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1 Introduction

Synchronization of large interacting systems has been observed in several natural situa-
tions such as synchronized flashing of the fire flies, pace maker cells of the heart, neurons,
etc [1, 2, 3]. Synchronization of chaos in low dimensional systems was studied by Pecora
and Carroll [4]. It has also been studied in coupled oscillator systems and other spatially
extended systems [5, 6]. Due to potential applications in various problems of practical
interest, synchronization of chaotic elements in a coupled dynamical system has been an
active area of research [7, 8].

Spatially extended systems are suitably modelled by coupled map lattices (CML). In
comparison to partial differential equations, CMLs are more suitable for computational
studies because of the discrete nature of time and space while all the analytical aspects
of dynamical systems theory can also be used. CMLs were introduced as a simple model
for spatio-temporal chaos [9]. They show a variety of phenomena from regular periodic
behaviour to very complicated spatio-temporal patterns, chaos, intermittency, etc [10]. In
CMLs, the dynamical elements are situated at discrete points in space, time is discrete,
and the state variable is continuous. Each spatial unit is coupled to its neighbours. The
selection of neighbours is determined by the structure of the network. In most studies
diffusive coupling (nearest neighbour interaction) is used. There are studies on CMLs
with various coupling schemes, such as open network, random network, global coupling ,
etc [11]. In most studies a symmetric coupling matrix is employed.

Here we study the synchronization properties of systems formed by a large number of
identical dynamical elements that are connected by identical symmetrical links. We derive
general conditions for the stability of spatially homogeneous solutions of a CML with any
symmetric interaction matrix making use of the spectral properties of the interaction
matrix. The coupling topology can affect crucially the synchronizability of the system.

In the next section we describe the properties of the spectrum of the CML. We perform
a linear stability analysis and give the conditions for the stability of synchronous solutions
and different regimes of stability. This is given in section 3. Results on the global stability
analysis are given in section 4. In section 5 we provide some numerical results to elucidate
the analytical results with specific examples. Here we take a quadratic map for the site
dynamics as an example but the results are valid for any dynamical system. The results
are even more general in the sense that their validity is not restricted just to CMLs, but
can further be applied almost directly to partial differential equations, coupled ordinary
differential equations, etc. Finally we provide a discussion on related aspects of the
dynamics of CMLs.

2 CML and its Spectrum

We consider a coupled map lattice of the form,

u(x, n + 1) = ε

⎛
⎜⎝ 1

nx

∑
y

x∼y

f(u(y, n))− f(u(x, n))

⎞
⎟⎠+ f(u(x, n)), (1)
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where nx denotes the number of neighbours of x. Here, f : R → R is some differentiable
function, often chosen to be the quadratic (logistic) map in the literature. x is a spatial
variable, its domain being some finite discrete set M . That set carries a neighbourhood
relationship, specifying which y ∈ M are neighbours of a given x (notation: x ∼ y). The
extreme case is the one of a global coupling where all y are neighbours of any x. If M
has the structure of a k-dimensional periodic grid, the other extreme case is the one of
nearest neighbour coupling where only those y are neighbours of x that are one step away
from x in one of the coordinate directions. In that case, each x has 2k neighbours. Of
course, we also have the trivial case where each x is its own neighbour, but has no other
neighbours. That case of course, represents the absence of coupling.

In the sequel, the only assumption we shall need is that the neighbourhood relation-
ship is symmetric, i.e., if y is a neighbour of x, then x in turn is a neighbour of y. We
also adopt the - completely inessential - convention that x is not considered as a neigh-
bour of itself. (Abandoning that convention would simply amount to a redefinition of
the value of ε.) Finally in order to avoid trivial case distinctions, we assume that the
neighbourhood relationship is connected in the sense that for any given x1, x2 ∈ M , we
find y1 = x1, y2, . . . , ym = x2, s.t. yj+1 is a neighbour of yj for j = 1, 2, . . . , m − 1. We
consider n = 0, 1, 2, . . . , as the time variable of the evolution.

Our subsequent analysis will not depend in conceptual terms on the detailed structure
of M. Of course, the numerical values of the bifurcation parameters below will reflect the
geometry of M.

