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The identification of coherent structures from experimental or numerical data is an
essential task when conducting research in fluid dynamics. This typically involves the
construction of an empirical mode base that appropriately captures the dominant flow
structures. The most prominent candidates are the energy-ranked proper orthogonal
decomposition (POD) and the frequency-ranked Fourier decomposition and dynamic
mode decomposition (DMD). However, these methods are not suitable when the
relevant coherent structures occur at low energies or at multiple frequencies, which
is often the case. To overcome the deficit of these ‘rigid’ approaches, we propose
a new method termed spectral proper orthogonal decomposition (SPOD). It is based
on classical POD and it can be applied to spatially and temporally resolved data.
The new method involves an additional temporal constraint that enables a clear
separation of phenomena that occur at multiple frequencies and energies. SPOD
allows for a continuous shifting from the energetically optimal POD to the spectrally
pure Fourier decomposition by changing a single parameter. In this article, SPOD is
motivated from phenomenological considerations of the POD autocorrelation matrix
and justified from dynamical systems theory. The new method is further applied to
three sets of PIV measurements of flows from very different engineering problems.
We consider the flow of a swirl-stabilized combustor, the wake of an airfoil with a
Gurney flap and the flow field of the sweeping jet behind a fluidic oscillator. For
these examples, the commonly used methods fail to assign the relevant coherent
structures to single modes. The SPOD, however, achieves a proper separation of
spatially and temporally coherent structures, which are either hidden in stochastic
turbulent fluctuations or spread over a wide frequency range. The SPOD requires
only one additional parameter, which can be estimated from the basic time scales of
the flow. In spite of all these benefits, the algorithmic complexity and computational
cost of the SPOD are only marginally greater than those of the snapshot POD.

Key words: computational methods, low-dimensional models, turbulent flows

1. Introduction and motivation

1.1. Contemporary methods for data reduction

Today’s high-fidelity computational fluid dynamics (CFD) and high-end experimental
data acquisition systems tend to produce vast amounts of data that are getting harder

† Email address for correspondence: moritz.sieber@fd.tu-berlin.de
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to interpret and overview. Methods to analyse such data are numerous and are always
developing to stay in line with acquisition and computation systems. The most
challenging data stem from turbulent flows that feature a huge range of temporal and
spatial scales. A key challenge in turbulent flow data mining is the distinction of
deterministic coherent motion from purely stochastic motion. Numerous methods exist
that exploit the periodicity or energetic dominance of these coherent structures. These
methods range from classic Fourier decomposition to dynamic mode decomposition
(DMD) and proper orthogonal decomposition (POD). The most prominent among
them are briefly introduced in the following.

POD has been widely used since its introduction by Lumley (1970) and Sirovich
(1987). It was applied in nearly every fluid dynamic field. Beyond fluid dynamics, this
method is also known as singular value decomposition, principal component analysis
or Karhunen–Loève expansion (Berkooz, Holmes & Lumley 1993). The basic idea
behind this method is to construct an optimal basis that represents most of the data
variance with as few basis functions as possible. In the context of POD the variance
is turbulent kinetic energy. Therefore, the POD searches for the most energetic modes
whereby coherent structures with high energy content are likely to be represented by
POD basis functions (Holmes et al. 2012).

Another classical approach is the linear stochastic estimation introduced by Adrian
& Moin (1988), where the readings of different sensors are related via a linear
mapping. This is closely related to the extended POD (Boree 2003), also described
in a unified framework (observable inferred decomposition) by Schlegel et al. (2012).
In recent extensions of linear stochastic estimation, the use of time delays between
the different sensors and also the use of one sensor at multiple time instances are
pursued to separate periodic coherent structures from turbulent fluctuations (Durgesh
& Naughton 2010; Lasagna, Orazi & Iuso 2013). This approach was also used
to improve the determination of harmonic POD modes from few pressure sensors
(Hosseini, Martinuzzi & Noack 2015). These utilizations of data from various time
instances are also related to the temporal constraint used for the POD extension
proposed in this article.

Targeting the temporal periodicity of the coherent structures, spectral methods such
as discrete Fourier transform (DFT) and the recently introduced DMD (Rowley et al.

2009; Schmid 2010) come into play. These methods commonly span the mode space
according to fixed frequencies, which enables the identification of coherent structures
within small spectral bandwidths. In contrast to DFT, DMD also distinguishes modes
with respect to their linear amplification. The recently introduced extended DMD
(Williams, Kevrekidis & Rowley 2015) tries to overcome the limitations encountered
by the (linear) DMD approach when trying to decompose data from nonlinear
systems. The idea is to use nonlinear functions that create observables of the data,
which are exactly described by a linear system. This approach translocates the
problem towards the identification of these nonlinear functions, which can be solved
using the ‘kernel trick’ that is common in machine learning. This paper presents
an alternative approach, which extends POD to account for temporal dynamics in
addition to energetic optimality.

1.2. Why yet another method?

After this short and incomplete review of data processing methods, one may ask
if there is need for another method. The answer is probably no, so we take the
most used method (POD) and bring it up to date for present research issues. The

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 U

ni
ve

rs
ita

et
sb

ib
lio

th
ek

, o
n 

26
 O

ct
 2

01
7 

at
 0

7:
48

:1
7,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s .
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
01

6.
10

3

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2016.103


800 M. Sieber, C. O. Paschereit and K. Oberleithner

approach pursued here includes a simple yet effective extension to the classical POD,
which leads to a more general method comprising POD and also DFT. This approach
unifies existing methods, but also offers possibilities beyond these. From the authors’
experience, the currently available methods often fail when applied to challenging
flow data. These stem from flows with weak coherent structures where the recorded
data have low signal-to-noise ratios, from flows with intermittent dynamics, or from
flows featuring multi-modal interactions leading to frequency modulations, to name
a few. In such cases, much effort is required to optimize the data processing until
satisfactory results are obtained. The usual escape route is to focus on a certain spatial
region or to apply suitable filters to pick out a certain wavelength or frequency range.
This involves trial and error or requires prior knowledge of the investigated flow.
There is also the danger of cutting off a substantial portion of the data, leading to
false interpretations. These procedures can be collected under the heading ‘identifying
symmetries’ as done by Holmes et al. (2012). The drawback of this approach is that
the investigated flow must feature some symmetries and they must be known a priori.
A recent application shows the huge variety of spatial and temporal filtering together
with POD to separate different phenomena into different modes (Bourgeois, Noack &
Martinuzzi 2013), exemplifying the complexity of this approach.

The usage of spectral methods for highly turbulent flows is even more challenging
than POD. The variable frequency of single coherent structures and intermittent
occurrence of different structures with the same frequency hinders a proper
decomposition. In terms of the DFT, averaging of spectra from multiple measurements
or sensors is essential to obtain reliable results. Analogously, for DMD, averaging
over several events is an option to reject noise (Tu et al. 2014). Nonetheless, the
results obtained with DFT and DMD suffer from limiting the temporal dynamics to
single frequencies. Turbulent flows hardly ever feature discrete frequencies and it is
not always valuable to restrict a single mode (flow phenomenon) to a single frequency.
Coherent structures that feature significant phase jitter or frequency modulation are
represented by many modes at similar frequencies. In contrast, the POD puts no
temporal constraint on the modes. This can result in modes that represent flow
phenomena occurring at largely different temporal scales. Thus, it is often hard to
interpret these modes and draw meaningful conclusions from the temporal dynamics.

From our point of view, there is a big gap between the energetically optimal
decomposition of POD and the spectrally clean decomposition of DFT or DMD.
This gap will be bridged with the spectral proper orthogonal decomposition (SPOD)
introduced in this article. This new method not only places itself somewhere in
between these two extrema, but it allows for a continuous shifting from one to the
other. The main idea is to apply a filter operation to the POD correlation matrix,
which will force the POD towards clear temporal dynamics. Depending on the filter
strength we continuously sweep from classic POD to DFT.

