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1. Introduction. Let 3€ be a complex Hilbert space and B(W) be the algebra of all
bounded linear opeators on $f. An operator T e B(dK) is said to be p-hyponormal if
(j*Tf - (TT*y > 0. If p = 1, T is hyponormal and if p = {, T is semi-hyponormal. It is
well known that a p-hyponormal operator is ^-hyponormal for q^p- Hyponormal
operators have been studied by many authors. The semi-hyponormal operator was first
introduced by D. Xia in [7]. The p-hyponormal operators have been studied by A.
Aluthge in [1]. Let T be a /?-hyponormal operator and T = U \T\ be a polar
decomposition of T. If U is unitary, Aluthge in [1] proved the following properties.

(Al) The eigenspaces of U reduce T.
(A2) If o(U) ¥=J, then the eigenspaces of \T\ reduce U, where o(T) is the spectrum

of 7 a n d T = { z e C : | z | = l}.
(A3) r(T) = \\T\\, where r(T) and | |r | | are the spectral radius and the operator norm

of T, respectively.
Other related properties of a semi-hyponormal operator T are the following (see

Xia's book [8]):
(XI) o(T) = {z:zeon(T*)};
(XT) o(\T\)cnp(a(T)), where np is the mapping C ^ K + such that np(z) = \z\

(z eC); i.e., Putnam's theorem holds.
The set of all p-hyponormal operators in fi(2i?) is denoted by p-H. Let p-HU denote

the set of all operators in p-H with equal defect and nullity. Hence for T ep-HU we may
assume that the operator U in a polar decomposition T = U \T\ is unitary. We say that an
operator T is a p-HU-operator if T e p-HU.

In this paper we prove that (XI) and weakly Putnam's theorem hold for p-HLJ-
operators. Let T be a p-WC-operator. If r e o(T*T) U o(TT*), then there exists z e o(T)
such that \z\2^r. Also we prove that doubly commuting n-tuples of p-HU-operators are
jointly normaloid.

We need the following results.

THEOREM A (Th. 2 in [1]). Let T = U \T\ be a p-Hu-operator. Then f =
\T\112. U. \T\U2 is (p + \)-hyponormal. Hence t is semi-hyponormal.

THEOREM B (Th. 2.3 of p. 10 in [8]). Let T = U \T\ be a semi-hyponormal operator
on X. If Tx - r. e'"x for a non-zero vector xeffl, then \T\x = rx, Ux = e'"x and
T*x = r. e-'sx.

Also we need the following technique of Berberian.

THEOREM C. Let 'M be a complex Hilbert space. Then there exist a Hilbert space
W^ffl and a map x: B (%!)—> B(jfC) such that (1) r is an isometric algebraic *-isomorphism
preserving the order; i.e.,

T(AB) = T(A)T(B), \\T(A)\\ = \\A\\ and r(A)<r(B) whenever A < B, for all A, B e
and a, j8 e C;
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(2) o(x(A)) = o(A) and on(A) = o^A)) = op(r(A)) for all A e B{K), where o(A),
on(A) and op(A) are the spectrum, the approximate point spectrum and the point
spectrum of A, respectively.

See p. 15 in [8] for details. Hence, T is p-hyponormal if and only if T(T) is. For
an operator T e B(3^), z e C is in the normal approximate point spectrum onn(T) of T if
there exists a sequence {xk} of unit vectors such that (T — z)xk^>0 and (T — z)*xk-^0 as

Though in Xia's book [8] this spectrum is called the joint approximate point
spectrum, we use this word for n-tuples of operators.

2. p-Hyponormal operators. Throughout this paper, let p be 0 <p < \.

LEMMA 1. Let T be a p-HU-operator. If z e op(T), then z e op(T*).