Our analysis is phrased in general terms and so it is straightforward to extend it to
the cases:

- where f is vector valued,

- where M is a continuous space which then has to carry a measure dµ, and the
averaged sum needs to be replaced by an averaged integral,

- to weighted neighbourhoods i.e., where we are given a nonnegative function

h : M × M → R+

that is symmetric (h(x, y) = h(y, x) ∀ x, y ∈ M) and consider in place of the
averaged sum in equation (1)

(1/
∑

y

h(x, y))
∑

y

h(x, y)f(u(y, n)),

(the situation in (1) corresponds to the choice h(x, y) =

{
1 if x, y neighbours;

0 else
),

- replacing the last term f(u(x, n)) in (1) by g(u(x, n)) for some function g,

- as well as to the case of coupled ordinary differential equations in place of difference
equations.
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As these extensions are rather trivial, we refrain from carrying them out.
The following represents a generalization of the linear stability analysis that has been

carried out in the literature for various special cases such as global coupling [12], nearest
neighbor coupling [13], and random coupling [14].

We shall need the L2-product for functions on M :

(u, v) :=
1

|M |
∑
x∈M

nxu(x)v(x),

where |M | stands for the number of elements of M . We also put ||u|| := (u, u)1/2, (L2-norm
of u). We consider the operator,

L : L2(M) → L2(M).

Lv(x) :=
1

nx

∑
y

x∼y

v(y)− v(x). (2)

L has the following properties:
(i) L is selfadjoint w.r.t (.,.):

(u,Lv) = (Lu, v)

for all u, v ∈ L2(M). This follows from the symmetry of the neighbourhood relation.
(ii) L is nonpositive:

(Lv, v) ≤ 0.

This follows from the Cauchy-Schwarz inequality.
(iii)

Lv = 0 ⇐⇒ v ≡ constant.

Hence, (i) implies that the eigenvalues of L are real. By (ii), they are nonpositive; we
write them as −λk, and the eigenvalue equation then is

Luk + λkuk = 0.

We order the eigenvalues as λ0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λK . (This convention deviates from the
one used in the literature. Our operator L corresponds to the interaction matrix minus
the identity matrix, and one usually considers the eigenvalues of the former in descending
order.)

We may then find an orthonormal basis of L2(M),

(uk)k=1,... ,K

of eigenvectors of L.
By (iii) the smallest among the λk is

λ0 = 0,

4



and this is a simple eigenvalue (because we assume that the neighbourhood relationship
is connected), i.e.,

λk > 0 for k > 0. (3)

The numerical values of the bifurcation parameters occurring below will depend only
(besides on ε and the Lyapunov exponent of f) on the eigenvalue spectrum of L. This
eigenvalue spectrum, of course, reflects the underlying geometry of M and of the coupling.
Some general considerations may be helpful for understanding this point.

In the case of global coupling (including self coupling), we have

λ0 = 0 (as always)

and
λ1 = λ2 = · · · = λk = 1,

since
Lv = −v

for any v that is orthogonal to the constant map, i.e., satisfies

1

|M |
∑
y∈M

v(y) = 0.

If we shrink the neighbourhood size, then the eigenvalues can separate and grow, and in
particular, the largest one, λK , will become larger the smaller the neighbourhood size is.
In particular,

λK > 1

as there may exist v ∈ L2(M) with∑
x∈M

∑
y

x∼y

v(x)v(y) < 0

(e.g. M = {1, 2, . . . , m}, m even, m > 2, with µ having neighbours µ−1 and µ+1, closed
periodically, i.e. m + 1 ≡ 1,

v(µ) =

{
1, µ even,

−1, µ odd
.

Conversely, if the neighbourhood interaction matrix of all points is the same and kept
fixed while we increase the size of M , then all eigenvalues will decrease. This is a version
of Courant’s monotonicity theorem [15]. Thus, from our analysis below, synchronization
will require, if possible at all, a larger value of the coupling parameter ε.