The remainder of this article is organized as follows: the proposed method is
described in detail in § 2. The reader is guided from snapshot POD via an in-depth
interpretation of the correlation matrix towards the general description of the SPOD.
In addition, a method is explained to identify coupled mode pairs describing a single
coherent structure, which becomes handy when working with SPOD. In § 3, the
new method is demonstrated on three different experimental data sets. The results
are compared against POD and DFT to point out the benefits of SPOD. In § 4 the
capabilities of SPOD are summarized, based on the findings from the application to
experimental data.
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Spectral proper orthogonal decomposition 801

2. Description and interpretation of the proposed method

2.1. Classical snapshot POD

To introduce the method and the nomenclature, the snapshot POD approach is
described first. We start off with a decomposition of a data set into spatial modes
and temporal coefficients:

u(x, t) = u(x) + u′(x, t) = u(x) +
N∑

i=1

ai(t)Φi(x). (2.1)

Note that only the fluctuating part u′(x, t) is decomposed. It is split into a sum
of spatial modes Φi and mode coefficients ai. A set of M spatial points recorded
simultaneously over N time steps is considered. To calculate the POD, the correlation
matrix of this data set is needed. For data obtained from particle image velocimetry
(PIV) or CFD, the number of spatial points is usually larger than the number of
snapshots. The correlation matrix is then calculated between individual snapshots
(temporal correlation). The alternative approach (spatial correlation) that applies to
M ≪ N is detailed in appendix A. The correlation between two snapshots is calculated
from an appropriate inner product 〈 , 〉, usually defined as the L2 inner product

〈u(x), v(x)〉 =
∫

V

u(x)v(x) dV, (2.2)

where V specifies the spatial region or volume over which the correlation is integrated.
The elements of the correlation matrix R are given by

Ri,j =
1

N
〈u′(x, ti), u′(x, tj)〉. (2.3)

Matrix R is of size N × N.
The temporal coefficients ai =[ai(t1), . . . , ai(tN)]T and mode energies λi are obtained

from the eigenvectors and eigenvalues of the correlation matrix:

Rai = λiai; λ1 > λ2 > · · ·> λN > 0. (2.4)

The subscript i refers to single eigenvalues, which are sorted in descending order.
Since the ai are the eigenvectors of the real symmetric positive-definite matrix R, they
are orthogonal. Moreover, they are scaled with the energy of the single modes such
that

1

N
(ai, aj) = λiδij, (2.5)

where ( , ) denotes the scalar product. The spatial modes are obtained from the
projection of the snapshots onto the temporal coefficients:

Φi(x) =
1

Nλi

N∑

j=1

ai(tj)u
′(x, tj). (2.6)

These modes are orthonormal by construction, i.e.

〈Φi, Φj〉 = δij. (2.7)

The formulation so far is perfectly in line with classical snapshot POD, which can also
be computed by a singular value decomposition. However, since the SPOD requires a
manipulation of the correlation matrix we retain the classical form.
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FIGURE 1. (Colour online) (a) Pseudo-colour plot of the correlation matrix elements Ri,j

and (b) the corresponding correlation coefficient R̂. The displayed data are selected from
PIV measurements of a forced turbulent jet.

2.2. Properties of the correlation matrix

The SPOD described in this article is essentially a filter applied to the correlation
matrix R. To offer a better understanding of this approach, the structure of the
correlation matrix R is inspected first.

Figure 1(a) shows the structure of the correlation matrix for the data set of a
forced turbulent jet. The data were acquired with PIV inside a 2-D plane aligned
with the jet axis. The considered flow shows strong vortex shedding at the forcing
frequency (the acquisition frequency is 25 times the forcing frequency). The presence
of these periodic patterns in the flow, and their convection within the observed flow
field, leads to a diagonal, wave-like structure of the matrix. This is closely related to
the periodicity of the autocorrelation coefficient. In fact, if the individual elements of
the correlation matrix R are summed up along the diagonals, we obtain the spatially
averaged autocorrelation coefficient

R̂(τ ) =

∫ T

τ

〈u′(x, t), u′(x, t − τ)〉 dt

∫ T

0

〈u′(x, t), u′(x, t)〉 dt

, (2.8)

where the upper bound T is the length of the measured sequence. This is depicted in
figure 1(b), showing the same periodicity as the correlation matrix. The autocorrelation
coefficient itself represents the spectral content of different time scales and wavelengths
and it is directly related to the power spectral density of the underlying data. However,
it contains no information on the phase of individual frequencies, due to the reference
of the signal to itself. This is why the elements along the diagonals of R look so
similar, as they represent only relative changes with respect to the time step on the
main diagonal. Thus, increased similarity along the diagonals of R is equivalent to an
increased similarity of the dynamics of the underlying signal. This property will be
discussed in more depth in § 2.4. The obvious consequence from these findings is: if
we want to obtain smooth dynamics from the POD, we have to enforce the diagonal
similarity of the correlation matrix. This is where we step into spectral POD.
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Spectral proper orthogonal decomposition 803

2.3. General description of the SPOD

The yet so simple but radical approach is a filter operating on the correlation matrix R.
To augment the diagonal similarity of R a simple low-pass filter is applied along the
diagonals. This results in a filtered correlation matrix S with the elements given as

Si,j =
Nf∑

k=−Nf

gkRi+k,j+k. (2.9)

The filter above is just a symmetric finite impulse response filter with a filter
coefficients vector g of length 2Nf + 1. The most simple approach would be a box
filter, where all coefficients have the same value gk = 1/(2Nf + 1). In the examples
discussed later, we use a Gaussian filter, which features a smooth response in time
and frequency domain. Moreover, we choose a standard deviation such that the filter
gives the same cutoff frequency as a box filter with half the length. In fact, any kind
of digital finite impulse response filter can be used here.

The further procedure of the SPOD is the same as for the classical POD. From
the filtered correlation matrix S the temporal coefficients bi and mode energies µi are
obtained from the eigendecomposition

Sbi = µibi; µ1 >µ2 > · · ·>µN > 0. (2.10)

The temporal coefficients are also scaled with the mode energy and they are still
orthogonal:

1

N
(bi, bj) = µiδij. (2.11)

The spatial modes are finally obtained from the projection of the snapshots onto the
temporal coefficients,

Ψi(x) =
1

Nµi

N∑

j=1

bi(tj)u
′(x, tj), (2.12)

where these modes are no longer orthogonal. This property of the spatial modes is
detailed in appendix B. The total energy of the data set is still represented by the
decomposition (

∑
λi =

∑
µi), but the energy per mode is less for the first modes.

Hence, increasingly plain temporal dynamics is obtained at the expense of spatial
orthogonality and a dispersed SPOD spectrum. Nevertheless, the decomposition (as
in (2.1))

u(x, t) = u(x) +
N∑

i=1

bi(t)Ψi(x) (2.13)

is still exact if all N SPOD modes are used for the recomposition.
If the filter size is extended over the entire time series, the filtered correlation matrix

converges to a symmetric Toeplitz matrix. This matrix has the form

Si,j = R̂(1t|i − j|), (2.14)

with the diagonals given by the average correlation coefficient (2.8). This special
matrix is also known as the covariance matrix and its eigenvalues trace out the power
spectral density of the underlying time series (Wise 1955). This equality is a part of
Szegö’s theorem and it is valid for the limiting case where the number of samples
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POD DFT
Filter strength

SPOD

(a) (b) (c) (d )

(e) ( f ) (g) (h)

FIGURE 2. (Colour online) Schematic describing the main properties of the SPOD for
increasing filter strength (from left to right): (a,e) Nf = 0; (b, f ) Nf = 25; (c,g) Nf = 100;
(d,h) Nf = 200. (a–d) Pseudo-colour plots of the filtered correlation matrix (S). (e–h) The
phase portraits of the corresponding first two modes (b1 and b2) that describe the dominant
oscillations. The axes of the plots shown here are the same as for the plots in figures 1
and 16, respectively. The graphs are based on the data already presented in § 2.2 and the
SPOD is calculated from 200 snapshots.

approaches infinity. To discuss this feature for finite series, the treatment of the
start and end of the time series must be clarified. At the boundaries of R, the filter
operation is not properly defined, since the symmetric filter lacks elements before
and after the finite series. Either these elements can be replaced by zeros or the time
series is assumed to be periodic. For the zero padded boundary, Ri,j = 0 in (2.9) for
any i or j that is outside of the domain [1, N]. In the case of periodic boundary
conditions, indexing outside of the valid domain is mapped back into the domain
by addition or subtraction of N (e.g. Ri,j = Ri−N,j if i > N). For periodic conditions
and a box filter of the same size as the number of snapshots, a symmetric circulant
matrix is obtained, where the eigenvalues and eigenvectors are given by the Fourier
transform of the first row (Gray 2005). Hence, DFT and SPOD produce the same
decomposition for this limiting case. For the Gaussian filter this limit is only exactly
reached with a infinitely large filter size, but practically, the decomposition remains
nearly constant for values Nf > N. In the following example of application, the DFT
is calculated with Nf = N and a box filter.

