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Abstract

We study hypoelliptic operators with polynomially bounded coefficients that are of
the formK =

∑m

i=1
XT

i Xi + X0 + f , where theXj denote first order differential
operators,f is a function with at most polynomial growth, andXT

i denotes the formal
adjoint ofXi in L2. For anyε > 0 we show that an inequality of the form‖u‖δ,δ ≤
C(‖u‖0,ε + ‖(K + iy)u‖0,0) holds for suitableδ andC which are independent of
y ∈ R, in weighted Sobolev spaces (the first index is the derivative, and the second the
growth). We apply this result to the Fokker-Planck operator for an anharmonic chain
of oscillators coupled to two heat baths. Using a method of Hérau and Nier [HN02],
we conclude that its spectrum lies in a cusp{x+ iy | x ≥ |y|τ − c, τ ∈ (0, 1], c ∈ R}.

1 Introduction

In an interesting paper, [HN02], H́erau and Nier studied the Fokker-Planck equation
associated to a Hamiltonian systemH in contact with a heat reservoir at inverse tem-
peratureβ. For this problem, it is well-known that the Gibbs measure

µβ(dp dq) = exp(−βH(p, q)) dp dq

is the only invariant measure for the system. In their study of convergence under the
flow of any measure to the invariant measure, they were led to study spectral proper-
ties of the Fokker-Planck operatorL when considered as an operator on L2(µβ). In
particular, they showed thatL has a compact resolvent and that its spectrum is located
in a cusp-shaped region, as depicted in Figure 1 below, improving (for a special case)
earlier results obtained by Rey-Bellet and Thomas [RBT02b], who showed thate−Lt is
compact and thatL has spectrum only in Reλ > c > 0 aside from a simple eigenvalue
at 0.

Extending the methods of [HN02], we show in this paper that the cusp-shape of the
spectrum ofL occurs for many Ḧormander-type operators of the form

K =
m∑

i=1

XT
i Xi + X0 + f , (1.1)
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Figure 1 Cusp containing the spectrum ofL.

(the symbolT denotes the formal adjoint in L2) when the family of vector fields
{Xj}m

j=0 is sufficiently non-degenerate (see Definition 2.1 and assumptionb1 below)
and some growth condition onf holds.

The main motivation for our paper comes from the study of the model of heat
conduction proposed in [EPR99a] and further studied in [EPR99b, EH00, RBT00,
RBT02b, RBT02a]. These papers deal with Hamiltonian anharmonic chains of point-
like particles with nearest-neighbor interactions whose ends are coupled to heat reser-
voirs modeled by linear classical field theories. Our results improve the detailed knowl-
edge about the spectrum of the generatorL of the associated Markov process, see
Sect. 5. As a by-product, our paper also gives a more elegant analytic proof of the
results obtained in [EH00]. A short probabilistic proof has already been obtained in
[RBT02b].

The main technical result needed to establish the cusp-form of the spectrum is the
Sobolev estimate Theorem 4.1 which seems to be new.
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2 Setup and Notations

We will derive lower bounds for hypoelliptic operators with polynomially bounded
coefficients that are of the form (1.1). We start by defining the class of functions and
vector fields we consider.

2.1 Notations

ForN ∈ R, we define the setPolN0 of polynomially growing functions by

PolN0 =
{

f ∈ C∞(Rn)
∣∣∣ ∀α, sup

x∈Rn

(1 + ‖x‖)−N |∂αf (x)| ≤ Cα

}
. (2.1)
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In this expression,α denotes a multi-index of arbitrary order. We also define the set
PolN1 of vector fields inRn that can be written as

G = G0(x) +
n∑

j=1

Gj(x)∂j , Gi ∈ PolN0 .

One can similarly define setsPolNk of kth order differential operators. It is clear that if
X ∈ PolNk andY ∈ PolM` , then [X, Y ] ∈ PolN+M

k+`−1. If f is in PolN0 , but not inPolN+ε
0

for anyε > 0, we say it is of degreeN .

2.2 Hypotheses

Definition 2.1 A family {Ai}m
i=1 of vector fields inRn with Ai =

∑n
j=1 Ai,j∂j is

callednon-degenerateif there exist constantsN andC such that for everyx ∈ Rn and
every vectorv ∈ Rn one has the bound

‖v‖2 ≤ C
(
1 + ‖x‖2

)N
m∑

i=1

〈Ai(x), v〉2 ,

with 〈Ai(x), v〉 =
∑n

j=1 Ai,j(x) vj .

The conditions onK which we will use below are taken from the following list.

a. The vector fieldsXj with j = 0, . . . ,m belong toPolN1 and the functionf
belongs toPolN0 .

b0. There exists a finite numberM such that the family consisting of{Xi}m
i=0,

{[Xi, Xj ]}m
i,j=0,

{[
[Xi, Xj ], Xk

]}m

i,j,k=0
and so on up to commutators of rank

M is non-degenerate.

b1. There exists a finite numberM such that the family consisting of{Xi}m
i=1,

{[Xi, Xj ]}m
i,j=0,

{[
[Xi, Xj ], Xk

]}m

i,j,k=0
and so on up to commutators of rank

M is non-degenerate.

The difference betweenb0 andb1 is in the inclusion of the vector fieldX0 (in b0), so
thatb1 is stronger thanb0.

Definition 2.2 We callK0 the class of operators of the form of (1.1) satisfyinga and
b0 above, andK1 the class of those satisfyinga andb1. Clearly,b1 is more restrictive
thanb0 and thereforeK1 ⊂ K0.

Remark 2.3 If K is in K0 then K is hypoelliptic. If K is in K1 then ∂t + K is
hypoelliptic.
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3 Localized Bound

The main result of this section is Theorem 3.1 which provides bounds for localized test
functions.

We letB(x) denote the unit cube aroundx ∈ Rn:

B(x) =
{

y ∈ Rn
∣∣∣ |yj − xj | ≤ 1 , j = 1, . . . , n

}
.

To formulate our bounds, we introduce the operatorΛ, defined as the positive square
root of Λ2 = 1 −

∑n
i=1 ∂2

i = 1 − ∆. Later on, we will also need the multiplication
operatorΛ̄ defined as the positive root of (multiplication by)Λ̄2 = 1 + ‖x‖2.

Theorem 3.1 AssumeK ∈ K1. Then, there exist positive constantsε∗, C∗, andN∗
such that for everyx ∈ Rn and everyu ∈ C∞0

(
B(x)

)
, one hasuniformly for y ∈ R:

‖Λε∗u‖ ≤ C∗(1 + ‖x‖2)N∗‖u‖+ ‖(K + iy)u‖ . (3.1)

If K is inK0 (but not inK1) the same estimate holds, but the constantC∗ will depend
generally ony.1

Proof. The novelty of the bound is in allowing for polynomial growth of the coeffi-
cients of the differential operators. Were it not for this, the result would be a special
case of Ḧormander’s proof of hypoellipticity of second-order partial differential opera-
tors [Hör85, Thm. 22.2.1]. Since the coefficients of our differential operators can grow
polynomially we need to work with weighted spaces.