Proof. Assume that 0 e op(T). Then there exists a non-zero vector x e ffl such that
Tx = 0. Since |7|2JC = T*Tx = 0 and |T| >0, we have (T*T)mkx = 0 (k = 1, 2,. . .). For m

in N such that —<p, we have (r*r)1/2'"jc = 0. It follows that (T*Tfx = 0. Since T is

p-hyponormal, it follows that (TT*Yx = 0. Therefore T*x = 0.
Next assume that z e op(T) for a non-zero z e C . Then there exists a non-zero vector

y e % such that Ty = zy. Let T = U \T\ be a polar decomposition of T with unitary
ope ra to r U. Since U\T\y = zy, it follows tha t \T\m U \T\m \T\"2y = z \T\my. By
Theorem A the operator T = \T\m U \T\112 is semi-hyponormal. Hence by Theorem B we
have T*{\T\my) = \T\mU*\T\y = z.\T\my. Therefore T*(\T\y) = z. \T\y. Since
\T\y*o, we have f e CTp(r*).

THEOREM 2. Let T be a p-HU-operator. Then

o(T) = {z:zeoJl{T*)}.

Proof. Since we have o(T) = on{T) U {z:z e op(T*)}, we need only prove that

Assume that z e oM(T). Consider the mapping r of Theorem C. Then we have
z e MP(T(T)). Since T(T) is a p-HU^operator, by Lemma 1 we have I e op(r(T)*). Also
since, by Theorem C, op(r(T)*) = on(T*), it follows that z e on{T*).

Next we prove that the weak form of Putnam's theorem holds for p-hyponormal
operators. First we prove the following result.

LEMMA 3. Let T = UPeB{W), U be unitary, P > 0 and T*T = P2. Let r>0,
\e'"\ = 1. Then r. el(>onJl(T) if and only if there exists a sequence {xk} of unit vectors in X
such that

Hm || {P~r)xk | | =0 and lim \\{U - e '>* | | =0. (*)

Proof. If z e onM(T), then there exists a sequence {xk} of unit vectors in X such that
(T-r.eif>)xk^0 and (T - r. e'e)*xk-^0 as k^oo. Since T*T = P2, {P2-r2)xk^O
and (P-r)xk-^>0 (A:->oo). Hence it follows that (U-ei0)xk^>Q, because r=£0.

Conversely, suppose that (*) holds. Since then U is unitary, we have (U* - e~w)xk^>
0(k^oo). Hence r. ele e o,m{T).
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THEOREM 4. Let T = U \T\ be a p-HU'-operator. If r e o{T*T), then there exist r' and
6 such that r<r' and Vr7. ei0 e o(T).

Proof. We need only prove that p= — . If r = 0, then it is clear that 0 e a(T). So let

r^O. Then r e o(T*T) and r1' e o{(T*Tf). Here put 5 = U \T\P. Since then

S*5 = |7"|2" = (7*r)" and SS* = U(T*T)PU* = (TT*)P,

5 is a hyponormal operator. Since S = U \T\P is a polar decomposition of 5 and
r1' e o(S*S), by Putnam's theorem there exists 6 such that yfp'. e'H e o(S). Hence there
exists r,, such that \frp^r0 and r(l. e'B e 3a(5) c ^ ( 5 ) c ara(5), where do(S) is the
boundary of o(S). By Lemma 3 it follows that there exists a sequence {xk} of unit vectors
in Sif such that

(\T\"-r{1)xk->0 and (U-e'")xk^>0 as A:^oo.

Since p = — , we have (\T\ - rf")xk-*0 as &—>• °°. Let r' = r^"+'. Then r'. eiH is the desired

number, and so the proof is complete.

REMARK. With the same assumption as in Theorem 4, we have: if r e o(TT*), then
there exists z e o(T) such that \z\2 = r.

We have the following corollary.

COROLLARY 5. Let T be a p-HU-operator. Then r{T) = \\T\\.

Proof. Since r(T*T) = ||T||2, the result follows from Theorem 4.