The general SPOD approach and its placement with respect to the existing methods
are graphically summarized in figure 2. The images in the first row show the filtered
correlation matrix at different filter widths Nf . The images below depict the phase
portraits of the leading two modes (compare figure 16). It is apparent that the
increased diagonal similarity of the correlation matrix, which goes in hand with
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0 0.1 0.2 0.3 0.4 0.5

10
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10
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10
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FIGURE 3. (Colour online) Magnitude of the frequency spectrum for the first SPOD mode
for different filter widths Nf . The analysed flow is the forced turbulent jet presented in
figures 1 and 2.

the increased filter width, successively limits the temporal variations of the mode
amplitude and frequency until a stable limit cycle is reached. In summary, the SPOD
allows for continuous fading from the energetically optimal POD to a purely spectral
DFT. What happens in between these two limits is very promising, as will be shown
later in this article.

2.4. Spectral properties of the SPOD filter operation

Now provided with the continuous transition between POD and DFT, we may
determine how the SPOD filter affects the resulting mode dynamics. In other words,
we would like to know how the filter frequency response transfers into mode space.
This enables the choice of an adequate filter size Nf , which is the crucial property of
the introduced filter operation.

We consider the forced turbulent jet data already consulted in the previous section.
In this flow the periodic shedding is strong and regular and it is represented by the
same SPOD mode regardless of the filter setting. Furthermore, the flow is turbulent,
showing sufficient jitter and broadband noise in the mode dynamics to demonstrate
the effect of the SPOD filter. Figure 3 shows the spectrum of the most dominant
SPOD mode coefficient b1 computed for different filter sizes Nf . According to these
graphs, the SPOD operation applies a band-pass filter to the modal dynamics with the
band centred around the dominant frequency. The width of the band and the spectral
attenuation are directly related to the filter width.

The spectral response of the filter coefficients g that define the spectral constraint
(2.9) of the SPOD are drawn in figure 4. As described in the previous section,
these coefficients are chosen to represent a Gaussian filter with a typical low-pass
characteristic, where the cutoff frequency is related to the filter width by fc ∝ 1/Nf .

To evaluate the frequency response of the entire SPOD method, we compute the
spectral attenuation of the SPOD with respect to POD and compare this to the
frequency response of the filter coefficients. The spectral attenuation is calculated
from the ratio of spectral magnitudes of the first SPOD (Nf = 25) and POD (Nf = 0)
coefficients b1. The results are shown in figure 5, where the graph of the filter
frequency response must be shifted to compensate for the difference between low- and
band-pass filtering. Accordingly, both curves show nearly the same attenuation as well
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FIGURE 4. (Colour online) Magnitude of the SPOD filter frequency response for different
filter widths Nf .
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FIGURE 5. (Colour online) The spectral attenuation of the SPOD obtained from the
ratio of the spectral magnitudes |F (bNf =0)|/|F (bNf =25)| and the response of the filter
coefficients |F (g)| from (2.9). For the filter response the frequency axis is offset to match
the modes’ centre frequency.

as the same characteristic stop-band ripples. In this adapted representation the spectral
attenuation of the SPOD can be directly estimated from the filter coefficients.
However, the SPOD shows a band-pass characteristic while the filter coefficients
describe a low-pass filter. The frequency around which the band is centred is selected
intrinsically by the SPOD.

The band-pass behaviour of the SPOD is a direct consequence of the smoothing
of the diagonal elements of the correlation matrix. As elaborated in appendix C for
linear system dynamics, variations of the diagonal elements relate directly to variations
of the frequency and amplification of the modes. Hence, the SPOD filter operation
constrains the temporal variation of the mode frequency and amplification rate, but
sets no limitations on the temporal mean frequency and amplitude. Thus, the SPOD
filter averages out frequency variations, which reduces the spectral bandwidth of the
modes. With the selected low-pass filter coefficients, the smoothing intensity can be
adjusted, which controls the bandwidth of the filter. However, the selection of a centre
frequency for this band-pass filter is data driven, which means the filter ‘snaps’ to a
dominant (coherent) fluctuation contained in the data.
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Spectral proper orthogonal decomposition 807

Based on these conclusions, an adequate filter size Nf may be selected prior to the
SPOD. Ideally, it should be a time span for which the coherent structures of interest
exhibit constant dynamics. In practice, we found that suitable selections for this time
span are the characteristic time scales of the flow. These are either one period of a
dominant oscillation or the time that a structure needs to be convected a typical length
scale of the flow.

Based on the coefficient spectra shown in figure 3, it may seem that SPOD is just
a method that is comparable to a subsequent band-pass filtering of POD modes, but
the situation is substantially different. A posterior filtering of POD modes cuts out
parts of the temporal dynamics that are ignored in further investigations. In the case
of the SPOD, the filter is applied prior to the decomposition. Hence, the filter shifts
the dynamic content removed from one mode to the other modes. Therefore, the entire
dynamic content is still represented in the decomposition, but it is redistributed among
the modes (2.13). Moreover, the SPOD may ‘find’ modes that were hidden in noise
or mixed with other modes, which is not possible with a subsequent filter.

2.5. Identification of coupled modes

One crucial point in POD and SPOD is the identification of linked modes. Assuming
the presence of periodic coherent structures, their dynamics is described by a pair of
modes, analogues to the sine and cosine in the Fourier space or the real and imaginary
parts of DMD modes. They constitute the real and imaginary parts of an analytical
signal,

b̃(t) = bi(t) + ibj(t) = A(t)eiφ(t), (2.15)

where A is the amplitude and φ the phase of the signal (i =
√

−1). The coupling of
such a mode pair is not given by the SPOD and it has to be identified a posteriori.
Coupled modes typically show a similar amount of energy and pair in the POD
spectrum (Oberleithner et al. 2011; Oberleithner, Rukes & Soria 2014). For more
complex dynamics with multiple energetic modes, the pairs are not easily identified
and visual inspection of Lissajous figures and spatial modes is required. This manual
procedure is cumbersome and by no means objective.

To provide an alternative, we propose an unbiased approach that gives a quantitative
measure of the dynamic coupling of individual modes. The idea is to evaluate the
mode coefficients cross-spectra at a π/2 phase lag, in order to measure the spectral
proximity. Mode pairs that describe a single structure must have the same spectral
content, but are shifted by a quarter period. In the following, this spectral measure
is also called harmonic correlation. Fourier decomposition and DMD were both
considered to evaluate this harmonic correlation, but the DMD turned out to be more
reliable for this task. The general procedure is schematically outlined in figure 6. From
the depicted operations, the DMD and the mode coupling are discussed in this section.

For the DMD of the SPOD coefficients, their temporal evolution is assumed to be
governed by a linear operator T ,

b(t + 1t) = Tb(t). (2.16)

To approximate this operator, the SPOD coefficients are arranged in two matrices X =
[b(0) b(1t) · · · b((N − 2)1t)] and Y = [b(1t) b(21t) · · · b((N − 1)1t)] (following the
notation of Tu et al. (2014)). Hereafter, the operator is given by

T = Y X
−1, (2.17)

where X
−1 is the Moore–Penrose pseudo-inverse of X . Alternatively, this can be solved

as a least squares problem, minimizing ‖T X − Y‖. To reject measurement noise in the
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FIGURE 6. (Colour online) Schematic illustrating the main steps towards the identification
of coupled modes (red and blue lines indicate real and imaginary parts of an analytic
signal). The data displayed here were derived from measurements of a forced turbulent
jet (see also figure 1).

identification procedure, only the ‘physical part’ of the SPOD modes is considered
for the calculation of the operator T . That means only the modes with acceptable
signal-to-noise ratio should be considered. Therefore, the number of retained modes
is calculated from the energy resolved by the SPOD, truncated after Nc modes, with

E (Nc) =

Nc∑

k=1

µk

N∑

k=1

µk

. (2.18)
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Spectral proper orthogonal decomposition 809

In the examples shown later the modes are truncated around E (Nc)= 0.95. This value
depends on the signal-to-noise ratio of the considered measurement, which can be
estimated from the POD spectrum (Raiola, Discetti & Ianiro 2015). Note that the
number of retained modes increases for wider SPOD filters and correspondingly flatter
SPOD spectra (µj).

