal estimation is rarely required. In all our test cases less than
1% of all normals have been computed in this way, rendering the
additional overhead negligible.

Blending the sampling rate.  The resampling strategy described
in Section 6 uses the sampling theorem to determine the sampling
rate for each patch. Since adjacent patches can differ significantly
in their spectral representation, this may lead to sharp changes of
the sample density at the patch boundaries. For most applications,
however, a smooth transition of the sampling rate is preferable. To
achieve this, we blend the sampling rate analogously to the blend-
ing of geometric positions and normals. This gives us a continuous

function describing the sampling rate, which is then discretized on
a regular grid. Each grid value serves as an index into a list of pre-
computed sampling patterns, generated using Mitchell’s algorithm
for Poisson disk sampling [16]. Thus we achieve a gradual change
of sampling density at patch boundaries (see Fig. 12).

x
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fc
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1 2 fc( )⁄

p1 u1 v1 h1, ,( )= P1
P2 p1 u2 v2,( )
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P2
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q ω1q1 ω2q2+( ) ω1 ω2+( )⁄= ω1
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Figure 10: Blending function for the patch of Fig. 6. The left image shows

the splatted interior sample points with black dots indicating the sample po-

sitions. On the right, the blending function after convolution filtering.

Figure 11: In case of substantial filtering, the blended normals (green) can

differ significantly from the correct normals (red).

Figure 12: Blending the sampling rate at the patch boundary. Left: Contin-

uous sampling rate. Middle: Discretized area weighted sampling rate. Right:

Resulting sampling pattern.
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8 Results & Discussion
The filtering and subsampling methods described in Sections 5
and 6 operate locally on individual patches. To achieve global
effects we apply the same filter, resp. the same relative error bound
for subsampling, to each patch after appropriate scaling of the fre-
quency spectrum. 

Fig. 13 shows a Gaussian and a restoration filter applied to a
laser range scan of a human head. In our current implementation
the parameters of the Wiener filter have to be adjusted interac-
tively by investigating the power spectra of a small number of
patches to determine the signal-to-noise ratio. Observe how the
Wiener filter preserves geometric features that are smoothed away
by the Gaussian.

Interactive local editing operations on the head of the St. Mat-
thew statue are illustrated in Fig. 15. The user can draw a curve on
the surface to mark a region of interest (red and blue circles). The
patches are split adaptively at this curve and spectral processing is
only applied to those patches within the specified area. Note how
the patch blending automatically creates a smooth transition
between the filtered and non-filtered areas. 

Figs. 14 and 16 show subsampling for Michelangelo’s David.
The original dataset contains 4,128,614 vertices, which have been
reduced to 287,165 in the subsampled version, corresponding to
approx. 98% of patch signal power. While the sampling of the
original model is fairly uniform, the spectral subsampling creates a
nonuniform sampling distribution that locally adapts to the geome-
try. Strictly speaking, the notion of error as established by Eqs. 3
and 4 only holds for the patch interior. The local frequency infor-
mation in the overlap region - and hence the error - is influenced
by the blending function, which in turn results from the convolu-
tion process depicted in Fig. 10. Our experimental investigations
showed, however, that using the same relative maximum error for
each patch leads to a bounded global error and enables intuitive
global control. A more thorough analysis of the error behavior at
the patch boundary is a main focus of future research.

Performance.  Table 1 shows some timing data for our spectral
processing pipeline. Note that the bulk of the computation time is
spent in the preprocessing stage. Due to its scalar representation,
our surface description (comprising SDA and blending grids and
parameter mapping) requires less than 40% of the memory of the
input model (points and normals) even though no specific com-
pression scheme is applied.

Robustness.  An important issue deserving discussion is the
effect of a specific patch layout on the final reconstructed surface.
Naturally, we want the spectral processing to be invariant under
different patchings. While our patching scheme is robust against
moderate parameter variations, drastic modifications consequently

lead to differences in patch size and shape. Nevertheless, for all
examples shown in this paper, we found no perceivable difference
when experimentally applying different patch layouts. Of course,
if filtering becomes excessive this no longer holds true. If all spec-
tral coefficients are set to zero, for instance, then the patch surfaces
will degenerate to the base planes, clearly exhibiting a dependence
on the patch layout and the blending function.

Texture and Scalar Attributes.  In addition to the geometric
information, our pipeline allows to process any attribute data asso-
ciated with the sample points, such as color or reflectance proper-
ties. By including appropriate terms in Eq. 1, these attributes could
also be used to control the patch layout scheme.

9 Conclusions & Future Work
We have introduced a spectral processing pipeline that extends
standard Fourier techniques to general point-sampled geometry.
Our framework supports sophisticated surface filtering and Fou-
rier-based resampling, is very efficient in both memory and com-
putation time and thus allows processing of very large geometric
models. Directions for future research include: global error analy-
sis, out-of-core implementation of the processing pipeline, geome-
try compression, feature detection and extraction, and editing and
animation.
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Model Head St.Matthew David

#vertices

#patches

460,800

256

3,382,866

596

4,128,614

2,966

Computation time (sec.)

Clustering 1.7 13.5 17.2

Patch Merging 4.8 68.7 61.4

SDA 4.1 32.1 46.3

DFT 0.3 2.9 3.4

Total Preprocess 10.9 117.2 128.3

Spectral Analysis <0.1 0.2 0.2

Inverse DFT 0.3 2.9 3.4

Reconstruction
full model

subsampled to 10%

4.6
(1.2)

32.7
(10.4)

57.7
(15.1)

Total 15.8
(12.4)

153
(130.7)

189.6
(147)

Table 1: Timings for the different stages of the processing pipeline

(cf. Fig. 1) on a 1.1GHz AMD Athlon with 1.5 GByte main memory.



Figure 15: Local smoothing (red circle) and enhancement (blue circle) with

adaptive patch layout.

Figure 13: Restoration of a blurred and noisy surface model (a), filtered with a Gaussian (b) and a feature-preserving Wiener filter (c). The underlying patch

layout is shown in image (d).

Figure 16: Michelangelo’s David. QSplat [19] renderings of the original model (a) (4,128,614 vertices) and the subsampled model (b) (287,165 vertices).

Image (c) shows the sampling distribution of the latter, while image (d) illustrates the patch layout.

(a) (b) (c) (d)

(a) (b) (c) (d)

Figure 14: The subsampled head (a) and the zooms of the belly button

(b, original) and (c, subsampled) clearly show the nonuniform sam-

pling distributions with more samples concentrated at regions of high

curvature. 

(a)

(b)

(c)