We also have the following version of Courant’s nodal domain theorem [16]:

Lemma 1. Consider M as a graph ΓM , with an edge between x and y precisely if x and y
are neighbours. Let uk be an eigenfunction for the eigenvalue λk, with our above ordering,
0 = λ0 < λ1 ≤ λ2 ≤ · · · ≤ λK . Delete from the graph ΓM all edges that connect points on
which the values of uk have opposite signs. This divides ΓM into connected components
Γ1, . . . , Γl. Then l ≤ k + 1.
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3 Linear Stability Analysis

We now consider a solution ū(n) of the uncoupled equation,

ū(n + 1) = f(ū(n)). (4)

Clearly, u(x, n) = ū(n) then is a solution of (1). This solution is spatially homoge-
neous, or as one says, synchronized. The synchronization question then is whether for
certain values of the coupling parameter ε, any solution of (1) asymptotically approaches
a synchronized one. A somewhat weaker question is whether, when we consider a pertur-
bation

u(x, n) = ū(n) + δαk(n)uk(x), (5)

by an eigenmode uk for some k ≥ 1, and small enough δ, αk(n) goes to 0 for n → ∞, if
u(x, n) solves (1). That question can be investigated by linear stability analysis and we
proceed to carry that out. Inserting (5) into (1) and expanding about δ = 0 yields

αk(n + 1) = (1 − ελk)f
′(ū(n))αk(n), (6)

f ′ denoting the derivative of f . So the sufficient local stability condition

lim
N→∞

1

N
log

αk(N)

αk(0)
= lim

N→∞
1

N
log

N−1∏
n=0

αk(n + 1)

αk(n)
< 0 (7)

becomes

log |1 − ελk| + lim
N→∞

1

N

N−1∑
n=0

log |f ′(ū(n))| < 0. (8)

Here,

µ0 = lim
N→∞

1

N

N−1∑
n=0

log |f ′(ū(n))|

is the Lyapunov exponent of f and so the stability condition (8) is

|eµo(1 − ελK)| < 1. (9)

We may have

µo > 0, (10)

i.e. temporal instability, but (9) for all k ≥ 1; i.e. synchronization. We shall now assume
(10) for the remainder of this section. By our ordering convention for the eigenvalues, (9)
holds for all k ≥ 1 if

1 − e−µo

λ1

< ε <
1 + e−µo

λK

. (11)
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In order to satisfy that condition, we need

λK

λ1
<

eµo + 1

eµo − 1
. (12)

By our above discussion this hold in the globally coupled case because there λK = λ1. By
way of contrast if we have nearest neighbour coupling, this can only hold if the size of M
is not too large. (For a 1-dimensional chain, the critical size is 5, with a large value of ε.
If we have second nearest neighbour coupling, the critical size of a one dimensional chain
is 9.)

Let us now assume that (12) holds. We then predict the following behaviour of the
coupled system as ε increases.

For very small values of ε > 0, as we assume (10)

eµo(1 − ελk) > 1,

and so, all spatial modes uk, k ≥ 1, are unstable, and no synchronization occurs. If we
are in the globally coupled case, then there exists a single critical value εc such that

eµo(1 − εcλk) = 1

for all k = 1, 2, . . . , K. For ε > εc, the dynamics become synchronized. For ε slightly
smaller than εc, one observes intermittent behaviour, clustering, etc [17].

Let us now consider the more interesting case where the coupling is not global so that
not all the λk are equal; in particular

λ1 < λK .

We then let εk be the solution of

eµo(1 − εkλk) = 1

The smallest among these values is εK , the largest ε1. If now, for k1 < k2,

εk2 < ε < εk1

then the modes uk2, uk2+1, . . . , uK are stable, while the modes u1, u2, . . . , uk1 are unstable.
Because of Lemma 1, we see that desynchronization can lead to utmost k2+1 subdomains
on which the dynamics is either advanced or retarded.

In particular, if ε increases, first the highest modes, i.e., the ones with most spatial
oscillations, become stabilized, and the mode u1 becomes stabilized the last. So if ε2 <
ε < ε1, then any desynchronized state consists of two subdomains.

We then let ε̄k be the solution of

eµo(ε̄kλk − 1) = 1

Again,
ε̄k ≤ ε̄k−1.
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Because of (11),
ε1 < ε̄K .

If
ε1 < ε < ε̄K ,

then all modes uk, k = 1, 2, . . . , K, are stable, and the dynamics synchronizes.
If ε increases beyond ε̄K , then the highest frequency mode uK becomes unstable and we

predict spatial oscillations of high frequency of a solution of the dynamics . If ε increases
further then more and more spatial modes become destabilized.

4 Global Stability Analysis

The basis of the preceding analysis was a linear expansion about a synchronized state
ū(n). Therefore, that analysis is valid only for small perturbations about such a state. In
this section, we want to derive a criterion that guarantees synchronization for arbitrary
starting values u(x, 0) of a solution of (1).