The DMD modes are obtained by the eigendecomposition of matrix T as

Tci = νici. (2.19)

The eigenvalues νi comprise the frequencies ωi and amplification rates σi of the
operator T , which are related to the logarithm of the eigenvalue via ln(νi)/1t =
σi + iωi. The eigenvectors ci hold the relative spectral content of the single SPOD
coefficients with respect to these frequencies. More precisely, the element ci,j of
vector ci is the spectral content of the single mode coefficient bj with respect to νi.
The actual modal representation is given by

bj(t) =
Nc∑

i=1

ci,je
(σi+iωi)t. (2.20)

It must be noted that this decomposition is only exact if Nc = N, whereas in the
current approach Nc < N. Nevertheless, the decomposition gives a common spectral
basis, which allows the ranking of spectral similarity of the temporal coefficients b(t).
The developed proximity measure is given by

Ci,j = Im

{
Nc∑

k=1

ck,ic
∗
k,j sgn(Im(νk))

}
, (2.21)

where ∗ indicates the complex conjugate and the coefficients are normalized so that
(ci, ci) = 1. The sign function (sgn) in this expression accounts for the conjugate pairs
that appear in the DMD spectrum (mirrored at the real axis).

For two modes to be coupled, they must have a similar spectral content, which
is shifted a quarter period forward or backward. This implies a positive or negative
imaginary part of the harmonic correlation (2.21), respectively, and coupled modes
appear as peaks in the matrix C. Hence, the row and column indices of the maximum
of C identify the first coupled SPOD modes. The corresponding row and column in
C are then set to zero and the next lower maximum is identified. This procedure is
repeated until all modes are paired. It has to be noted that this approach also creates
weakly correlated and possibly unphysical mode pairs.

Together with the identification of coupled modes, the procedure gives an average
frequency of the coherent structure represented by the mode pair. Therefore, the
eigenvalues νk of the matrix T are sorted in descending order with respect to their
content for the identified mode pair c̃k = c2

k,i + c2
k,j. The frequency is given as the

weighted sum of the eigenvalues,

f =

n∑

i=1

Im{ln(νi)}c̃i

2π1t

n∑

i=1

c̃i

. (2.22)

The weighting accounts for the relative energy content of a mode pair with respect to
the single frequencies. In fact, only the most relevant eigenvalue (n = 1) can be chosen
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to determine the frequency, but for practical application it is recommended to use
more than one eigenvalue as noise may corrupt them. For the examples discussed in
the next chapter, we used an average over three eigenvalues (n = 3) to obtain accurate
results.

The coupled SPOD modes are considered as one complex mode (see (2.15) and
figure 6) similar to the Fourier mode. The relative energy content of the identified
modes is computed as

K =
µi + µj

Nc∑

k=1

µk

, (2.23)

where i and j again refer to the indices of the coupled SPOD modes.

3. Applications to experimental data

In this chapter the SPOD is applied to three different data sets. The three examples
originate from very different engineering problems, demonstrating the capability and
broad applicability of SPOD. We consider the flow of a swirl-stabilized combustor, the
wake of an airfoil with Gurney flap and the flow field of a sweeping jet generated with
a fluidic oscillator. All three flows were recorded with the same PIV measurement
system. It consists of a Photron Fastcam SA 1.1 high-speed camera (1 Mpixel at
2.7 kHz double frame) and a Quantronix Darwin Duo laser (30 mJ at 1 kHz). The
PIV data were processed with PIVview (PIVTEC GmbH) using standard digital PIV
processing (Willert & Gharib 1991) enhanced by iterative multi-grid interrogation
(Soria 1996) with image deformation (Huang, Fiedler & Wang 1993; Raffel et al.
2007, pp. 146–158). Analysing the present data sets with existing POD, DFT or
DMD approaches caused some difficulties. As will be demonstrated, the SPOD is
able to handle these shortcomings. The DMD and the DFT equally suffer from the
restriction of the modes to narrow frequency bands, therefore we limit the following
presentation to DFT. This choice is particularly useful as the DFT is a limiting case
of the SPOD. We also performed DMD of the data presented here, where we found
all DMD eigenvalues to lie in close proximity of the unit circle (distance <10−6).
This indicates that the DMD is nearly equivalent to the DFT. Rowley et al. (2009)
stated that a DMD is identical to a DFT for periodic time series, but from our
observations it appears as if they are also almost identical for statistically stationary
time series. This supposition is based on the fact that none of the analysed series is
entirely periodic, but all are statistically stationary.

3.1. Swirling jet undergoing vortex breakdown

First, we consider the flow field of a swirl-stabilized combustor. Swirling jets are
widely used in the gas turbine industry due to their capability of obstacle-free
flame anchoring and enhanced mixing. The experimental set-up to study these flows
is sketched in figure 7. Swirl is generated by injecting fluid tangentially into a
mixing tube that terminates in the combustion chamber. The cylindrically shaped
chamber is made of quartz glass to allow optical access for PIV. Flow measurements
are conducted in the meridional section as indicated in the schematic. The case
investigated here is non-reacting at a Reynolds number of 58 000 based on the nozzle
diameter D and the bulk velocity at the nozzle exit. Additional details about the
experimental set-up can be found in Reichel, Terhaar & Paschereit (2015).
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D

ROI

FIGURE 7. (Colour online) Experimental set-up of the swirl-stabilized combustor. Air
enters from the left, passes a swirl generator and exits into the combustion chamber.
Flow field measurements with PIV are conducted in the meridional plane indicated by
the dashed square (ROI).
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FIGURE 8. (Colour online) Swirl-stabilized combustor flow: time-averaged flow field
depicted by (a) contours of velocity magnitude and streamlines, and (b) spatially averaged
power spectral density.

The mean flow field and the spatially averaged power spectral density (PSD)
are depicted in figure 8, with the Strouhal number based on the same length and
velocity scale as the Reynolds number (St = f D/ubulk). The flow exhibits a strong
recirculation zone in the centre, surrounded by an annular, strongly diverging jet.
The cross-sectional jump at the combustion entrance creates an additional external
recirculation zone between the jet and the confining walls. The spectral content of the
flow is spread over all time scales and it decreases with increasing Strouhal number.
The spectrum gives no indication of any dominant coherent structure even though
these flows typically feature helical global modes (Oberleithner et al. 2011).

Figure 9(a–c) illustrate the results from the SPOD for the filter lengths Nf = 0, 10
and 2000, respectively. Note that the limiting cases Nf = 0 and Nf = 2000 produce
results equivalent to those obtained with classical POD and DFT respectively, while
the case in between represents the SPOD. Hence, this particular presentation concisely
demonstrates the difference between POD, SPOD and DFT.
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FIGURE 9. (Colour online) Swirling jet: results from SPOD for different filter lengths
(a) Nf = 0 (POD), (b) Nf = 10 (SPOD) and (c) Nf = 2000 (DFT). For each filter length
the SPOD spectrum is displayed as a scatter plot (left), where a single dot indicates
one mode pair (size and colour Ci,j in (2.21)). For three selected pairs the spatial
modes (upper row) and PSD of the temporal coefficient (lower row) are depicted. They
are indicated by numbers in the SPOD spectrum, as well as between the small mode
plots.
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Spectral proper orthogonal decomposition 813

Each of the three cases in figure 9 shows the so-called SPOD spectrum, where
every mode pair is represented by a single dot. The size and colour of the dots
indicate the harmonic correlation of a mode pair Ci,j, according to (2.21). The
frequency of a mode pair is determined according to (2.22) and the energy from
the two eigenvalues relative to the total energy from (2.23). On the right side of
every case in figure 9, three spatial modes Ψi(x) and the corresponding temporal
coefficients bi(t) are plotted above each other. The spatial modes are visualized by
the cross-wise velocity component (in the y-direction) together with streamlines of
the time-averaged flow. They are numbered likewise in the SPOD spectrum and in
the small mode plots. The plots are given without axis labels to allow a compact
representation of the data; the section is the same as for the mean flow shown in
figure 8(b). The time coefficients are represented by their power spectral density,
where the time series is split into five (50 % overlapping) sections, which are Fourier
transformed and averaged. The horizontal dotted lines in the PSD plots indicate a
spacing of three orders of magnitude (103) and the y-axis is scaled logarithmically.
The spectral averaging was also applied to the power spectra shown in figure 8(b)
and in the subsequent PSD plots.