3. AMuples of p-Hyponormal operators. In this section, we study doubly commut-
ing n-tuples of p-hyponormal operators. First we will give some definitions. An n-tuple
T = (71,,. . . , 7̂ ,) of operators is said to be a doubly commuting n-tuple if 7J • 7J- = 7}. Tt

and 77 . 7} = 7]. 77, for every i =£/. Let T = (71,. . . , Tn) be a commuting n-tuple of
operators on $f. We denote the Taylor spectrum of T by CT(T) (see Taylor [6]).
z = {zu. . . , zn) is in the joint approximate point spectrum an{J) of T is there exists a
sequence {xk} of unit vectors in ffl such that

z,>, |H0 as k ̂ °°,
for every / = 1, 2 , . . . , « . Further z = (z, , . . . , zn) is in the joint point spectrum op(J) of
T if there exists a non-zero vector x such that Ttx = ZjX for every i = l,2,. . . ,n. By
Berberian's technique, we have the following result.

THEOREM D. Let T = (71,,. . . , Tn) be an n-tuple of operators on "3t. Let x be the
mapping of Theorem C. Then

If an n-tuple T = (7 , , . . . , Tn) is a doubly commuting n-tuple of p-//(/-operators,
then by Theorems 2 and 4 in Furuta [4] there exists unitary operators ( / , , . . . , ( / „ with a
polar decomposition 7] = U, \Ti\ (i = 1,. . . , n) such that (/, and |7J| commute with Uj and
|7J| for every ii=j.
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LEMMA 6. Let J = (Tu . . . , Tn) be a doubly commuting n-tuple of p-HU-operators on
X.lfz = (z, , . . . , zn) e op(T), then z = (£„ ...,zn)e op{l*), where 1* = ( T f , . . . , T*n).

Proof. There exists a non-zero vector x in $f such that T,x — ztx (i = 1,. . . , n). We
may assume that z, , . . . , zk are non-zero and zk+l = . . . = zn = 0. From the proof of
Lemma 1, we obtain

Also from the proof of Lemma 1, we obtain r*(|7]-|x) = z,• . \Ti\x, where |7^| is the
positive operator in a polar decomposition 7] = l^|7J| (i = 1,. . . , k). Assume that
|7 j | . . . |7i|jc = 0. Since then (T1,,. . . , 7J.) is a doubly commuting /c-tuple of p-HU-
operators, Ut and |7J-| commute with U} and \Tj\ for every i&j. Hence we have

It follows that Z\ . • . zk = 0. Since every z, =£0 (i = 1,. . . , k), this is a contradiction.
Therefore we have | r , | . . . \Tk\ x ¥=0. For i (j = 1,. . - , k), we have

7;+ I | . . . \n\ .

).

Since also T{ commutes with \T\\. . . \Tk\, we have

Therefore it follows that z = (z, , . . . , zn) e ap(J*).

THEOREM 7. Let T = (T,,. . . , Tn) be a doubly commuting n-tuple of p-HU-operators
on %. Then

o(J) = {(z,,. . . , zn) e C": (z l f . . . , £„) e on{J*)}.

Proof. Since T is a doubly commuting n-tuple, by Corollary 3.3 in [3] it follows that
if (z, , . . . , zn) 6 a(T), then there exist some partition {/,,.. . , im} U {/,,. . . ,/s} =
{1, . . . , n] and a sequence {xk} of unit vectors in X such that

( ^ - z . - ^ - ^ O and (7}v-z/v)%-»0 as

for /i = 1, . . . , m and v = 1, . . . s. Consider the mapping x of Theorem C. Then we have

(z , , , . . . ,z,m,zh,... , z,,) e OP(T(S)),

where r(S) = (T(7 ; , ) , . . . , T ( 7 J J , T ( 7 * ) , . . . , r ( r* ) ) . Since T(T,) is a /?-/y(/-operator for
every i (i = 1,. . . , n) , by Lemma 6 we have (z, , . . . , zn) e a/,(r(T*)). Hence by Theorem
D it follows that (z,, . . . , £ „ ) e cr^(T*). It is clear that on(J*) c o(T) and so the proof is
complete.

