SPECTRAL PROPERTIES OF p-HYPONORMAL OPERATORS by MUNEO CHŌ

(Received 29 July, 1992)

1. Introduction. Let \mathscr{H} be a complex Hilbert space and $B(\mathscr{H})$ be the algebra of all bounded linear opeators on \mathscr{H}. An operator $T \in B(\mathscr{H})$ is said to be p-hyponormal if $\left(T^{*} T\right)^{p}-\left(T T^{*}\right)^{p} \geq 0$. If $p=1, T$ is hyponormal and if $p=\frac{1}{2}, T$ is semi-hyponormal. It is well known that a p-hyponormal operator is q-hyponormal for $q \leq p$. Hyponormal operators have been studied by many authors. The semi-hyponormal operator was first introduced by D. Xia in [7]. The p-hyponormal operators have been studied by A . Aluthge in [1]. Let T be a p-hyponormal operator and $T=U|T|$ be a polar decomposition of T. If U is unitary, Aluthge in [1] proved the following properties.
(A1) The eigenspaces of U reduce T.
(A2) If $\sigma(U) \neq \mathbb{T}$, then the eigenspaces of $|T|$ reduce U, where $\sigma(T)$ is the spectrum of T and $\mathbb{T}=\{z \in \mathbb{C}:|z|=1\}$.
(A3) $r(T)=\|T\|$, where $r(T)$ and $\|T\|$ are the spectral radius and the operator norm of T, respectively.

Other related properties of a semi-hyponormal operator T are the following (see Xia's book [8]):
(X1) $\sigma(T)=\left\{z: \bar{z} \in \sigma_{\pi}\left(T^{*}\right)\right\}$;
(X2) $\sigma(|T|) \subset \pi_{\rho}(\sigma(T))$, where π_{ρ} is the mapping $\mathbb{C} \rightarrow \mathbb{R}^{+}$such that $\pi_{\rho}(z)=|z|$ $(z \in \mathbb{C})$; i.e., Putnam's theorem holds.

The set of all p-hyponormal operators in $B(\mathscr{H})$ is denoted by $p-H$. Let $p-H U$ denote the set of all operators in $p-H$ with equal defect and nullity. Hence for $T \in p-H U$ we may assume that the operator U in a polar decomposition $T=U|T|$ is unitary. We say that an operator T is a $p-H U$-operator if $T \in p-H U$.

In this paper we prove that (X1) and weakly Putnam's theorem hold for $p-H U$ operators. Let T be a $p-H U$-operator. If $r \in \sigma\left(T^{*} T\right) \cup \sigma\left(T T^{*}\right)$, then there exists $z \in \sigma(T)$ such that $|z|^{2} \geq r$. Also we prove that doubly commuting n-tuples of $p-H U$-operators are jointly normaloid.

We need the following results.
Theorem A (Th. 2 in [1]). Let $T=U|T|$ be a p-Hu-operator. Then $\tilde{T}=$ $|T|^{1 / 2} \cdot U \cdot|T|^{1 / 2}$ is $\left(p+\frac{1}{2}\right)$-hyponormal. Hence \bar{T} is semi-hyponormal.

Theorem B (Th. 2.3 of p. 10 in [8]). Let $T=U|T|$ be a semi-hyponormal operator on \mathscr{H}. If $T x=r . e^{i \theta} x$ for a non-zero vector $x \in \mathscr{H}$, then $|T| x=r x, U x=e^{i \theta} x$ and $T^{*} x=r . e^{-i \theta} x$.