The POD (figure 9a) yields a broad spectrum of modes, where modes at lower
Strouhal numbers have more energy. There are several modes with high harmonic
correlation (diameter and colour of the points) and high energy content K. The
spatial shape of the low-frequency mode (label 1) shows clear spatial symmetry
and a limited spectral bandwidth (St ≈ 0.1). This mode is frequently observed in
swirl-stabilized combustors and it is associated with a global hydrodynamic instability
(Terhaar, Oberleithner & Paschereit 2015). From the four additional outstanding modes
between St = 0.3 and St = 0.8, we choose two for further investigation. Their spatial
structures cannot be precisely assigned to a symmetric or anti-symmetric mode and
they indicate mixtures of several spatial wavelengths. Accordingly, the mode spectra
are broad and show only a slight hump at the frequencies indicated by the SPOD
spectrum. The other modes around St = 0.5, which are not shown here, show similar
spatial and spectral content.

Overall, the POD indicates the presence of a single mode at low frequency, together
with other coherent structures that are not properly resolved. The most energetic mode
(not inspected here) corresponds to a low-frequency, large-wavelength fluctuation, as
indicated by the SPOD. Such slow changes of the mean flow are usually called shift
modes (Luchtenburg et al. 2009; Hosseini et al. 2015). In this particular case the shift
mode stems from weak movements of the vortex breakdown bubble.

Consider now the SPOD in figure 9(b), with a filter length Nf = 10; from the SPOD
spectra we identify three peaks at St = 0.09, 0.5 and 0.8. The first mode is the same
as the one already identified by the POD, but its spectral content at higher frequencies
is reduced. It describes a single-helical structure in the wake of the recirculation zone.
The second identified mode exhibits a broad spectral peak at St = 0.5. Its spatial
structure and Strouhal number match the global mode identified by Oberleithner et al.

(2011). It is a single-helical mode linked to the precessing motion of the recirculation
zone. The spatial structure of mode three suggests a double-helical shape. It is not a
harmonic of the second mode, as their frequencies are not related.

When the filter size is extended to its maximum, the DFT (figure 9c) and
SPOD spectrums converge to the spatially averaged PSD (figure 8b). The temporal
coefficients converge to sines and cosines and all mode pairs show full harmonic
correlation (uniform dot size in the SPOD spectrum). Since selection based on
harmonic correlation is impossible, we resort to the frequencies already known from
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the SPOD at Nf = 10. The spatial structures resemble the ones from figure 9(b), but
they are corrupted by noise. Moreover, the spatial symmetries are no longer as clear
as for the Nf = 10 case. Note that the corresponding spectral peaks are broadened
due to the averaging procedure, which is applied here only for consistency.

From this first example, we can point out some striking features of the SPOD. The
SPOD is able to separate coherent fluctuation from stochastic turbulent fluctuations
even though they both have the same energy content (see the SPOD spectrum
in figure 9c). The classical POD yields partially mixed structures that cannot be
assigned to distinct flow phenomena, whereas the SPOD properly separates these
structures and identifies them from harmonic correlations. The DFT instead shows
the same structures at the identified frequencies, but they are corrupted with noise
and the method itself would give no clue about the frequencies of interest.

The structures identified with the SPOD may also be found with the POD if the
decomposition is applied to a subsection of the measured domain. Moreover, the
exploitation of spatial symmetries prior to the POD decomposition usually provides
good results for this type of flows (Terhaar 2015). Nevertheless, these alternative
approaches would require prior knowledge of the shape or spatial extent of the
structures, whereas the SPOD requires none of these.

All modes identified by the SPOD show clear spatial symmetries and distinct
spectral peaks. The frequency and shape of the first mode coincide well with
previous experimental observations in swirl-stabilized combustors (Terhaar et al.

2015). The second mode is very similar to the one observed in unconfined swirling
jets (Oberleithner et al. 2011). However, the presence of these different modes in a
single flow configuration raises the question regarding their physical relevance. To
deal with this issue, we conducted a linear stability analysis of the underlying mean
flow, following the procedure outlined by Oberleithner et al. (2015). This analysis
similarly delivered three unstable modes whose frequencies and azimuthal and axial
wavenumbers match the SPOD modes surprisingly well. To limit the scope of this
paper the analysis is not further detailed here. One important parameter of the SPOD
is the filter size Nf , which is twice the period of the second mode. The experiences
gained throughout the first application show that a filter size of one to two periods
of the mode of interest gives the best results.

3.2. Airfoil with Gurney flap

The second flow configuration considered here is the flow behind a pitched airfoil
equipped with a Gurney flap. The experimental set-up is shown in figure 10. It
illustrates the working principle of the Gurney flap deployed at the pressure side
of the airfoil. The flap creates additional lift (and drag), which can be used to
locally control varying loads on large wind turbine airfoils (Bach et al. 2014, 2015a).
The flow features around the Gurney flap are characterized by a single vortex that
develops upstream of the flap and periodic shedding in its wake. The vortex upstream
of the flap continuously grows up to a critical size, then it is shed into the wake, and
it starts growing again. Here, a FX 63-137 airfoil at 5◦ angle of attack is investigated
at a Reynolds number of 180 000 based on chord length. The reference length for
the Strouhal number is the flap height, which is 3.6 % of the chord. The measured
region comprises only the wake of the airfoil capturing the dominant vortex shedding.
More details about the experimental set-up can be found in a previous publication
on these data (Bach et al. 2015b). The Strouhal number in the following results is
calculated with the flap height h and the free stream velocity.
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h

ROI

FIGURE 10. (Colour online) Schematic of the airfoil equipped with a Gurney flap at the
trailing edge. Streamlines indicate the surrounding flow and the vortex upstream of the
flap. The measured section (ROI) is a streamwise cut in the wake of the airfoil, capturing
the periodic shedding behind the flap.
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FIGURE 11. (Colour online) Wake of the airfoil with Gurney flap: time-averaged flow
field depicted by (a) contours of velocity magnitude and streamlines, and (b) spatially
averaged power spectral density. The origin of the coordinate system is located at the
trailing edge.

The mean flow shown in figure 11(a) reveals a velocity deficit in the wake
of the Gurney flap, which generates the vortex shedding. The PSD (figure 11b)
indicates strong oscillations at St = 0.105 with a weak higher harmonic. In a previous
investigation it was found that the vortex, which is shed from upstream of the flap,
causes an alteration of the periodic vortex shedding behind the flap (Troolin, Longmire
& Lai 2006). Hot-wire measurements in the wake of the Gurney flap supported this
assumption. The combination of a strong periodic flow pattern and the intermittent
short-time events provides a formidable benchmark for the SPOD.

The presentation of the decomposition with the different methods is organized in
the same way as for the previous example. The classic POD decomposition is shown
in figure 12(a). The vortex shedding is represented by the most energetic POD mode
with the highest harmonic correlation. The remaining modes show weak harmonic
correlations and no distinct peak in the SPOD spectrum. The modes labelled 2 and
3 exhibit a broad spectral content with a spatial extent limited to the vicinity of the
flap. There are additional modes with similarly compact spatial extent located further
downstream. These compact modes describe the intermittent alteration of the vortex
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FIGURE 12. (Colour online) Airfoil with Gurney flap: results from SPOD for different
filter lengths (a) Nf = 0 (POD), (b) Nf = 15 (SPOD) and (c) Nf = 2000 (DFT). For
each filter length the SPOD spectrum is displayed as a scatter plot (left), where a single
dot indicates one mode pair (size and colour Ci,j in (2.21)). For three selected pairs the
spatial modes (upper row) and PSD of the temporal coefficient (lower row) are depicted.
They are indicated by numbers in the SPOD spectrum, as well as between the small
mode plots.
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shedding during the passage of the single vortex that was generated upstream of the
Gurney flap. An inspection of their time coefficients (not shown) reveals that these
modes are only active one after another during one shedding period. Depending on
the phase lag between the natural oscillation and the shedding of the upstream vortex,
the developing wake vortex is either strengthened or weakened. The convection of this
altered vortex is described by a spatial series of modes. The modes 2 and 3 represent
only the upstream part of this convection, while the additional modes located further
downstream (not shown) describe the subsequent motion. This behaviour is indicated
by a complex interaction of these modes and the periodic shedding modes, which is
hard to identify in the POD expansion.

