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Abstract. The spectral properties of the adjacency (connectivity) and
distance matrix for various types of networks: exponential, scale-free
(Albert–Barabási) and classical random ones (Erdős–Rényi) are eval-
uated. The graph spectra for dense graph in the Erdős–Rényi model are
derived analytically.
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1 Introduction

Studies of the network structure seem to be essential for better understanding of
many real-world complex systems [1–3]. Among these systems are social [4–15],
economic [16–20], biological [21–24] systems or networks sensu stricto [25–37] like
Internet or World Wide Web. In the latter case effective algorithms for WWW
content search are particularly desired. The Google search engine of the network
search bases on the eigenvector centrality [3, 38–40] which is well known in the
social network analysis and not different from the Brin and Page algorithm [3,
41]. In this algorithm each vertex i of the network is characterized by a positive
weight wi proportional to the sum of the weights

∑
j wj of all vertexes which

point to i, where wi are elements of the i-th eigenvector w of the graph adjacency
matrix A

Aw = λw. (1)

The concept of eigenvector centrality allows distinguish between different im-
portance of the links and thus is much richer than degree or node centrality
[42]. The adjacency matrix A of the network with N nodes is square N × N
large matrix which elements a(i, j) shows number of (directed) links from node
i to j. For undirected network this matrix is symmetrical. For simple graphs
(where no multiple edges are possible) this matrix is binary: a(i, j) = 1 when
nodes i–j are linked together else a(i, j) = 0. The set of eigenvalues (or its den-
sity ρA(λ)) of the adjacency matrix A is called a graph/network spectrum. The
graph spectrum was examined [43, 44] for classical random graphs (Erdős–Rényi,
ER) [45, 46] and investigated numerically for scale-free networks [47] by Farkas
et al. [48, 49]. The spectra of complex networks were derived exactly for infinite
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random uncorrelated and correlated random tree-like graphs by Dorogovtsev et
al. [50]. Several other examples of networks properties obtained by studies of
graph spectra are given in Refs. [51–56].

While many papers refer to eigenvalues of the adjacency matrices A, less is
known about the spectra of the distance matrices D. In the distance matrix D
element d(i, j) is the length of the shortest path between nodes i and j. On
the other hand, whole branch of topological organic chemistry for alkens was
developed for small graphs which symbolize alkens’ structural formula [57–63].
There, not only adjacency A and distance D matrix but also their sum A + D
spectral properties were investigated.

The detailed description of the distance matrix construction during the net-
work growth for the various network types is given in Ref. [64]. Other solutions
of this problem are also known; an example is the Floyd algorithm [65]. During
the network growth nodes may be attached to so far existing nodes randomly or
according to some preferences P . When this preference bases on nodes connectiv-
ity k, P (k) ∝ k, the scale-free Albert–Barabási (AB) [47] networks will appear.
The pure random attachment (P (k) = const) leads to exponential nodes degree
distribution. New nodes may bring with itself one (M = 1) or more (M ≥ 2)
edges which serve as links to pre-existing graph. For M = 1 the tree-like struc-
ture appears, while for M > 1 the cyclic path are available. Let us recall that
degree distributions π(k) are π(k) ∝ k−γ , π(k) ∝ exp(−k) and Poisson’s one for
AB, exponential and ER networks, respectively [1–3].

Here we study numerically1 the graph spectra ρA(λ) for growing networks
with exponential degree distribution for M = 1 and M = 2. We check the
eigenvalue density ρD(λ) of the distance matrix D for AB, exponential and ER
graphs. In literature known to us these spectra was never checked before.

The graph spectrum ρA(λ) for dense graph in the ER model is derived ana-
lytically in Sec. 2.1 as well. Here we profit much from Ref. [66].

2 Results and Discussion

Here we show densities of eigenvalues ρ(λ) for matrices A and D for various
kinds of networks. Results are averaged over Nrun = 102 realizations of networks
of N = 103 nodes.