We introduce a family of weighted Sobolev spacesSα,β with α, β ∈ R as the
following subset of tempered distributionsS ′

n onRn:

Sα,β = {u ∈ S ′
n |ΛαΛ̄βu ∈ L2(Rn)} .

We equip this space with the scalar product

〈f, g〉α,β = 〈ΛαΛ̄βf,ΛαΛ̄βg〉L2 , (3.2)

writing also〈·, ·〉α instead of〈·, ·〉α,0. We also use the corresponding norms‖ · ‖α,β .
Note that these spaces are actually a particular case of the more general class of Sobolev
spaces introduced in [BC94].

The following lemma lists a few properties of the spacesSα,β that will be useful in
the sequel. We postpone its proof to Appendix A.

Lemma 3.2 Letα, β ∈ R. We have the following:

a. Embedding:For α′ ≥ α andβ′ ≥ β, the spaceSα′,β′ is continuously embedded
into Sα,β . The embedding is compact if and only if both inequalities are strict.

b. Scales of spaces:The operatorsΛγ andΛ̄γ are bounded fromSα,β into Sα−γ,β

and Sα,β−γ respectively. IfX ∈ PolNk then X is bounded fromSα,β into
Sα−k,β−N .

1The norms are L2 norms.
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c. Polarization:For everyα, β ∈ R, one has the bound

|〈f, g〉α,β | ≤ C ‖f‖α′,β′ ‖g‖α′′,β′′ , α′ + α′′ = 2α, β′ + β′′ = 2β ,

which holds for allf andg belonging to the Schwartz spaceSn. The constant
C may depend on the indices.

d. Commutator:Let X ∈ PolNk and Y ∈ PolN
′

k′ . For everyγ ∈ R, [X, Λγ ] is
bounded fromSα,β into Sα+1−k−γ,β−N . Similarly, [X, [Y,Λγ ]] is bounded
fromSα,β into Sα+2−k−k′−γ,β−N−N ′

.

e. Adjoint: LetX ∈ PolNk and letf, g ∈ Sn. Then

〈f,Xg〉α,β = 〈XT f, g〉α,β + R(f, g) ,

where the bilinear formR satisfies the bound

|R(f, g)| ≤ C‖f‖α′,β′‖g‖α′′,β′′ ,

with
α′ + α′′ = 2α + k − 1, β′ + β′′ = 2β + N . (3.3)

The constantC may depend on the indices.

Remark 3.3 A special case of pointe. is given byk = 1. SinceXT and−X then
differ only by a function inPolN0 , one can write

〈f,Xg〉α,β = −〈Xf, g〉α,β + R′(f, g) ,

with the bilinear formR′ satisfying the same bounds asR.

Notation 3.4 We writeKy instead ofK + iy. We also introduce the notationΦ ≤ B
to mean: There exist constantsC and N independent ofx and y such that for all
u ∈ C∞0

(
B(x)

)
:

Φ ≤ C(1 + ‖x‖)N (‖u‖+ ‖Kyu‖) .

We will show below that
‖AΛε−1u‖ ≤ B , (3.4)

holds forA taking values among all of the vector fields appearing inb1 or b0. Assuming
(3.4) one completes the proof of Theorem 3.1 as follows: Notice that if the collection
{Ai}k

i=1 is non-degenerate, then

‖Λu‖2 ≤ ‖u‖2 + C1

(
1 + ‖x‖2

)N1
k∑

i=1

‖Aiu‖2 ,

for everyx ∈ Rn and everyu ∈ C∞0 (B(x)). Therefore, by (3.4) we find

‖u‖2
ε = ‖ΛΛε−1u‖2 ≤ ‖Λε−1u‖2 + C1

(
1 + ‖x‖2

)N1
k∑

i=1

‖AiΛε−1u‖2 ≤ B2 .
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Polarizing, we obtain:

‖u‖2
ε/2 ≤ ‖u‖ ‖u‖ε ≤ C2‖u‖(1 + ‖x‖2)N2(‖u‖+ ‖Kyu‖)

≤ C2
2‖u‖2(1 + ‖x‖2)2N2 + (‖u‖+ ‖Kyu‖)2

≤
(
C2‖u‖(1 + ‖x‖2)N2 + ‖u‖+ ‖Kyu‖

)2

,

and hence (3.1) follows withε∗ = ε/2, N∗ = N2, andC∗ = C2 + 1.
It remains to prove (3.4).

Remark 3.5 To the end of this proof, we use the symbolsC andN to denote generic
positive constants which may change from one inequality to the next.

By the bound on [A,Λε−1] of Lemma 3.2(d)—and the fact thatu ∈ C∞0 (B(x))

implies‖u‖0,N ≤ C
(
1 + ‖x‖2

)N/2‖u‖ for everyN > 0—we will have shown (3.4)
if we can prove

‖Au‖ε−1 ≤ B . (3.5)

Notice that by Lemma 3.2(b), the estimate (3.5) yields

‖Au‖2
ε−1,γ ≤ Cγ(1 + ‖x‖2)γ+N(

‖u‖2 + ‖Kyu‖2
)

, (3.6)

for everyγ > 0, x ∈ Rn, andu ∈ C∞0 (B(x)).
To prove (3.5), we proceed as follows. First, we verify it forA = Xi with i =

1, . . . ,m (as well as forA = X0 in the caseK0). The remaining bounds are shown by
induction. The induction step consists in proving that if (3.5) holds for someA ∈ PolN1
then

‖[A,Xi]u‖ε/8−1 ≤ B for i = 0, . . . ,m . (3.7)

The first step. By the definition ofK and the fact thatXi mapsC∞0 (B(x)) into itself,
we see that

‖Xiu‖ ≤ B , i = 1, . . . ,m , (3.8)

that is, (3.5) holds forε ≤ 1 andA = Xi.
We next show that it also holds forA = X0 wheneverε ≤ 1/2. (This will be the

only place in the proof whereC depends ony, but we need this estimate only for the
caseK0.) Using (1.1) and Lemma 3.2(c), we can write

‖X0u‖2
−1/2 ≤ ‖X0u‖−1(‖Kyu‖+ ‖fu‖+ |y| ‖u‖) +

m∑
i=1

〈X0u, XT
i Xiu〉−1/2 .