The SPOD yields a much clearer set of modes (figure 12b). In addition to the
shedding mode, the SPOD also uncovers three other modes, which are offset from
the rest. The two modes that appear at similar frequencies capture the alteration of the
vortex shedding during the passage of the single vortex. Their mode shape is similar
to the shedding mode, but with larger spatial wavelengths and lower frequencies (see
mode 2 in figure 12b). The interaction of the upstream vortex with the vortex shedding
increases the vortex size and thus the wavelength in the wake. Assuming a constant
convection speed in the flow, this mode consequently has a lower frequency. In the
case of the SPOD the alteration of the vortex shedding is captured by a single mode
(pair) and is thus much easier to interpret. The third mode represents the second
harmonic of the vortex shedding, with a clear spectral peak and clean spatial mode
with twice the wavelength of the shedding mode. This higher harmonic is completely
missed in the POD. The SPOD filter size Nf is equivalent to three shedding periods,
which is approximately equal to the travelling time through the measurement domain.

The DFT shown in figure 12(c) reproduces the spectrum shown in figure 11(b). The
natural mode and its higher harmonic can be identified from the spectral peaks. The
corresponding mode shapes are similar to the SPOD, although the higher harmonic
is corrupted with noise, resulting in a fragmented spatial mode. The DFT at the
frequency of the second SPOD mode gives no indication of the structure identified
before and the vortex–vortex interaction is completely missed. This is attributed to
the fact that this phenomenon is highly intermittent with varying frequencies and
amplitudes, which cannot be represented by a single-frequency mode. The same
dilemma applies for the DMD.

For this example, the SPOD has shown its ability to separate dynamics with similar
spatial structures and frequencies but very different energies. The spectral proximity
and spatial similarity of the involved dynamics impede the application of POD. The
modulation of the natural vortex shedding is represented by a natural mode with
several intermittent modes. The DFT, however, with its single-frequency modes does
not capture the modulation of the shedding at all. The frequency constraint imposed
by the SPOD is sharp enough to split the natural shedding from the modulation and
soft enough to allow for frequency and amplitude variations. Hence the SPOD again
gives easy access to dynamic features of the flow, which cannot be found with other
common methods of similar algorithmic complexity. There may be feature tracking
approaches capable of identifying the dynamics in this case, but they usually require
more computational effort and might not be as versatile as the SPOD.

3.3. Fluidic oscillator

In this example, SPOD is applied to the flow field of the sweeping jet generated
from a fluidic oscillator. This device is essentially a nozzle with feedback channels,
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D

ROI

FIGURE 13. (Colour online) Schematic of the experimental set-up with the fluidic
oscillator. Air enters from the left, passes the oscillator and exits into the unconfined
ambient air. The angle of the jet leaving the oscillator sweeps periodically up and down.
The measured region (ROI) captures the meridional plane of the jet’s near field. The
oscillator has a square nozzle, hence the thickness of the jet normal to the plane is also D.
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FIGURE 14. (Colour online) Fluidic oscillator: time-averaged flow field depicted by (a)
contours of velocity magnitude and streamlines, and (b) spatially averaged power spectral
density.

which cause a self-sustained oscillation of the jet. Figure 13 shows the approximate
geometry of this device and indicates the meandering shape of the sweeping jet. The
shape and motion of the jet resemble a travelling wave. These devices are used for
active flow control applications, where the sweeping motion of the jet allows a much
wider actuator spacing, resulting in less energy consumption (Woszidlo et al. 2014).
The data presented here stem from an experimental set-up investigating the spreading
and entrainment of sweeping jets (Ostermann et al. 2015b; Woszidlo et al. 2015).
The data are recorded at a Reynolds number of 37 000 based on the nozzle diameter
D and the mean velocity in the nozzle. These scales are also used for later calculation
of the Strouhal number. The mean velocity in figure 14(a) shows that the PIV domain
is moved off the jet centre towards the lower half of the jet. Data points closer than
x/D = 2 were distorted due to laser light reflections. The spectral content averaged
over the PIV domain (figure 14b) shows a narrow dominant peak and at least five
higher harmonics. The narrow peaks indicate a stable operation at the fundamental
frequency, while the additional peaks suggest more complex dynamics. The key
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challenge of this data set is to accurately reconstruct the sweeping jet dynamics from
a truncated measurement domain.

Figure 15 shows the results from the SPOD for filter lengths Nf = 0, 30 and 2000.
As in the foregoing examples, these filter settings span the range between both limiting
cases (from the POD to the DFT). The spectrum attained with the POD (figure 15a)
reveals distinct modes at the fundamental frequency of the oscillator (labelled 1) and
at higher harmonics. The mode at the third harmonic frequency (labelled 2) shows a
surprisingly high harmonic correlation. The PSD of the mode coefficients reveals that
each mode is not limited to a single frequency. The additional peaks in the PSD are
partly attributed to the fact that only part of the jet is measured. During one oscillation
period, the jet leaves and enters the measurement domain, creating sharp transitions
in the time domain and thus a series of higher harmonics in the frequency domain.
Due to the purely statistical POD approach, these higher harmonics appear in every
mode coefficient, which contradicts the idea of a proper modal decomposition. The
mode that seems to represent the fifth harmonic in the SPOD spectrum (labelled 3)
shows no distinct peak at all in the PSD of the coefficient. Thus, the POD of this
data set does not provide a proper separation of the fundamental and higher harmonic
contributions.

If the SPOD is applied instead, the fundamental and harmonic modes line up
perfectly (figure 15b). Now, the harmonics are separated clearly up to seventh
harmonics. The spectral content and spatial shape are further examined for the
fundamental, third and seventh harmonics. The PSDs of the mode coefficients reveal
narrow spectral bands. The corresponding mode shapes show an appropriate spatial
symmetry, although the PIV domain is cropped shortly above the symmetry line. It is
worth mentioning that the broad peak in the PSD of the seventh harmonic indicates
considerable frequency jitter, while the mode shape remains remarkably smooth and
symmetric.

The results obtained with the DFT are presented in figure 15(c). The peaks in the
SPOD spectrum clearly indicate the fundamental and the first five higher harmonics.
Their spatial shapes agree well with the SPOD modes, which is not surprising as
these modes have narrow spectral bands. Note, however, that each peak is split into
several DFT modes, which indicates slight frequency variation. This becomes crucial
for the higher harmonics, where the frequency jitter is significant and the mode energy
is low. For the seventh harmonic, the DFT fails to reproduce the structure seen in
the SPOD (figure 15b). The frequency variations detected by the SPOD are simply
too high and the mono-frequent energy content too low. This emphasizes the superior
noise rejection of the SPOD.

In this example, SPOD is superior to POD and DFT. The energy-ranked POD
modes primarily suffer from the incompleteness of the data set. This is of immense
importance as the relevant domain size is rarely known prior to a set of experiments
or POD analysis. The frequency-sharp DFT is insensitive to the domain size, but it
fails to reconstruct weak modes with substantial noise and frequency jitter. The soft
frequency constraint of the SPOD filter operation combines the advantages of both
methods and generates a clear mode space. The SPOD generates modes with distinct
frequencies and mode shapes for modes even weaker than the overall noise level.