2.1 Spectral Properties of Adjacency Matrix

For the adjacency matrix of ER, the density of eigenvalues consist two separated
parts: the Wigner-semicircle centered over λ = 0 and with radius approximately
equal to 2

√
Np(1 − p), and the single Frobenius–Perron principal eigenvalue

near Np [43, 44, 67, 68] (see Fig. 1(a)).
The detailed study of graph spectrum for AB graphs may be found in Refs.

[48, 49] by Farkas et al. There, the deviation for semicircular law was observed

1 With LAPACK procedure http://www.netlib.org/lapack/double/dsyev.f
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Fig. 1. Density of eigenvalues ρA(λ) for adjacency matrices A for (a) ER, (b) AB and
(c) exponential networks with N = 103. The results are averaged over Nrun = 100
simulations and binned (Δλ = 0.1). The isolated peaks in Fig. 1(a) correspond to the
principal eigenvalue.

and ρA(λ) has triangle-like shape with power law decay [48]. A very similar situa-
tion occurs for the exponential networks, but ρA(λ) at the top of the “triangle” is



562 K. Malarz

now more rounded. The separated eigenvalues are not observed for this kind of
networks (see Fig. 1(b-c)).

Let us discuss the spectrum of eigenvalues of adjacency matrices of dense
graphs in the ER model [66]. The diagonal elements of these matrices are equal
zero a(i, i) = 0 while the off-diagonal elements a(i, j) assume the value 1 with
the probability p or 0 with the probability 1 − p. The elements a(i, j) above
the diagonal are independent identically distributed random numbers with the
probability distribution P (a(i, j)) = (1−p)δ(a(i, j))+pδ(1−a(i, j)). This prob-
ability distribution of a(i, j) ≡ x has the mean value: x0 = 〈x〉 = p and the
variance σ2 = 〈x2〉− 〈x〉2 = p(1−p). The universality tells us that the spectrum
of random matrices does not depend on the details of the probability distribu-
tion but only on its mean value and variance:2 the eigenvalue spectrum in the
limit N → ∞ is identical for different distributions as long as they have the
same mean and variance. In particular one can take a Gaussian distribution:
1/

√
2πσ2 exp

[
−(x − x0)2/2σ2

]
. Thus one can expect that the spectrum of adja-

cency matrices of ER graphs can be approximated for large N by the spectrum of
matrices with continuous random variables which have the following probability
distribution:

∏

i

da(i, i)√
2π

exp
[

−a(i, i)2

2σ2

]

·
∏

i<j

da(i, j)√
2π

exp
[

− (a(i, j) − p)2

2σ2

]

. (2)

For the diagonal elements the distribution has the mean equal zero to reflect
the fact that the corresponding adjacency matrix elements a(i, i) = 0. The last
expression can be written in a compact form:

DA exp
[

− 1
2σ2 tr(A − pC)2

]

= DA exp
[

− 1
2σ2 trB2

]

, (3)

where
DA ≡ (

√
2π)−N(N+1)/2

∏

i

da(i, i)
∏

i<j

da(i, j)

is the standard measure in the set of symmetric matrices. The matrix B is
obtained from A by a shift B = A − pC where C has the form:

C =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 1 1 · · · 1 1 1
1 0 1 · · · 1 1 1
1 1 0 · · · 1 1 1

. . .
1 1 1 · · · 0 1 1
1 1 1 · · · 1 0 1
1 1 1 · · · 1 1 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (4)

2 If the variance is finite.
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The spectrum of the matrix B is given by the Wigner semi-circle law [69–71]:

ρB(λ) =
1

2πNσ2

√
4Nσ2 − λ2. (5)