From general principles of functional analysis (see [18]), there exists an operator,

Λ : L2(M) → L2(M)

with

−(u,Lv) = (Λu, Λv), ∀u, v ∈ L2(M). (13)

This follows from the self adjointness of L. It is not difficult to write a Λ down explicitly,
but our more abstract approach provides the advantage of a less cumbersome notation.

Λ is nonnegative in the sense that

(Λu, Λu) ≥ 0, ∀u ∈ L2(M), (14)

and we even have

Λu = 0 ⇐⇒ u ≡ constant (15)

(This follows from the nonpositivity properties of L).
Moreover Λ commutes with L, i.e.,

ΛL = LΛ, (16)

and so, we may assume that the uk are also eigenfunctions of Λ.
Therefore a natural ansatz for a Lyapunov function for the dynamics (1) is

Φ(n) := (Λu(., n), Λu(., n)), (17)

and it remains to derive conditions under which

Φ(n) → 0, for n → ∞. (18)

8



We have

Φ(n + 1) = (Λu(., n + 1), Λu(., n + 1))

= (Λu(., n + 1), Λ(εLf(., n) + (1 − ε)f(., n)))

by (1).
Since the uk are an orthogonal basis of L2(M), we may write

f(u(x, n)) =

K∑
k=0

βk(n)uk(x),

with βk(n) = (f(u(., n)), uk). Inserting this into the last equality, we get

Φ(n + 1) =

(
Λu(., n + 1), Λ

K∑
k=0

(1 − ελk)βk(n)uk

)
. (19)

The important observation now is that in the last sum, we can discard the summand
k = 0, because u0 is constant, and so

Λu0 = 0.

Moreover, we observed above that, since Λ commutes with L, we may assume,

(Λuk, Λul) = 0, for k �= l,

and so

||Λf(u(., n))||2 =
K∑

k=0

β2
k(n)||Λuk||2.

Using these observations and the Cauchy-Schwarz inequality in (18), we may estimate

Φ(n + 1) ≤ 1

2
||Λu(., n + 1)||2 +

1

2
(1 − ελ1)

2||Λf(u(., n))||2, (20)

assuming |1 − ελK | ≤ 1 − ελ1, i.e.,

ε ≤ 2

λ1 + λK
. (21)

If we now use the coarse estimate

||Λf(u(., n))|| ≤ sup |f ′|||Λu(., n)||, (22)

we obtain from (20)

Φ(n + 1) ≤ (1 − ελ1)
2 sup |f ′|2Φ(n). (23)

We conclude
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Theorem 1. The coupled dynamical system (1) asymptotically synchronizes if ε satisfies
(21) and

(1 − ελ1) sup |f ′| < 1. (24)

Remark: If (21) does not hold, (24) needs to be replaced by,

(ελK − 1) sup |f ′| < 1. (25)

In the special case of global coupling, the synchronization condition becomes,

(1 − ε) sup |f ′| < 1, (0 ≤ ε < 1) (26)

The reason why we have sup |f ′| in (24), in place of eµ0 , µ0 being the Lyapunov exponent
of f , as in section 3, is that here we do not linearize about a spatially homogeneous
solution. Our global approach rather requires to consider any solution u(x, n) of (1).
This means, however, that our condition (11), while sufficient, need not be necessary for
synchronization.

5 Numerical Results

In this section we demonstrate our results with different coupling schemes or network
topology. For our numerical study we took the quadratic map for the site dynamics.
The quadratic map is a widely studied chaotic map, given by f(x) = 1 − ax2 [19]. Here
a is a parameter and varying its value the single map shows a variety of dynamical
phenomena. It becomes chaotic when a ≈ 1.4011, going through a period doubling
bifurcation sequence. At a = 2 the map is maximally chaotic, with a Lyapunov exponent
µ0 = log(2).