For the fluidic oscillator, the DFT modes are nearly as accurate as those derived
with the SPOD. The advantages of the SPOD are more obvious for less mono-frequent
flow dynamics (see the previous examples). However, an additional advantage of the
SPOD over the DFT is that it provides a reliable estimate of the oscillatory phase by
accounting for the frequency jitter. Similar approaches, which also produce satisfactory
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FIGURE 15. (Colour online) Fluidic oscillator: results from SPOD for different filter
lengths (a) Nf = 0 (POD), (b) Nf = 30 (SPOD) and (c) Nf = 2000 (DFT). For each
filter length the SPOD spectrum is displayed as a scatter plot (left), where a single dot
indicates one mode pair (size and colour Ci,j in (2.21)). For three selected pairs the spatial
modes (upper row) and PSD of the temporal coefficient (lower row) are depicted. They
are indicated by numbers in the SPOD spectrum, as well as between the small mode plots.
The centreline is indicated by a dash–dotted line.
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FIGURE 16. (Colour online) Phase portraits of first temporal coefficients from (a) POD,
(b) SPOD and (c) both methods against each other.

results for the current case, are described by Ostermann et al. (2015a), but again, the
scope of SPOD is beyond this particular application. Figure 16(a,b) shows the phase
portraits (Lissajous figures) of the temporal coefficients of the two most energetic POD
(ai) and SPOD (bi) modes, respectively. The trajectory of the POD coefficients does
not follow a clear circle that would indicate the limit cycle. It rather follows a third of
a circle and then collapses at one point. The coefficient of the SPOD modes follows a
clear circle and the instantaneous phase and instantaneous frequency can consistently
be deduced. A comparison of the first mode coefficient from both methods is shown
in figure 16(c). It reveals that half of the period is cut out for the POD (a1). This
corresponds to the sweeping jet leaving the measurement domain, where the energy-
based POD ‘sees’ no jet. The SPOD properly recovers the temporal dynamics over the
entire oscillation period. Furthermore, note that the SPOD produces coefficients with
smooth temporal dynamics, while the POD coefficients show rather erratic movements.
This is particularly important for reduced-order modelling (Luchtenburg et al. 2009),
phase averaging and extended POD (Boree 2003). Practically, most of the further
processing is eased if there is less noise.

4. Conclusions

4.1. Properties and capabilities of the proposed method

SPOD is introduced as an extension of the POD for time-resolved data. This novel
method involves a filter operation on the snapshot correlation matrix. The procedure
is closely related to the classic snapshot POD with a negligible increase of algorithmic
complexity and numerical costs. The SPOD filter allows for a continuous fading from
the energetic optimality of POD to the spectral purity of DFT. It is conceptualized in
a general form, with POD and DFT as the limiting cases. The concept of SPOD was
developed through our experience with experimental data processing, and not from a
constraint optimization problem. It arose from the great need for a method that applies
to a wide range of turbulent flows with minimum user input. The SPOD is motivated
by theoretical considerations, where it is interpreted as a short-time linearization of
the flow dynamics.

The key feature of SPOD is the smoothing along all diagonals of the correlation
matrix. This filter operation is shown to constrain the amplitudes and frequencies of
the SPOD modes. By setting the filter width, one gains control over the spectral
bandwidth of the single modes. When the filter is set to the maximum length, the
modes are assumed to be strictly periodic and the SPOD converges to the DFT.

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 U

ni
ve

rs
ita

et
sb

ib
lio

th
ek

, o
n 

26
 O

ct
 2

01
7 

at
 0

7:
48

:1
7,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s .
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
01

6.
10

3

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2016.103


822 M. Sieber, C. O. Paschereit and K. Oberleithner

The application of SPOD to the flow field of a swirl-stabilized combustor, an airfoil
with Gurney flap and a fluidic oscillator revealed different advantageous features of
the SPOD in comparison to POD or DFT. For every single case there exist other
suitable methods which may perform equally well as the SPOD, but none of them
is as versatile as the proposed method.

The main advantages can be summarized as follows:

Separation of structures. The soft spectral constraint of the SPOD allows for a much
better separation of individual fluid dynamic phenomena into single modes, whereas
POD or DFT mix or spread them among several modes.

Noise rejection. SPOD is insensitive to noise and even recovers dynamics that is
weaker than the overall noise level.

Missing data compensation. SPOD can eliminate the degradation of temporal
dynamics of partially recorded phenomena, resulting from an improper choice of
the measured region.

Plain dynamics. The mode coefficients are smooth in time and they feature adjustable
variations of frequency and amplitude (set by the filter size).

The characteristics of the SPOD modes ease further processing such as the
identification of linked modes, comparisons against other simultaneously acquired
measurements (phase averaging or extended POD) and the identification of reduced-
order models. The SPOD may also provide a better basis for modal representation of
snapshots as input for a DMD, as pursued in § 2.5.

4.2. Concluding remarks

The SPOD has proven to be a reliable method for extracting distinct phenomena from
turbulent flows. It was not derived from purely mathematical considerations, but rather
evolved from practical data processing. Nonetheless, the method has well-defined
upper and lower bounds and generates modes that can be easily interpreted. As
shown in the considered examples, SPOD is a simple way to extract coherent
structures from turbulent flows, where the POD or the DFT failed to provide valuable
results. The SPOD constrains the spectral content, but retains the modal sparsity of
the POD.

There are certainly plenty of other cases where this new method will ease the
identification of hidden coherent structures. Its true benefit lies in the fact that only
one assumption is made about the investigated flow dynamics, which is the filter
time scale. This can also be understood as an inertia imposed on the mode dynamics,
limiting the rate of change of the frequency and amplitude. The choice of this time
scale can be assessed from the flow’s dominant frequency or convective time scale,
as shown in this article. The authors hope that the SPOD will give access to new
fluid dynamical phenomena and enrich currently available methods.
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Appendix A. The spatial correlation version of SPOD

The original POD can be calculated from either a spatial or a temporal correlation,
which allows a computationally efficient calculation by restricting the size of the
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problem to the number of snapshots or the number of grid points. Similarly, the
SPOD has a spatial correlation counterpart, which is computationally more efficient
if the number of snapshots is much larger than the number of grid points. This
approach is slightly more complex and less intuitive than the snapshot version.
Nevertheless, it is very valuable if long time series of few sensors are supposed
to be decomposed into proper modes to perform an extended POD or to derive
the phase of an oscillatory mode from the measurements. Assume a simultaneous
multi-point pressure measurement that shall be decomposed with SPOD. This series
is decomposed as

P(xi, t) = p(xi) +
N∑

s=1

bs(t)Ψs(xi), (A 1)

where the number of measured positions M is much smaller than the number of
samples N. The number of samples may easily reach a million or more, which
complicates the solution in terms of memory requirements for the composition of the
temporal correlation matrix and in terms of computational time for the solution of
the eigenvalue problem. Therefore the temporal correlation described in § 2.3 is not
feasible in this case. Instead, the spatial correlation should be employed, as outlined
in this section. The multi-time-shift correlation tensor for the spatial SPOD reads

Si,j,k,l =
√

gkgl

MN1t

∫
p(xi, t − k1t)p(xj, t − l1t) dt (i, j = 1 . . . M; k, l = −Nf . . . Nf ),

(A 2)

where p = P − p is the fluctuating part of the pressure and gk are the filter
coefficients. For numerical implementation this is reshaped to a matrix such that
Si,j,k,l = S̃(i+kM),( j+lM), but for the theoretical description the tensor notation is retained.
The correlation tensor is decomposed into eigenvalues and eigenvectors, such that

Nf∑

l=−Nf

M∑

j=1

Si,j,k,lΨ̃s(xj, τl) = µsΨ̃s(xi, τk); µ1 >µ2 > · · ·>µN > 0, (A 3)

where τk = k1t. The eigenvector Ψ̃s constitutes a discrete convolution filter, which is
applied to the time series to obtain the mode coefficients

bs(t) =
Nf∑

k=−Nf

M∑

i=1

√
gk

M
Ψ̃s(xi, τk)p(xi, t − τk). (A 4)

The spatial mode is the central part (τk = 0) of the convolution filter Ψs(xi) = Ψ̃s(xi, 0).
The entire eigenvectors Ψ̃s can be understood as a data-driven filter bank, which allows
for decomposition of time series into modal contributions. It might be applied to
a single sensor, where each mode represents a certain spectral band of the signal.
The principal approach is comparable to the empirical mode decomposition (Huang
et al. 1998), but the SPOD can also handle multiple sensors. In the case of multiple
sensors, it gives excellent results when the phase of a dominant oscillation has to
be reconstructed from pressure measurements. The approach outlined in this section
is similar to the multi-time-delay POD phase estimation pursued by Hosseini et al.
(2015).