Also we need the following technique of Berberian.
Theorem C. Let \mathscr{H} be a complex Hilbert space. Then there exist a Hilbert space $\mathscr{K} \supset \mathscr{H}$ and a map $\tau: B(\mathscr{H}) \rightarrow B(\mathscr{K})$ such that $(1) \tau$ is an isometric algebraic ${ }^{*}$-isomorphism preserving the order; i.e.,

$$
\tau\left(A^{*}\right)=\tau(A)^{*}, \quad \tau(I)=I, \quad \tau(\alpha A+\beta B)=\alpha \tau(A)+\beta \tau(B)
$$

$\tau(A B)=\tau(A) \tau(B),\|\tau(A)\|=\|A\|$ and $\tau(A) \leq \tau(B)$ whenever $A \leq B$, for all $A, B \in$ $B(\mathscr{H})$ and $\alpha, \beta \in \mathbb{C}$;
(2) $\sigma(\tau(A))=\sigma(A)$ and $\sigma_{\pi}(A)=\sigma_{\pi}(\tau(A))=\sigma_{p}(\tau(A))$ for all $A \in B(\mathscr{H})$, where $\sigma(A)$, $\sigma_{\pi}(A)$ and $\sigma_{p}(A)$ are the spectrum, the approximate point spectrum and the point spectrum of A, respectively.

See p. 15 in [8] for details. Hence, T is p-hyponormal if and only if $\tau(T)$ is. For an operator $T \in B(\mathscr{H}), z \in \mathbb{C}$ is in the normal approximate point spectrum $\sigma_{n \pi}(T)$ of T if there exists a sequence $\left\{x_{k}\right\}$ of unit vectors such that $(T-z) x_{k} \rightarrow 0$ and $(T-z)^{*} x_{k} \rightarrow 0$ as $k \rightarrow \infty$.

Though in Xia's book [8] this spectrum is called the joint approximate point spectrum, we use this word for n-tuples of operators.
2. p-Hyponormal operators. Throughout this paper, let p be $0<p<\frac{1}{2}$.

Lemma 1. Let T be a $p-H U$-operator. If $z \in \sigma_{p}(T)$, then $\bar{z} \in \sigma_{p}\left(T^{*}\right)$.
Proof. Assume that $0 \in \sigma_{p}(T)$. Then there exists a non-zero vector $x \in \mathscr{H}$ such that $T x=0$. Since $|T|^{2} x=T^{*} T x=0$ and $|T| \geq 0$, we have $\left(T^{*} T\right)^{1 / 2^{k}} x=0(k=1,2, \ldots)$. For m in \mathbb{N} such that $\frac{1}{m}<p$, we have $\left(T^{*} T\right)^{1 / 2 m} x=0$. It follows that $\left(T^{*} T\right)^{p} x=0$. Since T is p-hyponormal, it follows that $\left(T T^{*}\right)^{p} x=0$. Therefore $T^{*} x=0$.

Next assume that $z \in \sigma_{p}(T)$ for a non-zero $z \in \mathbb{C}$. Then there exists a non-zero vector $y \in \mathscr{H}$ such that $T y=z y$. Let $T=U|T|$ be a polar decomposition of T with unitary operator U. Since $U|T| y=z y$, it follows that $|T|^{1 / 2} U|T|^{1 / 2}|T|^{1 / 2} y=z|T|^{1 / 2} y$. By Theorem A the operator $\tilde{T}=|T|^{1 / 2} U|T|^{1 / 2}$ is semi-hyponormal. Hence by Theorem B we have $\quad \tilde{T}^{*}\left(|T|^{1 / 2} y\right)=|T|^{1 / 2} U^{*}|T| y=\bar{z} .|T|^{1 / 2} y$. Therefore $T^{*}(|T| y)=\bar{z} .|T| y$. Since $|T| y \neq 0$, we have $\bar{z} \in \sigma_{p}\left(T^{*}\right)$.

Theorem 2. Let T be a p-HU-operator. Then

$$
\sigma(T)=\left\{z: \bar{z} \in \sigma_{\pi}\left(T^{*}\right)\right\}
$$

Proof. Since we have $\sigma(T)=\sigma_{\pi}(T) \cup\left\{z: \bar{z} \in \sigma_{p}\left(T^{*}\right)\right\}$, we need only prove that $\sigma_{\pi}(T) \subset\left\{z: \bar{z} \in \sigma_{\pi}\left(T^{*}\right)\right\}$.