Using Lemma 3.2(b) to estimate‖X0u‖−1, the first term is bounded byB2, so it
remains to bound〈X0u, XT

i Xiu〉−1/2. Using this time Lemma 3.2(e), (withα = − 1
2

andβ = 0), we write

〈X0u, XT
i Xiu〉−1/2 = 〈XiX0u, Xiu〉−1/2 + R(X0u, Xiu) , (3.9)



LOCALIZED BOUND 7

whereR(X0u, Xiu) is bounded byC(1 + ‖x‖)N‖X0u‖−1‖Xiu‖, which in turn is
bounded byB2, using the previous bounds on‖X0u‖−1 and‖Xiu‖. The first term of
(3.9) can be written as

|〈XiX0u, Xiu〉−1/2| ≤ C‖XiX0u‖−1‖Xiu‖ .

Since‖Xiu‖ ≤ B by (3.8), we only need to bound‖XiX0u‖−1 by B. This is
achieved by writing

‖XiX0u‖−1 ≤ ‖X0Xiu‖−1 + ‖[Xi, X0]u‖−1 .

The second term is bounded byB using Lemma 3.2(b). The first term is also bounded
by B since‖Xi u‖0,N ≤ C(1 + ‖x‖)N‖Xi u‖ andX0 is bounded fromS0,N into
S−1,0 (for someN ) by Lemma 3.2(b). Therefore, we conclude that

‖X0u‖−1/2 ≤ B , (3.10)

whereC will in general depend ony.
The inductive step.Let A ∈ PolN1 and assume that (3.5) holds. We show that a similar
estimate (with different values forε, C, andN ) then also holds forB = [A,Xi] with
i = 0, . . . ,m. We distinguish the casei = 0 from the others.
The casei > 0. We assume that (3.5) holds and we estimate‖Bu‖ε′−1 for some
ε′ ≤ 1/2 to be fixed later. We obtain

‖Bu‖2
ε′−1 = 〈Bu, AXi u〉ε′−1 − 〈Bu,XiAu〉ε′−1 = T1 + T2 .

Both termsT1 andT2 are estimated separately. ForT1, we get from Remark 3.3:

T1 = −〈ABu, Xi u〉ε′−1 + R(Bu,Xi u) ,

where (sinceε′ ≤ 1/2),

|R(Bu, Xi u)| ≤ C(1 + ‖x‖)N‖Bu‖−1‖Xi u‖ ≤ C(1 + ‖x‖)N‖u‖‖Xi u‖ ≤ B2 .
(3.11)

The term〈ABu, Xi u〉ε′−1 is written as

|〈ABu,Xi u〉ε′−1| ≤ ‖BAu‖2ε′−2‖Xi u‖+ ‖[A,B]u‖−1‖Xi u‖ .

The second term is bounded byB2 like in (3.11). The first term is also bounded byB2

by combining Lemma 3.2(b) with the induction assumption in its form (3.6) (taking
2ε′ ≤ ε). The estimation ofT2 is very similar: we write again

T2 = −〈XiBu, Au〉ε′−1 + R(Bu,Au) . (3.12)

The first term is bounded byC‖XiBu‖−1‖Au‖2ε′−1. The second factor of this quan-
tity is bounded byB by the inductive assumption, while the first factor is bounded
by

‖XiBu‖−1 ≤ ‖BXi u‖−1 + ‖[B,Xi]u‖−1 ≤ B , (3.13)
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using Lemma 3.2(b) and the estimate‖Xiu‖0,N ≤ B. The remainderR of (3.12) is
bounded by

|R(Bu, Au)| ≤ C(1 + ‖x‖)N‖Bu‖−1‖Au‖2ε′−1 ,

which is bounded byB2, using Lemma 3.2(b) for the first factor and the inductive
assumption for the second. Combining the estimates onT1 andT2 we get

‖Bu‖ε′−1 ≤ B for ε′ ≤ ε/2 ,

which is the required estimate.
The casei = 0. To conclude the proof of Theorem 3.1, it remains to bound‖Bu‖ε′−1

byB. In this expression,B = [A,X0] andε′ > 0 is to be fixed later. We first introduce
the operator

K̃ =
m∑

i=1

XT
i Xi ,

which is (up to a term of multiplication by a function) equal to the real part ofKy,
when considered as an operator on L2. We can thus writeX0 as

X0 = K − K̃ + f1 = K̃ −KT + f2 ,

for two functionsf1, f2 ∈ PolN0 for someN . This allows us to expressB as

B = [A,X0] = AKy + KT
y A + [K̃, A] − 2K̃A + Af1 − f2A .

We write ‖Bu‖2
ε′−1 = 〈Bu, [A,X0]u〉ε′−1 and we bound separately byB2 each of

the terms that appear in this expression according to the above decomposition of the
commutator.

The two terms containingf1 andf2 are bounded byB2 using the inductive as-
sumption. We therefore concentrate on the four remaining terms.
The term AKy. We write this term as

〈Bu,AKyu〉ε′−1 = −〈BAu, Kyu〉ε′−1 + 〈[A,B]u, Kyu〉ε′−1 + R(Bu,Kyu) ,

where the two last terms are bounded byB2 using Lemma 3.2(b,e). Using assumption
(3.6) (assumingε′ ≤ ε/2) and Lemma 3.2(b,c), we also bound the first term byB2.
The term KT

y A. We write this term as

〈Bu,KT
y Au〉ε′−1 = 〈KyBu,Au〉ε′−1+〈Λ2−2ε′ [K, Λ2ε′−2]Bu, Au〉ε′−1 = T1+T2 .

The termT1 is bounded by‖KyBu‖−1‖Au‖2ε′−1 by polarization. The second factor
of this product is bounded byB, using the induction hypothesis and the assumption
ε′ ≤ ε/2. The first factor is bounded by

‖KyBu‖−1 ≤ ‖BKyu‖−1 + ‖[K, B]u‖−1 . (3.14)

The first term of this sum is obviously bounded byB. The second term is expanded
using the explicit form ofK as given in (1.1). The only “dangerous” terms appearing
in this expansion are those of the form‖[XT

i Xi, B]u‖−1. They are bounded by

‖[XT
i Xi, B]u‖−1 ≤ ‖[XT

i , B]Xiu‖−1 + ‖[Xi, B]XT
i u‖−1 +

∥∥[
XT

i , [Xi, B]
]
u
∥∥
−1

.



LOCALIZED BOUND 9

The terms in this sum are bounded individually byB, using the estimates on‖Xi u‖,
together with Lemma 3.2(b,d). We now turn to the termT2. We bound it by

|T2| ≤ C‖Λ2−2ε′ [K, Λ2ε′−2]Bu‖−1‖Au‖2ε′−1 .

The second factor is bounded byB by the induction hypothesis, so we focus on the
first factor. We again write explicitlyK as in (1.1) and estimate each term separately.
The two terms containingX0 andf are easily bounded byB using Lemma 3.2(b,d).
We also writeXT

i Xi = X2
i + Yi with Yi ∈ PolN1 and similarly bound byB the terms

in Yi. The remaining terms are of the type

Qi = ‖Λ2−2ε′ [X2
i ,Λ2ε′−2]Bu‖−1 .