In contrast to the snapshot version, the computational cost of the spatial version of
SPOD scales with the filter size. It is only more efficient than the snapshot approach
if M(2Nf + 1) < N.
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Appendix B. Properties of the SPOD modes

In § 2.3 it was briefly mentioned that the spatial SPOD modes are no longer
orthogonal, which is only part of the true picture. If the spatial mode Ψ̃ in
(A 3) together with all of the temporally shifted instances are considered, they are
orthonormal:

1

M

Nf∑

l=−Nf

M∑

k=1

Ψ̃i(xk, τl)Ψ̃j(xk, τl) = δi,j. (B 1)

The snapshot-based calculation introduced in § 2.3, however, is restricted to the
zero-time-delay (τ = 0) part of the spatial mode. Furthermore, the decomposition of
the data into modal contributions is only feasible for time-independent spatial modes.
This limitation to one part of the spatial mode Ψs(xi) = Ψ̃s(xi, τ = 0) introduces some
imperfections. The selected modes for the decomposition are neither normal nor
orthogonal,

1

M

M∑

k=1

Ψi(xk)Ψ j(xk) 6= δi,j. (B 2)

The loss of normality is a fact, whereas the norm of the spatial modes gives further
insights into the data set. The norm

ζi =

√√√√ 1

M

M∑

k=1

Ψ 2
i (xk) (B 3)

indicates how well a single mode is represented by the investigated data set.
With the application of the filter (2.9), an idealized correlation matrix is constructed

that delivers modes which are more or less captured by the initial data set. This fact
is reflected by the deviation of the mode norm ζi from one. Consider for example
the measurement of the sweeping jet. There, the fundamental mode is only partially
captured, as shown in figure 16. With SPOD, the missing data are completed and
a SPOD mode pair with equal energy levels µi is obtained. However, for the
construction of the spatial modes the coefficients are projected onto the original
data (2.12). There, the imperfect representation of one of the two modes re-enters
the processing. For the sweeping jet’s leading mode pair the norm ζi of one mode
is clearly below the other, but they approximately add up to one. Therefore, the
eigenvalues µi describe the idealized energy content of the single modes, and the
norm of the spatial mode ζi corrects the deficits in comparison to the actual data
set. The limiting SPOD cases (POD and DFT) do not show such deficits. The POD
modes are already normalized to ζi = 1, and for the DFT the modes pair perfectly,
while the norm of these pairs (i, j) exactly add up to one (ζi + ζj = 1).

Appendix C. SPOD of linear dynamics

In this article a relation between the diagonal similarity of the correlation matrix
and the dynamics of the underlying system is presumed but never discussed in detail.
This section provides a better comprehension of the stated dynamics, which causes the
diagonal similarity of the correlation matrix. Therefore, the term ‘similar dynamics’
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is replaced by ‘linear dynamics’, whereby the temporal evolution of the investigated
flow is locally governed by a linear, time-invariant model. The term locally refers to a
short and finite temporal extension, and it is closely related to the filter size Nf . The
temporal evolution of this system is given by

∂u(t)

∂t
= Lu(t), (C 1)

where the matrix L is the system matrix describing the entire dynamics and the spatial
points of the velocity field are organized as rows in u(t) = [u(x1, t), . . . , u(xM, t)]T.
This approach may also be understood as continuous-time DMD. The linearized
dynamics allows for the calculation of the velocity field at any time step from a
reference snapshot u0 = u(t = 0) by the matrix exponential

u(t) = eLtu0. (C 2)

To allow further simplifications, we require the matrix L to be normal. This allows
the decomposition L = UDU

∗, where U is a unitary matrix (eigenvectors of L), D is
a diagonal matrix (eigenvalues of L) and ∗ means the conjugate transpose of a matrix
(adjoint). Hereafter, (C 2) becomes

u(t) = eUDU
∗tu0 = UeDt

U
∗u0. (C 3)

The diagonal elements of the matrix D contains the complex eigenvalues dk of the
system. Each of these eigenvalues contains the amplification rate σ and the frequency
ω of the related mode, dk = σk + iωk. The diagonal matrix can be decomposed into
the amplification rate Σ and frequency Ω , thus D = Σ + iΩ .

With the formulation in (C 3), the inner product which forms the elements of the
correlation matrix is simplified to

〈u(x, t1), u(x, t2)〉 = 〈UeDt1 U
∗u0, UeDt2 U

∗u0〉
= 〈U∗u0, eΣ(t1+t2)+iΩ(t2−t1)U

∗u0〉. (C 4)

An inspection of the exponent in (C 4) reveals that the inner product only depends on
the sum and difference of time steps. According to this equation, the velocity fields
are projected onto the subspace spanned by the linear operator U

∗u0 and changes of
the inner product are only governed by the eigenvalues of the system.

Within the context of the correlation matrix, we use the abbreviated nomenclature
for the snapshots ui = u(i1t) and for the projected velocity ũ = U

∗u0. The correlation
matrix constructed around the neighbourhood of snapshots u0 yields

Ssub =




〈u−1, u−1〉 〈u0, u−1〉 〈u1, u−1〉
〈u−1, u0〉 〈u0, u0〉 〈u1, u0〉
〈u−1, u1〉 〈u0, u1〉 〈u1, u1〉




=




〈ũ, e−2Σ1tũ〉 〈ũ, e−Σ1t−iΩ1tũ〉 〈ũ, e−2iΩ1tũ〉
〈ũ, e−Σ1t+iΩ1tũ〉 〈ũ, ũ〉 〈ũ, eΣ1t−iΩ1tũ〉

〈ũ, e2iΩ1tũ〉 〈ũ, eΣ1t+iΩ1tũ〉 〈ũ, e2Σ1tũ〉


 . (C 5)

The actual properties of this complex expression are highlighted by showing just the
factors for Σ and iΩ in the exponents, given as

Σ :




−2 −1 0
−1 0 1
0 1 2


1t; iΩ:




0 −1 −2
1 0 −1
2 1 0


1t. (C 6a,b)
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It is perfectly visible that the changes of the correlation matrix along the diagonals are
caused by amplification of modes, while changes along the anti-diagonals are caused
by the modes’ frequency. Therefore, the changes of the correlation matrix along the
diagonal are related to the modes’ amplitude and the cross-wise changes are caused
by the modes’ phase. The amplification rate can be assumed to be much smaller than
the frequency, which allows a change in phase to be distinguished from a change
in amplitude. Therefore, the correlation matrix generated by a linear system exhibits
similar diagonals. Hence, a flow governed by linear dynamics shows the observed
diagonal similarity in the correlation matrix.

If the amplification rate σ = 0 and the frequency ω = constant, a periodic oscillation
with fixed amplitude is obtained. This constitutes the limiting DFT case, where
the correlation matrix is perfectly constant along the diagonals. Thus, constant
coefficients of the underlying system result in a perfectly diagonal matrix. In order
to represent the variations in frequency and amplitude observed in the SPOD modes,
the system parameters σ and ω may change in time. These changes, however, will
break the diagonal similarity of the correlation matrix. Therefore, the nonlinearity and
non-normality of the Navier–Stokes equations contribute to parameter variations of
the linear system. The flow is assumed to behave like a linear normal system within
the time scale of the filter and all nonlinear and non-normal dynamics are represented
by variations in σ and ω. This kind of approach is also pursued in the generalized
mean field model of Luchtenburg et al. (2009), where the mode interaction via the
mean flow is represented by an interaction of linear oscillators through nonlinear
coupling of model parameters. Hence, the SPOD filter might be understood as a
smoothing (linearization) of the dynamics (σ ω) of the underlying system.

In this system dynamic framework, a relation between SPOD and DMD can be
drawn. For the DMD the entire analysed sequence is considered from the perspective
of a linearized system. In the sense that a low-pass filter may also be described as a
moving average, the SPOD may be understood as a moving DMD. The filter with Nf

is the corresponding linearization horizon. Therefore, the eigenvalues of a short-term
DMD may relate to the instantaneous dynamics (σ ω) of the SPOD modes.
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