Assume that $z \in \sigma_{\pi}(T)$. Consider the mapping τ of Theorem C. Then we have $z \in \pi_{p}(\tau(T))$. Since $\tau(T)$ is a $p-H U$-operator, by Lemma 1 we have $\bar{z} \in \sigma_{p}\left(\tau(T)^{*}\right)$. Also since, by Theorem $\mathrm{C}, \sigma_{p}\left(\tau(T)^{*}\right)=\sigma_{\pi}\left(T^{*}\right)$, it follows that $\bar{z} \in \sigma_{\pi}\left(T^{*}\right)$.

Next we prove that the weak form of Putnam's theorem holds for p-hyponormal operators. First we prove the following result.

Lemma 3. Let $T=U P \in B(\mathscr{H}), U$ be unitary, $P \geq 0$ and $T^{*} T=P^{2}$. Let $r>0$, $\left|e^{i \theta}\right|=1$. Then $r . e^{i \theta} \sigma_{n \pi}(T)$ if and only if there exists a sequence $\left\{x_{k}\right\}$ of unit vectors in \mathscr{H} such that

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left\|(P-r) x_{k}\right\|=0 \quad \text { and } \quad \lim _{k \rightarrow \infty}\left\|\left(U-e^{i \Theta}\right) x_{k}\right\|=0 \tag{*}
\end{equation*}
$$

Proof. If $z \in \sigma_{n \pi}(T)$, then there exists a sequence $\left\{x_{k}\right\}$ of unit vectors in \mathscr{H} such that $\left(T-r . e^{i \theta}\right) x_{k} \rightarrow 0$ and $\left(T-r . e^{i \theta}\right)^{*} x_{k} \rightarrow 0$ as $k \rightarrow \infty$. Since $T^{*} T=P^{2},\left(P^{2}-r^{2}\right) x_{k} \rightarrow 0$ and $(P-r) x_{k} \rightarrow 0(k \rightarrow \infty)$. Hence it follows that $\left(U-e^{i \theta}\right) x_{k} \rightarrow 0$, because $r \neq 0$.

Conversely, suppose that $(*)$ holds. Since then U is unitary, we have $\left(U^{*}-e^{-i \theta}\right) x_{k} \rightarrow$ $0(k \rightarrow \infty)$. Hence $r . e^{i \theta} \in \sigma_{n \pi}(T)$.

Theorem 4. Let $T=U|T|$ be a p-HU-operator. If $r \in \sigma\left(T^{*} T\right)$, then there exist r^{\prime} and θ such that $r \leq r^{\prime}$ and $\sqrt{r^{\prime}} . e^{i \theta} \in \sigma(T)$.

Proof. We need only prove that $p=\frac{1}{2^{n}}$. If $r=0$, then it is clear that $0 \in \sigma(T)$. So let $r \neq 0$. Then $r \in \sigma\left(T^{*} T\right)$ and $r^{\prime \prime} \in \sigma\left(\left(T^{*} T\right)^{p}\right)$. Here put $S=U|T|^{p}$. Since then

$$
S^{*} S=|T|^{2 p}=\left(T^{*} T\right)^{p} \quad \text { and } \quad S S^{*}=U\left(T^{*} T\right)^{p} U^{*}=\left(T T^{*}\right)^{p},
$$

S is a hyponormal operator. Since $S=U|T|^{p}$ is a polar decomposition of S and $r^{p} \in \sigma\left(S^{*} S\right)$, by Putnam's theorem there exists θ such that $\sqrt{r^{p}} . e^{i \theta} \in \sigma(S)$. Hence there exists r_{0}, such that $\sqrt{r^{p}} \leq r_{0}$ and $r_{0} \cdot e^{i \theta} \in \partial \sigma(S) \subset \sigma_{\pi}(S) \subset \sigma_{n \pi}(S)$, where $\partial \sigma(S)$ is the boundary of $\sigma(S)$. By Lemma 3 it follows that there exists a sequence $\left\{x_{k}\right\}$ of unit vectors in \mathscr{H} such that

$$
\left(|T|^{p}-r_{1}\right) x_{k} \rightarrow 0 \quad \text { and } \quad\left(U-e^{i \theta}\right) x_{k} \rightarrow 0 \quad \text { as } \quad k \rightarrow \infty .
$$