They are bounded by

Qi ≤ 2‖Λ2−2ε′ [Xi,Λ2ε′−2]XiBu‖−1 +
∥∥Λ2−2ε′

[
Xi, [Xi,Λ2ε′−2]

]
Bu

∥∥
−1

.

In order to bound the first term, one writesXiB = BXi + [Xi, B] and bounds each
term separately byB, using the bound‖Xiu‖0,γ ≤ B together with Lemma 3.2(b,d).
The last term is also bounded byB using Lemma 3.2(d).
The term [K̃, A]. We writeK̃ =

∑m
i=1 XT

i Xi and we bound each term separately:

〈Bu, [XT
i Xi, A]u〉ε′−1 = 〈Bu,XT

i [Xi, A]u〉ε′−1 + 〈Bu, [XT
i , A]Xi u〉ε′−1

≡ Ti,1 + Ti,2 .

The first term is written as

Ti,1 = 〈XiBu, [Xi, A]u〉ε′−1 + R(u) ,

whereR(u) is bounded byC(1+‖x‖)N‖Bu‖−1‖[Xi, A]u‖2ε′−1. The factor‖Bu‖−1

is bounded byB using Lemma 3.2(b) and the last factor is bounded byB, using the
estimate for the casei 6= 0 (we have to assumeε′ ≤ ε/4 in order to get this bound).
The term〈XiBu, [Xi, A]u〉ε′−1 is estimated by

|〈XiBu, [Xi, A]u〉ε′−1| ≤ ‖XiBu‖−1‖[Xi, A]u‖2ε′−1 .

The first factor is bounded byB as in (3.13) and the second factor is again bounded by
B, using the estimate for the casei 6= 0. It thus remains to boundTi,2, which we write
as

Ti,2 = 〈Bu,Xi[X
T
i , A]u〉ε′−1 +

〈
Bu,

[
[XT

i , A], Xi

]
u
〉

ε′−1
.

The first term in this equation is similar to the term〈Bu,XT
i [Xi, A]u〉ε′−1 and is

bounded byB2 in the same way. The second term is bounded by〈
Bu,

[
[XT

i , A], Xi

]
u
〉

ε′−1
≤ ‖Bu‖−1

∥∥[
[XT

i , A], Xi

]
u
∥∥

2ε′−1
,

which can also be bounded byB2, using the estimate for the casei 6= 0, provided
ε′ ≤ ε/8.
The term K̃A. In order to bound this term, we need the following preliminary lemma:
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Lemma 3.6 Let v ∈ Sn, α, δ ∈ R, and letKy be as above. There exist constantsC̃

andÑ independent ofy such that the estimate∣∣∣Re〈Kyv, v〉α −
m∑

i=1

‖Xiv‖2
α

∣∣∣ ≤ C̃
m∑

i=1

‖Xiv‖α−δ,Ñ‖v‖α+δ,Ñ + C̃‖v‖2
α,Ñ

, (3.15)

holds.

Proof. Obviously Re〈Kyv, v〉α = Re〈Kv, v〉α. We decomposeK according to (1.1).
The terms containingX0 andf are bounded byC‖v‖2

α,N according to Lemma 3.2(b,e),
so we focus on the terms containingXT

i Xi. Using Lemma 3.2(e), we write them as

〈XT
i Xiv, v〉α = ‖Xiv‖2

α + Ri(v) ,

whereRi(v) is bounded byC‖Xiv‖α−δ,N‖v‖α+δ,N . This concludes the proof of
Lemma 3.6.

We now write the term containing̃KA as

〈Bu, K̃Au〉ε′−1 =
m∑

i=1

(〈XiBu, XiAu〉ε′−1 + Ri) , (3.16)

and we apply Lemma 3.2(e) withf = Bu, g = XiAu, X = XT
i . Then we find

|Ri| ≤ ‖Bu‖−1,N‖XiAu‖2ε′−1 ≤ ‖Bu‖2
−1,N + ‖XiAu‖2

2ε′−1 .

By Lemma 3.2(b), the first term is bounded byB2. Using Lemma 3.2(c) to polarize
the scalar product in (3.16) we thus get

|〈Bu, K̃Au〉ε′−1| ≤ B2 + C

m∑
i=1

‖XiBu‖2
−1 + C

m∑
i=1

‖XiAu‖2
2ε′−1 .

The term involving‖XiBu‖2
−1 is bounded byB2 as in (3.13). The last term is bounded

by Lemma 3.6, yielding

|〈Bu, K̃Au〉ε′−1| ≤ B2 + C|〈KyAu, Au〉2ε′−1|+ C
m∑

i=1

‖XiAu‖2
−1,Ñ

+ C‖Au‖2
4ε′−1,Ñ

.

The last term in this expression is bounded byB2 by the induction hypothesis if we
chooseε′ ≤ ε/4. The term containingXiAu can be bounded byB2 as in (3.13), so
the only term that remains to be bounded is|〈KyAu, Au〉2ε′−1|. By polarizing the
estimate obtained by Lemma 3.2(c), one gets

|〈KyAu, Au〉2ε′−1| ≤ C‖Au‖2
4ε′−1 + C‖KyAu‖2

−1 .

The first term is bounded byB2 using the induction assumption. The second term is
bounded byB2 exactly like (3.14) above. Summing all these bounds this proves (3.7)
and hence the inductive step is completed.

SinceK was assumed to satisfyK1 (or K0), we see that afterM inductive steps
the proof of Theorem 3.1 is complete.
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4 Global Estimate

The results of the previous section were restricted to functionsu with well-localized
compact support. In this section, we are interested in getting bounds for everyu ∈ Sn.
The main estimate of this section is given by

Theorem 4.1 LetK ∈ K1 and defineKy = K + iy for y ∈ R. For everyε > 0, there
exist constantsδ > 0 andC > 0 independent ofy, such that for the norms defined by
(3.2) one has

‖u‖δ,δ ≤ C(‖u‖0,ε + ‖Kyu‖) , (4.1)

for everyu ∈ Sn. If K ∈ K0, the same bound holds, but the constantC may depend
ony.

SinceSδ,δ is compactly embedded into L2, this result implies:

Corollary 4.2 LetK be as above. If there exist constantsε, C > 0 such that

‖u‖0,ε ≤ C(‖u‖+ ‖Ku‖) , (4.2)

thenK has compact resolvent when considered as an operator acting onL2.

Proof of the Corollary.Combining (4.1) with (4.2), we get

‖u‖δ,δ ≤ C(‖u‖+ ‖Ku‖) .

This implies that forλ outside of the spectrum ofK, the operator (K−λ)−1 is bounded
from L2 into Sδ,δ. By Lemma 3.2(a), it is therefore compact.

Proof of Theorem 4.1.Let ε∗ andN∗ be the values of the constants obtained in esti-
mate (3.1) of Theorem 3.1. Observe that Theorem 3.1 also holds for any bigger value
of N∗, and we will assumeN∗ is sufficiently large.