5.1 Global coupling

In the case of global coupling, we have λ0 = 0 and λ1 = λ2 = · · · = λm−1 = 1. (The
self coupling term is also included here.) This case has been studied in various contexts.
When exp(µ0)(1 − ε) < 1, the spatially homogeneous solution is stable, as shown in [12].
For the quadratic map with a = 2, it becomes stable when ε > 0.5. Just below this
value the system shows spatio temporal intermittency, clustering phenomena, etc [10]. In
Fig. 1(a), we display σ(n), the fluctuation of the state variable from the mean, defined
by σ2(n) = 1

m

∑m
i=1(xi(n) − x̄(n))2, (x̄(n) is the average of all xi(n)), for different values

of ε, for the case with a = 2.0. It can be seen that when ε > εc = 0.5, the value of σ
becomes zero (within the numerical accuracy) indicating that the system is synchronized.
Though the linear stability does not guarantee the synchronization from arbitrary initial
conditions, in this case it happens. We started with random initial conditions for the
individual sites, and after a few iterations the system synchronizes, indicating the stability
of the spatially homogeneous solutions in these parameter regimes. For a = 1.9, the system
synchronizes for a smaller value of ε, since the Lyapunov exponent at that parameter value
is 0.5490. Here the critical value is εc = 0.4225. Figure 1(b) gives details of this case. We
took m = 1000 for our simulations.
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Figure 1: Fluctuation of the mean, σ(n) is shown as a function of the coupling strength,
ε. At each value of ε, 200 final iterates of σ(n) are plotted. Here m = 1000 and the
coupling is global. In (a) a = 2.0, and in (b) a = 1.9 .

5.2 Nearest Neighbour Coupling

Here the eigenvalues are given by λ0 = 0 and λi = 1− cos(2πi
m

), i = 1, 2, 3, . . . , m−1. The
first nonzero eigenvalue is

λ1 = 1 − cos(
2πi

m
),

and the largest eigenvalue is

λK =

{
2 for even m

1 + cos( π
m

) for odd m
.

Using this one can calculate the maximum value of m at which the spatially homoge-
neous solution can be stable using the condition for linear stability. It will occur when

λK

λ1
<

exp(µ0) + 1

exp(µ0) − 1

and the value of ε lying between

1 − exp(−µ0)

λ1
< ε <

1 + exp(−µ0)

λK
.

For a CML with a fully chaotic quadratic map the maximum value of the system size
which can sustain a stable synchronous solution is m = 5, when ε is between 0.5 and 0.78.
In the case of m = 6, the first mode becomes stable at ε = 1, but the last mode becomes
unstable for a value of ε above 0.75. Hence there is no synchronization. The second mode
is stable when ε is between 0.333 and 1. In Figs. 2–3 we give the plot of the fluctuation
of the mean field for different values of ε, for m = 5 and m = 6, when a = 2.0 (a) and
a = 1.9 (b). When m = 6, between ε = 0.33 and 0.75 only one mode is unstable. From
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Figure 2: Same as in Fig. 1 with nearest neighbour coupling, for m = 5 , in (a) a = 2.0,
and in (b) a = 1.9.

the spectrum one can see that the largest value of m for which only the first mode is
unstable is m = 9 when 0.72 < ε < 0.75. For higher values of m more than one mode will
be unstable for any value of ε. So there cannot be synchronization in large systems with
nearest neighbour coupling.

5.3 Intermediate Range Coupling

If we consider k nearest neighbours (there will be 2k neighbours for each site) the eigen-
values are given by λ0 = 0 and

λi = 1 − 1

2k

k∑
j=1

cos(
2πij

m
), i = 1, 2, . . . , m − 1.

Let us consider the case of two nearest neighbours (k = 2). As in the case of NN
coupling one can find the maximum value of m at which the CML can sustain stable
synchronous chaotic oscillations. For k=2, it is m = 9 with 0.33 < ε < 1. The maximum
value of m at which the second largest mode also becomes unstable is m = 18. Figure 4
gives the plot for m = 9 for a = 2.0 (a) and a = 1.9 (b). For 3 nearest neighbours (k = 3),
it is at m = 12, and for k = 4, m = 15.

One can see that for k/m > 0.301 the system synchronizes when the coupling is
strong, i.e., ε = 1. In Fig. 5 σ(n) is shown as a function of k for m = 1000 near
the synchronization transition region. In each grid corresponding to a k value, 1000
final iterates of σ(n) are plotted after discarding initial transients. The system shows
synchronization when k = 301. As the system size increases we need a higher number of
neighbours for synchronization. For a fixed number of neighbours the behaviour is like
that of the NN case; there is no synchronization when the system size increases.