Since $p=\frac{1}{2^{n}}$, we have $\left(|T|-r_{1}^{2 n}\right) x_{k} \rightarrow 0$ as $k \rightarrow \infty$. Let $r^{\prime}=r_{0}^{2^{n+1}}$. Then $r^{\prime} . e^{i \theta}$ is the desired number, and so the proof is complete.

Remark. With the same assumption as in Theorem 4, we have: if $r \in \sigma\left(T T^{*}\right)$, then there exists $z \in \sigma(T)$ such that $|z|^{2}=r$.

We have the following corollary.
Corollary 5. Let T be a p-HU-operator. Then $r(T)=\|T\|$.
Proof. Since $r\left(T^{*} T\right)=\|T\|^{2}$, the result follows from Theorem 4.
3. N-tuples of p-Hyponormal operators. In this section, we study doubly commuting n-tuples of p-hyponormal operators. First we will give some definitions. An n-tuple $\mathbb{T}=\left(T_{1}, \ldots, T_{n}\right)$ of operators is said to be a doubly commuting n-tuple if $T_{i} \cdot T_{j}=T_{j} \cdot T_{i}$ and $T_{i}^{*} . T_{j}=T_{j} . T_{i}^{*}$, for every $i \neq j$. Let $\mathbb{T}=\left(T_{1}, \ldots, T_{n}\right)$ be a commuting n-tuple of operators on \mathscr{H}. We denote the Taylor spectrum of \mathbb{T} by $\sigma(\mathbb{T})$ (see Taylor [6]). $z=\left(z_{1}, \ldots, z_{n}\right)$ is in the joint approximate point spectrum $\sigma_{\pi}(\mathbb{T})$ of \mathbb{T} is there exists a sequence $\left\{x_{k}\right\}$ of unit vectors in \mathscr{H} such that

$$
\left\|\left(T_{i}-z_{i}\right) x_{k}\right\| \rightarrow 0 \quad \text { as } \quad k \rightarrow \infty
$$

for every $i=1,2, \ldots, n$. Further $z=\left(z_{1}, \ldots, z_{n}\right)$ is in the joint point spectrum $\sigma_{p}(\mathbb{T})$ of \mathbb{T} if there exists a non-zero vector x such that $T_{i} x=z_{i} x$ for every $i=1,2, \ldots, n$. By Berberian's technique, we have the following result.

Theorem D. Let $\mathbb{T}=\left(T_{1}, \ldots, T_{n}\right)$ be an n-tuple of operators on \mathscr{H}. Let τ be the mapping of Theorem C. Then

$$
\sigma_{\pi}(\mathbb{T})=\sigma_{\pi}(\tau(\mathbb{T}))=\sigma_{p}(\tau(\mathbb{T}))
$$

where $\tau(\mathbb{T})=\left(\tau\left(T_{1}\right), \ldots, \tau\left(T_{n}\right)\right)$.
If an n-tuple $\mathbb{T}=\left(T_{1}, \ldots, T_{n}\right)$ is a doubly commuting n-tuple of p - $H U$-operators, then by Theorems 2 and 4 in Furuta [4] there exists unitary operators U_{1}, \ldots, U_{n} with a polar decomposition $T_{i}=U_{i}\left|T_{i}\right|(i=1, \ldots, n)$ such that U_{i} and $\left|T_{i}\right|$ commute with U_{j} and $\left|T_{j}\right|$ for every $i \neq j$.