We chooseε > 0. As a first step, we will show that there exist constantsδ andC
such that, for anyx ∈ Rn andu ∈ C∞0 (B(x)), the following estimate holds:

‖u‖δ,δ ≤ C(1 + ‖x‖2)−N∗‖u‖ε∗ + C(1 + ‖x‖2)ε/2‖u‖ . (4.3)

Denote byJ the smallest integer for which

J ≥ 1 +
8N∗

ε
,

and define
δ = min

{
2N∗,

ε

2
,
ε∗
J

}
. (4.4)

First, we note that whenA is a positive self-adjoint operator on some Hilbert spaceH,
one has the estimate

‖Au‖J ≤ C‖AJu‖ ‖u‖J−1 , (4.5)
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whenever both expressions make sense. In the caseJ = 2j for j an integer, this can
be seen by a repeated application of the Cauchy-Schwarz inequality. It was shown in
[KS59] to hold in the general case as well.

We next use Jensen’s inequality to write

(1 + ‖x‖2)N∗+δ/2‖Λδu‖ ≤ C

(
‖Λδu‖
‖u‖

)J

‖u‖+ C(1 + ‖x‖2)(N∗+δ/2)(1+ 1
J−1 )‖u‖ .

Dividing this expression by(1 + ‖x‖2)N∗ and using the definition ofJ , we get

(1 + ‖x‖2)δ/2‖Λδu‖ ≤ C(1 + ‖x‖2)−N∗

(
‖Λδu‖
‖u‖

)J

‖u‖

+ C(1 + ‖x‖2)(N∗+δ/2)(1+ε/(8N∗))−N∗‖u‖ .

Using (4.5), the fact that ε
8N∗

≤ ε−δ
2N∗+δ by (4.4), andu ∈ C∞0 (B(x)), we get (4.3).

In order to prove Theorem 4.1, we use the following partition of unity. Letχ0 :
R → [0, 1] be aC∞ function with support in|x| < 1 and satisfying

∑
i∈Z χ0(x−i) = 1

for all x ∈ R. The family of functions

P = {χx : Rn → [0, 1] |x ∈ Zn} ,

defined by

χx(z) =
n∏

j=1

χ0(zj − xj) ,

is therefore a partition of unity forRn. By construction, whenx, x′ ∈ Z thenχx and
χx′ have disjoint support if there exists at least one indexj with |xj − x′j | ≥ 2. We
can therefore splitP into subsetsPk|k=1,...,3n such that any two different functions
belonging to the samePk have disjoint supports.

Consider next an arbitrary functionu ∈ Sn. We defineux = χxu, and then the
construction of thePk implies∑

x∈Zn

‖ux‖0,ε ≤ 3n‖u‖0,ε . (4.6)

Using (4.3), then Theorem 3.1 and (4.6), we find

‖u‖δ,δ ≤
∑

x∈Zn

‖ux‖δ,δ ≤ C
∑

x∈Zn

(
(1 + ‖x‖2)−N∗‖ux‖ε∗ + (1 + ‖x‖2)ε/2‖ux‖

)
≤ C

∑
x∈Zn

(
‖ux‖+ (1 + ‖x‖2)−N∗‖Kyux‖+ (1 + ‖x‖2)ε/2‖ux‖

)
≤ C3n(‖u‖+ ‖u‖0,ε) + C

∑
x∈Zn

(1 + ‖x‖2)−N∗‖Kyux‖ .

Fork ∈ {1, . . . , 3n} we now define

fk =
∑

χx∈Pk

(1 + ‖x‖2)−N∗χx .
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With this notation, we have

‖u‖δ,δ ≤ C‖u‖0,ε + C
3n∑

k=1

‖Kyfk u‖ .

The claim (4.1) thus follows if we can show that

‖Kyfk u‖ ≤ C‖u‖+ C‖Kyu‖ . (4.7)

Since thefk are bounded functions, it suffices to estimate‖[K, fk]u‖.
By construction, every derivative offk decays like(1 + ‖x‖2)−N∗ , so (for suffi-

ciently largeN∗), the functions [Xj , fk] and
[
Xk, [Xj , fk]

]
are bounded. The only

“dangerous” terms appearing in [K, fk] are thus the terms of the form [Xi, fk]Xi. By
choosingN∗ sufficiently large, it follows from (3.8) that‖[Xi, fk]Xi u‖ ≤ C(‖u‖ +
‖Kyu‖), thus concluding the proof of Theorem 4.1.

4.1 Cusp

Our statement about the cusp-like shape of the spectrum ofK is now a consequence of
Theorem 4.1.

Theorem 4.3 LetK ∈ PolN2 be of the type (1.1). Assume that the closure ofK in L2 is
m-accretive and thatK ∈ K1. Assume furthermore that there exist constantsε, C > 0
such that

‖u‖0,ε ≤ C(‖u‖+ ‖Kyu‖) , (4.8)

for all y ∈ R. Then, the spectrum ofK (as an operator onL2) is contained in the cusp

{λ ∈ C | Reλ ≥ 0 , |Imλ| ≤ C(1 + Reλ)ν} ,

for some positive constantsC andν.

Remark 4.4 In principle, our proofs give a constructive upper bound onν. However,
no attempt has been made to optimize this bound.

Proof. The proof follows very closely that of Theorem 4.1 in [HN02], however we give
the details for completeness. One ingredient we need is the following lemma:

Lemma 4.5 Let A : L2 → L2 be a maximal accretive operator that hasSn as a core.
Assume there exist constantsC,α > 0 for which

‖Au‖ ≤ C‖u‖α,α , ∀u ∈ Sn .

Then, for everyN ∈ N, there exists a constantCN such that

‖A1/Nu‖ ≤ CN‖u‖α/N,α/N , ∀u ∈ Sα/N,α/N .
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Proof. By Lemma 3.2(b), one can bound‖u‖α,α by

‖u‖α,α ≤ C
∥∥(

Λα/2N Λ̄α/NΛα/2N
)N

u
∥∥ .

The generalized Heinz inequality presented in [Kat61] then yields

‖A1/Nu‖ ≤ CN

∥∥Λα/2N Λ̄α/NΛα/2Nu
∥∥ .

This concludes the proof of Lemma 4.5.

We now turn to the proof of Theorem 4.3. SinceK ∈ PolN2 , one has forα =
max{2, N} the bound

‖(K + 1)u‖ ≤ C‖u‖α,α , ∀u ∈ Sn .