12



0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

ε

σ

m=6, a=2.0
(a)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

ε
σ

m=6, a=1.9
(b)

Figure 3: Same as in Fig. 2 with nearest neighbour coupling, for m = 6.
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Figure 4: Same as in Fig. 2 with two nearest neighbours coupling, for m = 9.
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Figure 5: Here σ(n) is plotted for different values of k (denoted inside the grid) with
intermediate range coupling, for m = 1000, a = 2.0, and ε = 1.0. Between two grid lines
1000 iterates of σ(n) are plotted.

5.4 Random Coupling

Now we consider a case where there is coupling between random sites. For every site
we randomly select k other distinct sites and connect them with each other under the
constraint that self and multiple coupling is prohibited. The average degree of a node in
such a graph obtained is 2k. For the quadratic map with a = 2.0 and ε = 1, the system
synchronizes for large m, if k > 8, in contrast to the unsymmetric case where it does so
for k > 4 [14].

We plot the fluctuation of the mean field, σ, for different values of k for m = 1000,
ε = 1.0, a = 2.0 (Fig. 6(a)), and a = 1.9 (Fig. 6(b)). It can be seen that the system
synchronizes when the average degree of a vertex is 8 or more, for the completely chaotic
quadratic map. This is independent of the system size m. From random matrix theory
one can see that the value of λ1 depends only on k [20]. For smaller m, synchronization
can occur below k = 8 because of the finite system size effects. So unlike in the case
of nearest neighbour or intermediate range interactions, in the case of random coupling,
one can have chaotic synchronization for any arbitrarily large value of m, if the number
of neighbours (k) is larger than some threshold determined by the value of the maximal
Lyapunov exponent of the chaotic map.

5.5 Small-world Networks

Small-world (SW) networks have an intermediate connectivity between regular and ran-
dom networks. They are characterized by a very small mean path length as in random
networks while at the same time having a high clustering coefficient as in regular networks.
SW coupling is done as in the Watts and Strogatz algorithm [21]. We start with a lattice
of m vertices each connected to its k neighbours. With a probability p we reconnect each
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Figure 6: Same as in Fig. 5 with random coupling for different k values, for m = 1000,
and ε = 1.0. In (a) a = 2.0 and in b) a = 1.9.

edge to a vertex chosen uniformly at random over the entire lattice. Duplicate edges are
avoided. It has been shown in [21] that even for a very small random rewiring probability
p there is a transition to the small-world regime.

Here we took p = 0.1 at which there is small world effect on the structural properties
of the graph. Figure 7 gives the fluctuation σ(n) for different values of ε, k = 10 and
m = 1000. One can see that there is no synchronization at this value of p, λ1 ≈ 0.08 .
When p = 0.8, there is synchronization for ε = 1.0. At this value the number of random
connections per vertex reaches the value needed for synchronization. In Fig. 8, σ(n) is
plotted for p values from 0.0001 to 1, and ε = 1.0. Between two grid lines 1000 iterates of
σ(n) are plotted and the corresponding log10(p) values are also denoted. From this figure
we can easily see that there is no synchronization for smaller p values.

5.6 Scale-free Networks

Another widely studied class of networks are the scale free networks, where the degree
distribution obeys a power law which is observed in many real networks. We studied
the synchronization of a scale free network constructed by the Barabasi-Albert algorithm
[22]. We start with k0 vertices and at every time a new node is introduced. The new
node is connected to k already existing nodes and they are selected with a probability
proportional to the degree of that node. The process is continued for a long time and
then the degree distribution is described by the power law, P (k) ∼ k−γ, where γ = 3.
It is independent of k0. For this study we took k0 = k and a network of size m = 1000.
Figure 9 shows the σ versus ε plot for k = 6, and a = 1.9. In Fig. 10, σ(n) is plotted for
different values of k, for the case a = 1.9. The synchronization behaviour is comparable
to that of a random network. When k > 8 there is synchronization for a = 2.0. We
checked our results with higher values of m also. The results seem to converge for large
system sizes and to be independent of the time of evolution (size) of the network.
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Figure 7: Same as in Fig. 1 with small-world coupling, for m = 1000, k = 10, a = 2.0,
and p = 0.1.