Lemma 6. Let $\mathbb{T}=\left(T_{1}, \ldots, T_{n}\right)$ be a doubly commuting n-tuple of p-HU-operators on \mathscr{H}. If $z=\left(z_{1}, \ldots, z_{n}\right) \in \sigma_{p}(\mathbb{T})$, then $\bar{z}=\left(\bar{z}_{1}, \ldots, \bar{z}_{n}\right) \in \sigma_{p}\left(\mathbb{T}^{*}\right)$, where $\mathbb{T}^{*}=\left(T_{1}^{*}, \ldots, T_{n}^{*}\right)$.

Proof. There exists a non-zero vector x in \mathscr{H} such that $T_{i} x=z_{i} x(i=1, \ldots, n)$. We may assume that z_{1}, \ldots, z_{k} are non-zero and $z_{k+1}=\ldots=z_{n}=0$. From the proof of Lemma 1, we obtain

$$
T_{k+1}^{*} x=\ldots=T_{n}^{*} x=0 .
$$

Also from the proof of Lemma 1, we obtain $T_{i}^{*}\left(\left|T_{i}\right| x\right)=\bar{z}_{i} .\left|T_{i}\right| x$, where $\left|T_{i}\right|$ is the positive operator in a polar decomposition $T_{i}=U_{i}\left|T_{i}\right|(i=1, \ldots, k)$. Assume that $\left|T_{1}\right| \ldots\left|T_{k}\right| x=0$. Since then $\left(T_{1}, \ldots, T_{k}\right)$ is a doubly commuting k-tuple of p-HUoperators, U_{i} and $\left|T_{i}\right|$ commute with U_{j} and $\left|T_{j}\right|$ for every $i \neq j$. Hence we have

$$
T_{1}, T_{2} \ldots T_{k} x=0
$$

It follows that $z_{1} \ldots z_{k}=0$. Since every $z_{i} \neq 0(i=1, \ldots, k)$, this is a contradiction. Therefore we have $\left|T_{1}\right| \ldots\left|T_{k}\right| x \neq 0$. For $i(i=1, \ldots, k)$, we have

$$
\begin{aligned}
T_{i}^{*}\left(\left|T_{1}\right| \ldots\left|T_{k}\right| x\right) & =\left|T_{1}\right| \ldots\left|T_{i-1}\right| \cdot\left|T_{i+1}\right| \ldots\left|T_{k}\right| \cdot T_{i}^{*} \cdot\left|T_{i}\right| x \\
& =\bar{z}_{i}\left(\left|T_{j}\right| \ldots\left|T_{k}\right| x\right)
\end{aligned}
$$

Since also T_{i} commutes with $\left|T_{1}\right| \ldots\left|T_{k}\right|$, we have

$$
T_{i}^{*}\left(\left|T_{1}\right| \ldots\left|T_{k}\right| x\right)=0 \quad(i=k+1, \ldots, n)
$$

Therefore it follows that $\bar{z}=\left(\bar{z}_{1}, \ldots, \bar{z}_{n}\right) \in \sigma_{p}\left(\mathbb{T}^{*}\right)$.
Theorem 7. Let $\mathbb{T}=\left(T_{1}, \ldots, T_{n}\right)$ be a doubly commuting n-tuple of p-HU-operators on \mathscr{H}. Then

$$
\sigma(\mathbb{T})=\left\{\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n}:\left(\bar{z}_{1}, \ldots, \bar{z}_{n}\right) \in \sigma_{\pi}\left(\mathbb{T}^{*}\right)\right\}
$$