By Lemma 4.5, one can find for everyδ > 0 an integerM > 0 and a constantC such
that:

〈u, ((K + 1)∗(K + 1))1/M
u〉 ≤ C‖u‖2

δ,δ , (4.9)

Furthermore, Theorem 4.1 together with (4.8) yields constantsC andδ such that for
everyu ∈ Sn and everyy ∈ R:

‖u‖2
δ,δ ≤ C

(
‖u‖2 + ‖(K + iy)u‖2

)
. (4.10)

SinceK is m-accretive by assumption, we can apply [HN02, Prop. B.1] to get the
estimate

1
4
|z + 1|2/M‖u‖2 ≤

〈
((K + 1)∗(K + 1))1/M

u, u
〉

+ ‖(K − z)u‖2

≤ C‖u‖2
δ,δ + ‖(K − z)u‖2 ,

where the second line is a consequence of (4.9). Using (4.10) and the triangle inequality
for z = Rez + i Imz, we get

1
4
|z + 1|2/M‖u‖2 ≤ C

(
(1 + Rez)2‖u‖2 + ‖(K − z)u‖2

)
.

Together with the compactness of the resolvent ofK, this immediately implies that
everyλ in the spectrum ofK satisfies the inequality

1
4
|λ + 1|2/M‖u‖2 ≤ C(1 + Reλ)2‖u‖2 .

This concludes the proof of Theorem 4.3.

5 Examples

We present two examples in this section: A first, very simple one, and a second which
was the main motivation for this paper.
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5.1 Langevin equation for a simple anharmonic oscillator

Our first example consists of one anharmonic oscillator which is in contact with a
stochastic heat bath at temperatureT . The Hamiltonian of the oscillator is given by

H(p, q) =
p2

2
+

ν2q2

2
+ ε

q4

4
.

For this model the associated spectral problem can be solved explicitly whenε = 0,
because it is an harmonic oscillator. The spectrum lies in a cone as shown in Fig. 2.
We also show that in first order perturbation theory inε, the spectrum seems to form a
non-trivial cusp, but this result remains conjectural, because of non-uniformity of our
bounds.

The Langevin equation for this system is

dp = −ν2q dt− εq3 dt− γp dt +
√

2γT dw(t) , dq = p dt , (5.1)

whereγ > 0 measures the strength of the interaction between the oscillator and the
bath. Denote by (Ω, P) the probability space on which the Wiener processw(t) is de-
fined. We writeϕt,ω(x) with ω ∈ Ω for the solution at timet for (5.1) with initial
conditionx = (p, q) and realizationω of the white noise. The corresponding semi-
groups acting on observables and on measures onR2 are given by

(Ttf)(x) =
∫

Ω

(f ◦ ϕt,ω(x)) dP(ω) , (5.2a)

(T ∗t µ)(A) =
∫

Ω

(
µ ◦ ϕ−1

t,ω(A)
)
dP(ω) , (5.2b)

whereA ⊂ R2 is a Borel set. It is well-known that

dµT (p, q) = exp(−H(p, q)/T ) dp dq

is the only stationary solution for (5.2b).
The Itô formula yields forft = Ttf the Fokker-Planck equation given by

∂tft = γT∂2
pft + p ∂qft − (ν2q + εq3 + γp) ∂pft . (5.3)

We study (5.3) in the spaceHβ = L2(R2, dµT ). and make the change of variables
ft = exp(H/(2T ))Ft in order to work in the unweighted spaceH0 = L2(R2, dp dq).
Equation (5.3) then becomes∂tFt = −L̃εFt, where the differential operator̃Lε is
given by

L̃ε = −γT∂2
p +

γ

4T
p2 − γ

2
− p ∂q + ν2q ∂p + εq3 ∂p .

By rescaling time,p andq, one can bring̃Lε to the form

Lε =
1
2
(
−∂2

p + p2 − 1
)

+ α(q ∂p − p ∂q) + cεq3 ∂p ,

whereα = 2
√

2Tν/γ andc > 0.
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The operatorK = Lε is thus of the type (1.1) withX0 = α(q ∂p − p ∂q) + cεq3 ∂p

and X1 = ∂p. We now verify the conditions of Section 2.2. It is obvious that
these vector fields are of polynomial growth, thus conditiona is satisfied. Since
[X1, X0] = −α∂q, the operatorLε satisfies conditionb1 as well, and so the con-
clusion of Theorem 4.1 holds. Proceeding like in [EH00, Prop. 3.7], one shows an
estimate of the type (4.8) (see also the proof of Theorem 5.5 below, where details are
given). Therefore, Theorem 4.3 applies, showing that the spectrum ofLε is located in
a cusp-shaped region. In fact, we show in the next subsection that the cusp is a cone
whenε = 0, and then we study its perturbation to first order inε.

5.1.1 First-order approximation of the spectrum ofLε

We will explicitly compute the spectrum and the corresponding eigenfunctions forL0

and then (formally) apply first-order perturbation theory to get an approximation to the
spectrum ofLε. We introduce the “creation and annihilation” operators

a =
p + ∂p√

2
, a∗ =

p− ∂p√
2

, b =
q + ∂q√

2
, b∗ =

q − ∂q√
2

,

in terms of whichLε can be written as

Lε = a∗a + α(b∗a− a∗b) + cεq3 ∂p .

With this notation, it is fairly easy to construct the spectrum ofL0. Note first that0 is
an eigenvalue forL with eigenfunction exp(−p2/2 − q2/2). This is actually the vac-
uum state for the two-dimensional harmonic oscillator in quantum mechanics (which
is given bya∗a + b∗b), so we call this eigenfunction|Ω〉.

A straightforward calculation shows that the creation operatorsc∗± defined by

c∗± = a∗ + β±b∗ , β± = − 1
2α

± i

√
4α2 − 1

2α
,

satisfy the following commutation relation withL0:

[L0, c
∗
±] = λ±c∗± , λ± =

1
2
± i

√
4α2 − 1

2
= − α

β±
.

Therefore,λn,m
0 = nλ+ + mλ− with n andm positive integers are eigenvalues forL0

with eigenvectors given by
(c∗+)n(c∗−)m|Ω〉 .

We conclude that forα > 1/2 the spectrum ofL0 consists of a triangular grid located
inside a cone (see Figure 2).

Remark 5.1 Although the spectrum ofL0 is located inside a sector,L0 is notsectorial
since the closure of its numerical range is the half-plane Reλ ≥ 0.
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Imλ

Reλ
λ+

λ−

Figure 2 Spectrum ofL0.

Imλ

Reλ

Figure 3 Approximate spectrum ofLε.

In order to do first-order perturbation theory for the spectrum ofLε we also need
the eigenvectors forL∗0, which can be obtained by applying successivelyd∗+ andd∗− to
|Ω〉, where

d∗± = a∗ − β∓b∗ .