It has a support [−2
√

Nσ, 2
√

Nσ], where σ =
√

p(1 − p) as we calculate above.
We want to determine the spectrum of A. It is a sum A = B + pC of ma-
trix B for which we already know the spectrum (5) and of matrix pC whose
spectrum consists of an (N − 1)-degenerated eigenvalue −p and one eigenvalue
p(N − 1). The low eigenvalue −p mixes with the eigenvalues of B leaving the
bulk of the distribution (5) intact while the eigenvalue p(N − 1) adds to the dis-
tribution a well separated peak in the position p(N − 1) far beyond the support[
−2

√
Np(1 − p), 2

√
Np(1 − p)

]
of the main part of the distribution:

ρA(λ) ≈ ρB(λ) +
1
N

δ(λ − p(N − 1)). (6)

The considerations hold as long as p is finite. For sparse graphs p ∼ 1/N → 0
one sees modifications to the presented picture [66].

We note, that the matrix C is both the adjacency and distance matrix for a
complete graph. Thus two very sharp peaks at λ = −1 and λ = N −1 constitute
a complete graph spectrum

ρC(λ) =
N − 1

N
δ(λ + 1) +

1
N

δ(λ − (N − 1)).

2.2 Spectral Properties of Distance Matrix

Spectra of the distance matrix ρD(λ) of growing networks for trees (M = 1) and
other graphs (M > 1) are quantitatively different. For trees the part of spectrum
for λ > 0 is wide and flat. Moreover, the positive and negative eigenvalues are
well separated by a wide gap (see Fig. 2(b-c)) which increases with networks size
N as presented in Fig. 3. On the other hand, we do not observe any finite size
effect for negative part of the spectrum.

The density of negative eigenvalues of D (see Fig. 2) is very similar for consid-
ered networks. The positive value part of the spectrum for growing networks does
not depend on growth rule and it is roughly the same for AB and exponential
networks.

For complete graph D = A = C and graph spectra consist two sharp peaks
as mentioned earlier.

3 Summary

In this paper the spectral properties of the adjacency A and distance D matrices
were investigated for various networks.

For ER and AB networks the well known densities of eigenvalues ρA(λ) were
reproduced. For the growing networks with attachment kernel P (k) ∝ const(k)
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Fig. 2. Density of eigenvalues ρD for distance matrices D for (a) ER, (b) AB and
(c) exponential networks with N = 103. The results are averaged over Nrun = 100
simulations and binned (Δλ = 0.1). The graphs are horizontally shifted by M or p for
better view.

the graph spectra are similar to the AB networks except of the spectra center.
For the complete graph two well separated peaks constitute the graph spectrum.
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Fig. 3. Density of eigenvalues ρD(λ) for distance matrices D for AB trees with various
network size N

The spectra of distance matrix D differ quantitatively for trees and other
graphs. In case of trees (M = 1) the density of positive eigenvalues is very well
separated from the part of the spectrum for λ < 0 and extremely flat. Thus the
specific shape of the distance matrix spectrum may be a signature of absence of
loops and cyclic paths in the network.
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49. Farkas, I.J., Derényi, I., Jeong, H., Neda, Z., Oltvai, Z.N., Ravasz, E., Schubert,

A., Barabási, A.-L., Vicsek, T.: Physica A314, 25 (2002)
50. Dorogovstev, S.N., Goltsev, A.V., Mendes, J.F.F., Samukhin, A.N.: Phys. Rev.

E68, 046109 (2003)
51. Faloutsos, M., Faloutsos, P., Faloutsos, C.: Comput. Commun. Rev. 29, 251 (1999)



Spectral Properties of Adjacency and Distance Matrices 567

52. Monasson, R.: Eur. Phys. J. B12, 555 (1999)
53. Graovac, A., Plavsic, D., Kaufman, M., Pisanski, T., Kirby, E.C.: J. Chem. Phys.

113, 1925 (2000)
54. Eriksen, K.A., Simonsen, I., Maslov, S., Sneppen, K.: arXiv:cond-mat/0212001v1
55. Vukadinovic, D., Huang, P., Erlebach, T.: In: Unger, H., Böhme, T., Mikler, A.R.
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