Proof. Since \mathbb{T} is a doubly commuting n-tuple, by Corollary 3.3 in [3] it follows that if $\left(z_{1}, \ldots, z_{n}\right) \in \sigma(\mathbb{T})$, then there exist some partition $\left\{i_{1}, \ldots, i_{m}\right\} \cup\left\{j_{1}, \ldots, j_{s}\right\}=$ $\{1, \ldots, n\}$ and a sequence $\left\{x_{k}\right\}$ of unit vectors in \mathscr{H} such that

$$
\left(T_{i_{\mu}}-z_{i_{\mu}}\right) x_{k} \rightarrow 0 \quad \text { and } \quad\left(T_{j_{v}}-z_{j_{v}}\right)^{*} x_{k} \rightarrow 0 \quad \text { as } \quad k \rightarrow \infty
$$

for $\mu=1, \ldots, m$ and $v=1, \ldots s$. Consider the mapping τ of Theorem C . Then we have

$$
\left(z_{i_{1}}, \ldots, z_{i_{m}}, \bar{z}_{j_{1}}, \ldots, \bar{z}_{j_{k}}\right) \in \sigma_{p}(\tau(S))
$$

where $\tau(S)=\left(\tau\left(T_{i_{1}}\right), \ldots, \tau\left(T_{i_{m}}\right), \tau\left(T_{j_{1}}^{*}\right), \ldots, \tau\left(T_{j_{s}}^{*}\right)\right)$. Since $\tau\left(T_{i}\right)$ is a p - $H U$-operator for every $i(i=1, \ldots, n)$, by Lemma 6 we have $\left(\bar{z}_{1}, \ldots, \bar{z}_{n}\right) \in \sigma_{p}\left(\tau\left(\mathbb{T}^{*}\right)\right)$. Hence by Theorem D it follows that $\left(\bar{z}_{1}, \ldots, \bar{z}_{n}\right) \in \sigma_{\pi}\left(\mathbb{T}^{*}\right)$. It is clear that $\sigma_{\pi}\left(\mathbb{T}^{*}\right) \subset \sigma(T)$ and so the proof is complete.

Theorem 8. Let $\mathbb{T}=\left(T_{1}, \ldots, T_{n}\right)$ be a doubly commuting n-tuple of p - HU -operators on \mathscr{H}. If $\left(r_{1}, \ldots, r_{n}\right) \in \sigma\left(\mathbb{T}^{*} \mathbb{T}\right) \cup \sigma\left(\mathbb{T}^{*}\right)$, then there exists $\left(z_{1}, \ldots, z_{n}\right) \in \sigma(\mathbb{T})$ such that $\left|z_{i}\right|^{2} \geq r_{i}(i=1, \ldots, n)$, where $\mathbb{T}^{*} \mathbb{T}=\left(T_{1}^{*} T_{1}, \ldots, T_{n}^{*} T_{n}\right)$ and $\mathbb{T}^{*}=\left(T_{1} T_{1}^{*}, \ldots, T_{n} T_{n}^{*}\right)$.

Proof. We shall prove the theorem by induction. When $n=1$, the theorem holds by Theorem 4. We assume that the theorem holds for every doubly commuting ($n-1$)-tuple of p-HU-operators. We assume that $\left(r_{1}, \ldots, r_{n}\right) \in \sigma\left(\mathbb{T}^{*} \mathbb{T}\right)$. Since $\sigma\left(\mathbb{T}^{*} \mathbb{T}\right)=\sigma_{\pi}\left(\mathbb{T}^{*} \mathbb{T}\right)$, we
have $\left(\sqrt{r}_{1}, \ldots, \sqrt{r_{n}}\right) \in \sigma_{\pi}(|\mathbb{T}|)$, where $|\mathbb{T}|=\left(\left(\left|T_{1}\right|, \ldots,\left|T_{n}\right|\right)\right.$. Consider the mapping τ of Theorem C. Let $\mathfrak{M}=\operatorname{ker}\left(\left|\tau\left(T_{n}\right)\right|-\sqrt{r}_{n}\right)(\neq\{0\})$. Then \mathfrak{M} is a reducing subspace of $\tau\left(T_{1}\right), \ldots, \tau\left(T_{n-1}\right)$ and $\left(\tau\left(T_{1}\right)_{\mid w_{i}}, \ldots, \tau\left(T_{n-1}\right)_{\mid W_{i}}\right)$ is a doubly commuting ($n-1$)-tuple of p-HU-operators on \mathfrak{M}. Since $\sum_{i=1}^{n}\left(\left|\tau\left(T_{i}\right)\right|-\sqrt{r_{i}}\right)^{2}$ is not invertible, it follows that