With this notation, (d∗+)n(d∗−)m|Ω〉 is an eigenvector ofL∗0 with eigenvaluēλn,m
0 . By

first-order perturbation theory, the eigenvalues ofLε are approximated by

λn,m
ε ≈ λn,m

0 + cεδn,m , δn,m =
〈Ω|dm

−dn
+q3∂p(c∗+)n(c∗−)m|Ω〉

〈Ω|dm
−dn

+(c∗+)n(c∗−)m|Ω〉
. (5.4)

The resulting spectrum2 is shown in Figure 3 (the sector containing the spectrum ofL0

is shown in light gray for comparison). One clearly sees that the boundary of the sector
bends to a cusp. A (lengthy) explicit computation also shows that

δn,0 = −12n(n− 1)
λ̄+√

4α2 − 1
+ 9n

iα√
4α2 − 1

.

In principle this confirms the cusp-like shape of the boundary, were it not for the non-
uniformity of the perturbation theory (inn).

5.2 A model of heat conduction

In this subsection, we apply our results to the physically more interesting case of a
chain of nearest-neighbor interacting anharmonic oscillators coupled to two heat baths
at different temperatures. We model the chain by the deterministic Hamiltonian system
given by

H =
N∑

i=0

(p2
i

2
+ V1(qi)

)
+

N∑
i=1

V2(qi − qi−1) .

(We will give conditions on the potentialsV1 andV2 later on.) In order too keep nota-
tions short, we assumepi, qi ∈ R, but one could also take them inRd instead. The two
heat baths are modeled by classical free field theoriesϕL andϕR with initial condi-
tions drawn randomly according to Gibbs measures at respective inverse temperatures

2Actually the set{λn,m
0 + cεδn,m | n, m ≥ 0}.
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βL andβR. (We refer to [EPR99a] for a more detailed description of the model.) It is
shown in [EPR99a] that this model is equivalent to the following system of stochastic
differential equations:

dqi = pi dt , i = 0, . . . , N ,

dp0 = −V ′
1 (q0) dt + V ′

2 (q̃1) dt + rL dt ,

dpj = −V ′
1 (qj) dt− V ′

2 (q̃j) dt + V ′
2 (q̃j+1) dt , j = 1, . . . , N − 1 ,

dpN = −V ′
1 (qN ) dt− V ′

2 (q̃N ) dt + rR dt ,

drL = −γLrL dt + λ2
LγLq0 dt− λL

√
2γLTL dwL(t) ,

drR = −γRrR dt + λ2
RγRqN dt− λR

√
2γRTR dwR(t) ,

whereTi = β−1
i , γi are positive constants describing the coupling of the chain to the

heat baths, andwi are two independent Wiener processes. The variablesrL andrR
describe the internal state of the heat baths. IfTL = TR = T , the equilibrium measure
for this system isdµT (p, q, r) = exp(−G(p, q, r)/T ) dp dq dr, where the “energy”G
is given by the expression

G(p, q, r) = H(p, q) +
rL

2

2λ2
L

− q0rL +
rR

2

2λ2
R

− qNrR .

If TL 6= TR, there is no way of guessing the invariant measure for the system. We can
nevertheless make the construction of Section 5.1 with the reference measuredµT̃ for
some temperature

T̃ > max{TL, TR} ,

which is a stability condition, as one can see in (5.6) below. The resulting operator
K = L is given by

L = X∗
LXL + X∗

RXR + f2
L + f2

R + X0 , (5.5)

where

XL,R = λL,R

√
γL,RTL,R∂rL,R

,

fL,R =
√

γL,R(TL,R/T̃ − 1)(rL,R − λL,Rq0,N ) , (5.6)

X0 = ∇qH ∇p −∇pH ∇q + bL(rL − λ2
Lq0)∂rL − rL∂p0

+ bR(rL − λ2
RqN )∂rR − rL∂pN

,

with
bL,R =

γL,R

λ2
L,RT̃ 2

(TL,R − T̃ ) .

We are now in a position to express the conditions of Section 2.2 in terms of sufficient
conditions on the potentials of the model. The first two assumptions guarantee thatL
is inK1.
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Assumption 1 There exist real numbersn, m > 0 such thatDαV1 ∈ Pol2n−|α|
0 and

DαV2 ∈ Pol2m−|α|
0 for |α| ≤ 2.

Assumption 2 There exists a constantc > 0 such thatV ′′
2 (x) > c for all x ∈ R.

Remark 5.2 The second assumption states that there is a non-vanishing coupling be-
tween neighboring particles in every possible state of the chain.

The verification that these assumptions implya is easy, and the verification thatb1

holds can be found in [EPR99a, EH00].

Proposition 5.3 LetL be defined as above and letV1 andV2 fulfill Assumptions 1 and
2 above. ThenL satisfies the assumptions of Theorem 4.1 and satisfies Eq.(4.1) withC
andδ independent ofy.

In order to show that the spectrum ofL is located in a cusp-shaped region (i.e. that
the hypotheses of Theorem 4.3 hold), two more assumptions have to be made on the
asymptotic behaviour ofV1 andV2:

Assumption 3 The exponentsn andm appearing in Assumption 1 satisfy1 < n < m.

Remark 5.4 The physical interpretation of the conditionn < m (actually1 ≤ n ≤ m
would probably work as well, see [RBT02b], but we could not apply directly the results
of [EH00]) goes as follows. Ifn > m, the relative strength of the coupling between
neighboring particles decreases as the energy of the chain tends to infinity. Therefore,
an initial condition where all the energy of the chain is concentrated into one single
oscillator is “metastable” in the sense that the energy gets transmitted only very slowly
to the neighboring particles and eventually to the heat baths. As a consequence, it is
likely that the convergence to a stationary state is no longer exponential in this case,
and so the operatorL has probably not a compact resolvent anymore.

Our last assumption states that the potentials and the resulting forces really grow asym-
ptotically like |x|n and|x|m respectively (and not just “slower than”).

Assumption 4 The potentialsV1 andV2 satisfy the conditions

V1(x) ≥ c1

(
1 + ‖x‖2

)n − c2 , xV ′
1 (x) ≥ c3

(
1 + ‖x‖2

)n − c4 ,

V2(x) ≥ c5

(
1 + ‖x‖2

)m − c6 , xV ′
2 (x) ≥ c7

(
1 + ‖x‖2

)m − c8 ,

for all x ∈ R and for some positive constantsci.

Theorem 5.5 Let L be defined as above and letV1 and V2 fulfill assumptions 1–4
above. Then,L has compact resolvent and there exist positive constantsC andN such
that the spectrum ofL is contained in the cusp{

λ ∈ C
∣∣∣ Reλ ≥ 0 and Imλ ≤ C(1 + |Reλ|)N

}
.
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Proof. We will apply Theorem 4.3, and need to check its assumptions. It has been
shown in [EH00, Prop. B.3] thatL is m-accretive. The fact thatL ∈ K1 was checked
above, and (4.8) was shown fory = 0 in [EH00, Prop. 3.7]. However, closer inspection
of that proof reveals that wheneverX0 was used, it only appeared inside a commutator.
Therefore, we can replace it byX0 + iy without changing the bounds. Thus, we
have checked all the assumptions of Theorem 4.3 and the proof of Theorem 5.5 is
complete.