THEOREM 8. Let J = {TU. . . ,Tn) be a doubly commuting n-tuple of p-HU-operators
on X. If (r,, . . . , / • „ ) € <J(T*T) U a(TT*), f/jen f/iere exists (z, , . . . , zn) e a(T) JUC^ that
|z, |2>r, (/ = 1,. . . , n ) , where T*T = ( r f r , , . . . , T*nTn) and TT* = ( 7 , 7 7 , . . . , ̂ r ; ) .

Proof. We shall prove the theorem by induction. When n = 1, the theorem holds by
Theorem 4. We assume that the theorem holds for every doubly commuting (n - l)-tuple
of /?-//(/-operators. We assume that ( r , , . . . , rn) e a(T*T). Since CT(FT) = ax(I*T), we
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have (Vr,,. . . , Vr,,) e CT^(|T|), where |T| = ((\T,\,. . . , |7;,|). Consider the mapping r of
Theorem C. Let 2)f = ker(|r(7^,)| - Vrn) (=£{()}). Then iSl is a reducing subspace of
T(7,), . . . , T(7^,_I) and (T(Tt)^t, • • • , T(7 ,̂_1)|sl)<.) is a doubly commuting (n - l)-tuple of

n

p-HU-operators on 2JJ. Since £ (\T(TJ)\ — Vr,)2 is not invertible, it follows that

ker(i (|T(7;-)| - Vr,f) = { f] ker(|T(r,)| - Vo} n 2K * {0}.

Hence it follows that (Vr,,. . . , V ^ ) e <x(/?), where rt = (|r(r,)|W|,. . . |T(rn_,)|W|)- So,
by the induction hypothesis, there exists (z{,. . . , 2n_,) e cr(5) such that |z,|>Vr,
(t = 1,. . . , n.- 1), where 5 = ( T ^ ) ^ , . , . . . , r(rn_,)|vU(). Since by Theorem 7 it follows
that (f,,. . . , 2,,_,) e o,,(5*), there exists a non-zero vector *„ in W such that

(i = l , . . . , n - l ) .

Therefore "f! (T(7J) - Z,)(T(T]) - z,)* + (|T(7^)| - V~rn)
2 is not invertible. Hence

S (T(7J) - z,)((r(7;) - z,)*) + (|T(7;)| - \Trnf) * {0}.

fs'Let « = k e r f s ' W ^ - ^ V ^ r ) - ^ ) * ) . Then W reduces r(rn). Also since sitfnW*

{0}, v7n e ^(ITC^,)!^!). Since T(Tn)^t is a p-//i7-operator, by Theorem 2 it follows that
there is a z,, e C such that (T(7^,)|W - zn)(T(Tn)\,}i> — zn)* is not invertible and |zn|2>rn.
Since

is not invertible, this point (z,,. . . , 2,,) is in a(T) and satisfies

In case of (/-,,. . . , rn) e a(TT*), the proof is similar. Thus the proof is complete.

For an /i-tuple T = (71,,. . . , Tn) of operators on W, the joint spectral radius r(T) and
the joint operator norm ||T|| of T are given by

f /-A \1/2 1
r(T) = sup |z| = I 2 fcf) ^ = (2., • • • , 2n) e a(T)

and

l|T|| = supf(2l|7>||2) :x 6 af, ||*|| = l},

respectively. It always holds that r(T)<||T| | for every commuting n-tuple T =
(7|,. . . , Tn) of operators.

THEOREM 9. Let J = (TU . . . ,Tn) be a doubly commuting n-tuple of p-HU-operators
on dK. Then r(J) = ||T||; i.e., J is jointly normaloid.
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Proof. Since T*T = (T*Tt,. . . , T*Tn) is a commuting M-tuple of positive operators,

T*T is jointly convexoid (see [2]). Also ||T||2 = sup] £ {TfT,x,x):xeW,\\x\\ = \\ and
li=i J

n

we can see that there exists (r,,. . . , rn) e o(J*J) such that E n = ||T||2. By Theorem 8, it

In \ ««

follows that there exists (zu. . . ,zn)ea(T) such that I E |z,-|2) ^ ||T||. The converse
\/=i /

inequality is clear and so the proof is complete.
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