$$
\operatorname{ker}\left(\sum_{i=1}^{n}\left(\left|\tau\left(T_{i}\right)\right|-\sqrt{r}_{i}\right)^{2}\right)=\left\{\bigcap_{i=1}^{n-1} \operatorname{ker}\left(\left|\tau\left(T_{i}\right)\right|-\sqrt{r_{i}}\right)\right\} \cap \mathfrak{M} \neq\{0\} .
$$

Hence it follows that $\left(\sqrt{r_{1}}, \ldots, \sqrt{r_{n-1}}\right) \in \sigma(R)$, where $R=\left(\left|\tau\left(T_{1}\right)_{|w|}\right|, \ldots\left|\tau\left(T_{n-1}\right)_{\mid w k}\right|\right)$. So, by the induction hypothesis, there exists $\left(z_{1}, \ldots, z_{n-1}\right) \in \sigma(S)$ such that $\left|z_{i}\right| \geq \sqrt{r_{i}}$ $(i=1, \ldots, n-1)$, where $S=\left(\tau\left(T_{i}\right)_{\mid \mathfrak{M}}, \ldots, \tau\left(T_{n-1}\right)_{\mid \notin i}\right)$. Since by Theorem 7 it follows that $\left(\bar{z}_{1}, \ldots, \bar{z}_{n-1}\right) \in \sigma_{p}\left(S^{*}\right)$, there exists a non-zero vector x_{0} in \mathfrak{M} such that

$$
\tau\left(T_{i}^{*}\right) x_{0}=\bar{z}_{i} x_{0} \quad(i=1, \ldots, n-1)
$$

Therefore $\sum_{i=1}^{n-1}\left(\tau\left(T_{i}\right)-z_{i}\right)\left(\tau\left(T_{i}\right)-z_{i}\right)^{*}+\left(\left|\tau\left(T_{n}\right)\right|-V_{n}\right)^{2}$ is not invertible. Hence

$$
\operatorname{ker}\left(\sum_{i=1}^{n-1}\left(\tau\left(T_{i}\right)-z_{i}\right)\left(\left(\tau\left(T_{i}\right)-z_{i}\right)^{*}\right)+\left(\left|\tau\left(T_{n}\right)\right|-\sqrt{r}_{n}\right)^{2}\right) \neq\{0\}
$$

Let $\mathfrak{M}=\operatorname{ker}\left(\sum_{i=1}^{n-1}\left(\tau\left(T_{i}\right)-z_{i}\right)\left(\tau(T)-z_{i}\right)^{*}\right)$. Then \mathscr{V} reduces $\tau\left(T_{n}\right)$. Also since $\mathfrak{M} \cap \mathscr{M} \neq$ $\{0\}, \sqrt{r}_{n} \in \sigma\left(\left|\tau\left(T_{n}\right)_{\mid \mathcal{N}}\right|\right)$. Since $\tau\left(T_{n}\right)_{\mid x i}$ is a $p-H U$-operator, by Theorem 2 it follows that there is a $z_{n} \in \mathbb{C}$ such that $\left(\tau\left(T_{n}\right)_{\mid ソ i}-z_{n}\right)\left(\tau\left(T_{n}\right)_{\mid ツ i}-z_{n}\right)^{*}$ is not invertible and $\left|z_{n}\right|^{2} \geq r_{n}$. Since

$$
\sum_{i=1}^{n}\left(\tau\left(T_{i}\right)-z_{i}\right)\left(\tau\left(T_{i}\right)-z_{i}\right)^{*}
$$

is not invertible, this point $\left(z_{1}, \ldots, z_{n}\right)$ is in $\sigma(\mathbb{T})$ and satisfies