10
−20

10
−15

10
−10

10
−5

10
0

n

σ

−4.0 −3.6 −3.2 −2.8 −2.4 −2.0 −1.6 −1.2 −0.8 −0.4 0

Figure 8: σ(n) for different values of p with small-world coupling, for m = 1000, k = 10,
a = 2.0 and ε = 1. Between two grid lines, corresponding to a p value, 1000 iterates of
σ(n) are plotted and the corresponding log10(p) is denoted at the bottom.
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Figure 9: Same as in Fig. 1 with scale free coupling, for m = 1000, k = 6 and a = 1.9.
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Figure 10: Same as in Fig. 5 with scale free coupling, for m = 1000, a = 1.9 and ε = 1.0.
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6 Conclusion

We studied the spectrum of coupled map lattices and its relation to the stability prop-
erties of the spatially homogeneous solutions. We derived conditions for the existence of
such solutions using linear stability analysis. Conditions obtained from a global stability
analysis are also provided. Our results are supplemented with numerical examples. For
the numerical study the quadratic (logistic) map is used for the site dynamics. We studied
the synchronization properties of coupled map lattices with different coupling topologies
such as global coupling, nearest neighbour coupling, intermediate range coupling, random
coupling, small-world coupling and real-world coupling. The coupling topology can cru-
cially influence the synchronizability of the CML. Our study can be generalized almost
directly to other spatially extended systems.

Acknowledgements

We thank Thomas Wennekers for the critical reading of the manusript.

References

[1] S. H. Strogatz and I. Stewart, Coupled oscillators and biological synchronization,
Sci. Am., 269(6):102–109, 1993.

[2] C. M. Gray, Synchronous oscillations in neuronal systems: Mechanisms and func-
tions, J. Comp. Neurosci., 1:11–38, 1994.

[3] L. Glass, Synchronization and rhythmic processes in physiology, Nature, 410:277–
284, 2001.

[4] L. M. Pecora and T. L. Carroll, Synchronization in chaotic systems, Phys. Rev. Lett.,
64:821–824, 1990.

[5] R. E. Mirollo and S. H. Strogatz, Synchronization properties of pulse-coupled bio-
logical oscillators, SIAM J. Appl. Math., 50:1645–1662, 1990.

[6] J. F. Heagy, T. L. Carroll, and L. M. Pecora, Synchronous chaos in coupled oscillator
systems, Phys. Rev. E, 50:1874–1885, 1994.

[7] M. Lakshmanan and K. Murali, Chaos in nonlinear oscillators: Controlling and
Synchronization, (World Scientific, Singapore, 1996).

[8] A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization: A Universal Concept
in Nonlinear Sciences, (CUP, Cambridge, 2001).

[9] K. Kaneko, Period-doubling of kink-antikink patterns, quasi-periodicity in antiferro-
like structures and spatial-intermittency in coupled map lattices - toward a prelude
to a field theory of chaos, Prog. Theor. Phys., 72:480–486, 1984.

18



[10] K. Kaneko and I. Tsuda, Complex Systems: Chaos and Beyond, (Springer, Berlin,
1996).

[11] K. Kaneko, (Ed.), Theory and Applications of Coupled Map Lattices, (Wiley, New
York, 1993).

[12] K. Kaneko, Clustering, coding, switching, hierarchical ordering, and control in a
network of chaotic elements, Physica D, 41:137-172, 1990.

[13] P. M. Gade and R. E. Amritkar, Spatially periodic orbits in coupled map lattices,
Phys. Rev. E, 47:143-154, 1993.

[14] P. M. Gade, Synchronization of oscillators with random nonlocal connectivity, Phys.
Rev. E, 54:64–70, 1996.

[15] R. Courant and D. Hilbert, Methods of Mathematical Physics, (Interscience, New
York, 1943).

[16] E. B. Davies, J. Leydold, and P. F. Stadler, Discrete nodal domain theorems,
arXiv:math.SP/0009120, 2000.

[17] K. Kaneko, Pattern dynamics in spatiotemporal chaos, Physica D, 34:1–41, 1989.

[18] K. Yosida, Functional Analysis, (Springer-Verlag, Berlin, 1980).

[19] P. Collet and I. P. Eckmann, Iterated maps on the interval as dynamical systems,
(Birkhauser, Boston, 1980).

[20] B. Bollobas, Random Graphs, (Academic Press, London, 1985).

[21] D. J. Watts and S. H. Strogatz, Collective dynamics of ’small-world’ networks,
Nature, 393:440–442, 1998.

[22] A. L. Barabasi and R. A. Albert. Emergence of scaling in random networks, Science,
286:509–512, 1999.

19