A Proof of Lemma 3.2

The pointsa andb of Lemma 3.2 are standard results in the theory of pseudodifferential
operators (seee.g.[Hör85, Vol. III] or, more specifically, [BC94, HT94a, HT94b]). The
pointc is an immediate consequence of the Cauchy-Schwarz inequality combined with
a. In order to prove the pointsd ande, we first show the following intermediate result:

Lemma A.1 Letf : Rn → R andα ∈ R. Letk be the smallesteveninteger such that
|α| ≤ k. Then, iff satisfies

sup
y∈Rn

|∂δf (y)| < κ , ∀ |δ| ≤ k ,

the corresponding operator of multiplication is bounded fromSα,β into Sα,β and its
operator norm is bounded byCκ. The constantC depends only onα andβ.

Proof. By the definition ofSα,β , it suffices to show that the operatorΛαfΛ−α is
bounded byCκ from L2 into L2. Sincef is obviously bounded byκ as a multipli-
cation operator from L2 into L2, it actually suffices to boundΛα[f,Λ−α]. Assume first
thatα ∈ (0, 2). In that case, we write

Λα[f,Λ−α] = Cα

∫ ∞

0

z−α/2 Λα

z + Λ2
[f,Λ2]

1
z + Λ2

dz .

The commutator appearing in this expression can be written as

[f,Λ2] =
n∑

i=1

(
2∂if ∂i + ∂2

i f
)

. (A.1)

It is clear from basic Fourier analysis that‖∂i(z + Λ2)−1/2‖ ≤ 1 and therefore

‖[f,Λ2](z + Λ2)−1/2‖ ≤ Cκ .

Furthermore, the spectral theorem tells us that for any functionF , ‖F (Λ2)‖ is bounded
by supλ≥1 F (λ). Therefore there exists a constantC independent ofz > 0 such that

‖Λα(z + Λ2)−1‖ ≤ C

1 + z1−α/2
.
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Combining these estimates shows the claim whenα ∈ (0, 2). The caseα = 2 follows
from the boundedness of [f,Λ2]Λ−2. Values ofα greater than2 can be obtained by
iterating the relation

Λα+2fΛ−α−2 = ΛαfΛ−α − Λα[f,Λ2]Λ−α−2 .

Using (A.1), the fact that∂i commutes withΛ, and the fact that∂iΛ−2 is bounded, we
can reduce this to the previous case, but with two more derivatives to control. The case
α < 0 follows by considering adjoints. This concludes the proof of Lemma A.1.

Remark A.2 Since the direct and the inverse Fourier transforms both mapSα,β con-
tinuously intoSβ,α, the above lemma also holds for bounded functions of∂y and not
only for bounded functions ofy.

We are now ready to turn to the
Proof of point d. Let X ∈ PolNk . We first considerγ ∈ (−2, 0). Since, in Fourier
space,Λ2 is a multiplication operator by a real positive function, we can write

[X, Λγ ] = Cγ

∫ ∞

0

zγ/2 1
z + Λ2

[X, Λ2]
dz

z + Λ2
.

In order to bound this expression, we defineB = [X, Λ2], commuteB with the resol-
vent, and obtain

[X, Λγ ] = Cγ

∫ ∞

0

zγ/2 Λ2−γ dz

(z + Λ2)2
Λγ−2B + Cγ

∫ ∞

0

zγ/2

(z + Λ2)2
[B,Λ2]

dz

z + Λ2
.

The first term equalsC ′
γΛγ−2B because

∫∞
0

zγ/2x2−γ(z + x2)−2 dz does not depend
onx > 0. This, in turn, is bounded fromSα,β into Sα+1−k−γ,β−N usingB ∈ PolNk+1

and Lemma 3.2(b). To bound the second term, we rewrite∫ ∞

0

zγ/2

(z + Λ2)2
[B,Λ2]

dz

z + Λ2
=

∫ ∞

0

zγ/2Λ1−γ

(z + Λ2)2
· Λγ−1[B,Λ2]Λ−2 · Λ2

z + Λ2
dz .

The factorΛ2(z + Λ2)−1 is bounded fromSα,β into itself, uniformly in z. Using
Lemma 3.2(b) as before, we see that the factorΛγ−1[B,Λ2]Λ−2 is bounded from
Sα,β into Sα+1−k−γ,β−N ≡ Sα′,β′ . Finally, using Lemma A.1 and counting powers,
we see that the first factor has norm bounded byO(z−3/2) for largez andO(zγ/2) for
z near0 as a map fromSα′,β′ to itself. This proves the first statement of Lemma 3.2(d)
for γ ∈ (−2, 0). The caseγ = 2 follows from [X, Λ2] ∈ PolNk+1. All other values ofγ
can be obtained by repeatedly using the equalities

[X, Λγ+2] = [X, Λγ ]Λ2 + [X, Λ2]Λγ ,

[X, Λγ−2] = [X, Λγ ]Λ−2 − Λ−2[X, Λ2]Λγ−2 .

The second statement of Lemma 3.2(d) can be proven similarly and is left to the reader.
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Proof of point e. Recall that we want to bound

I = |〈f,Xg〉α,β − 〈XT f, g〉α,β | ,

whereX ∈ PolNk andXT denotes the formal adjoint (in L2) of X. We write this as

I = |〈[Λ̄−βΛ−2αΛ̄−β , XT ]Λ̄βΛ2αΛ̄βf, g〉α,β | .

The operator appearing in this expression can be expanded as

[Λ̄−βΛ−2αΛ̄−β , XT ]Λ̄βΛ2αΛ̄β = [Λ̄−β , XT ]Λ̄β + Λ̄−β [Λ−2α, XT ]Λ2αΛ̄β

+ Λ̄−βΛ−2α[Λ̄−β , XT ]Λ̄βΛ2αΛ̄β .

The first term belongs toPolNk−1 by inspection, and the required bound follows at
once from Lemma 3.2(b,c). A similar remark applies to the last term. The second
term is similarly bounded by using Lemma 3.2(d,b,c). This concludes the proof of
Lemma 3.2.
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acting in Banach spaces.Dokl. Akad. Nauk SSSR129, (1959), 499–502.

[RBT00] L. REY-BELLET and L. E. THOMAS. Asymptotic behavior of thermal nonequilib-
rium steady states for a driven chain of anharmonic oscillators.Comm. Math. Phys.
215, no. 1, (2000), 1–24.



REFERENCES 23

[RBT02a] L. REY-BELLET and L. THOMAS. Fluctuations of the entropy production in anhar-
monic chains, 2002. To be published in Ann. Henri Poincare.

[RBT02b] L. REY-BELLET and L. E. THOMAS. Exponential convergence to non-equilibrium
stationary states in classical statistical mechanics.Comm. Math. Phys.225, no. 2,
(2002), 305–329.