$$
\left|z_{i}\right|^{2} \geq r_{i} \quad(i=1, \ldots, n)
$$

In case of $\left(r_{1}, \ldots, r_{n}\right) \in \sigma\left(\mathbb{T}^{*}\right)$, the proof is similar. Thus the proof is complete.
For an n-tuple $\mathbb{T}=\left(T_{1}, \ldots, T_{n}\right)$ of operators on \mathscr{H}, the joint spectral radius $r(\mathbb{T})$ and the joint operator norm $\|\mathbb{T}\|$ of \mathbb{T} are given by

$$
r(\mathbb{T})=\sup \left\{|z|=\left(\sum_{i=1}^{n}\left|z_{i}\right|^{2}\right)^{1 / 2}: z=\left(z_{1}, \ldots, z_{n}\right) \in \sigma(\mathbb{T})\right\}
$$

and

$$
\|\mathbb{T}\|=\sup \left\{\left(\sum_{i=1}^{n}\left\|T_{i} x\right\|^{2}\right)^{1 / 2}: x \in \mathscr{H},\|x\|=1\right\}
$$

respectively. It always holds that $r(\mathbb{T}) \leq\|\mathbb{T}\|$ for every commuting n-tuple $\mathbb{T}=$ $\left(T_{1}, \ldots, T_{n}\right)$ of operators.

Theorem 9. Let $\mathbb{T}=\left(T_{1}, \ldots, T_{n}\right)$ be a doubly commuting n-tuple of p-HU-operators on \mathscr{H}. Then $r(\mathbb{T})=\|\mathbb{T}\|$; i.e., \mathbb{T} is jointly normaloid.

Proof. Since $\mathbb{T}^{*} \mathbb{T}=\left(T_{1}^{*} T_{1}, \ldots, T_{n}^{*} T_{n}\right)$ is a commuting n-tuple of positive operators, $\mathbb{T}^{*} \mathbb{T}$ is jointly convexoid (see [2]). Also $\|\mathbb{T}\|^{2}=\sup \left\{\sum_{i=1}^{n}\left(T_{i}^{*} T_{i} x, x\right): x \in \mathscr{H},\|x\|=1\right\}$ and we can see that there exists $\left(r_{1}, \ldots, r_{n}\right) \in \sigma\left(\mathbb{T}^{*} \mathbb{T}\right)$ such that $\sum_{i=1}^{n} r_{i}=\|\mathbb{T}\|^{2}$. By Theorem 8 , it follows that there exists $\left(z_{1}, \ldots, z_{n}\right) \in \sigma(\mathbb{T})$ such that $\left(\sum_{i=1}^{n}\left|z_{i}\right|^{2}\right)^{1 / 2} \geq\|\mathbb{T}\|$. The converse inequality is clear and so the proof is complete.

REFERENCES

1. A. Aluthge, On p-Hyponormal operators for $0<p<1$, Integral Equations and Operator Theory 13 (1990), 307-315.
2. M. Chō and M. Takaguchi, Some classes of commuting n-tuples of operators, Studia Math. 80 (1984), 246-259.
3. R. Curto, On the Connectedness of Invertible n-tuples, Indiana Univ. Math. J. 29 (1980), 393-406.
4. T. Furuta, On the polar decomposition of an operator, Acta Sci. Math. (Szeged) 46 (1983), 261-268.
5. C. R. Putnam, Spectra of polar factors of hyponormal operators, Trans. Amer. Math. Soc. 188 (1974), 419-428.
6. J. L. Taylor, A joint spectrum for several commuting operators, J. Functional Analysis 6 (1970), 172-191.
7. D. Xia, On the nonnormal operators-semihyponormal operators, Sci. Sinica 23 (1983), 700-713.
8. D. Xia, Spectral theory of hyponormal operators (Birkhäuser Verlag, Basel, 1983).

Department of Mathematics

Joetsu University of Education
Joetsu, Niigata 943
Japan

