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Abstract

Reversible cellular automata are invertible dynamical systems characterized by discreteness,
determinism and local interaction. This article studies the local behavior of reversible one-
dimensional cellular automata by means of the spectral properties of their connectivity matrices.
We use the transformation from every one-dimensional cellular automaton to another of neigh-
borhood size 2 to generalize the results exposed in this paper. In particular we prove that the
connectivity matrices have a single positive eigenvalue equal to 1; based on this result we also
prove the main result of this paper: the idempotent behavior of these matrices. This property
is an important feature for detecting which one-dimensional cellular automata are reversible.
Hence we present a procedure using the eigenvectors of these matrices to find the inverse rule
for a given reversible one-dimensional cellular automaton. Finally illustrative examples are pro-
vided.
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1 Introduction

Cellular automata were invented by John von Neumann to prove the existence of self-reproducing
systems [17]. The study of reversible automata began with the papers by Edward F. Moore [11]
and John Myhill [13] about the existence of the “Garden of Eden ” states for a given cellular
automaton. Reversibility in one-dimensional cellular automata was straightforward treated by the
paper of Gustav A. Hedlund [4], in particular this paper studies the automorphisms of the shift
system. The main contribution of this paper is defining in a combinatorial way the local properties
that a one-dimensional cellular automaton must hold to be reversible. Further papers discuss the
calculation of reversible automata [1], analyze them using graphic tools [14] [9] [10] [16] and presents
their deterministic characterization by means of block permutations [6].

In this sense, a fundamental problem is detecting if the local behavior of a cellular automaton
holds the properties to be reversible, therefore the analysis of the local behavior is important for
understanding the global one. For this reason the goal of this paper is to characterize the local
behavior of reversible one-dimensional cellular automata by means of matrix representations to
obtain a procedure for detecting the reversible behavior.

The idea is to use a relevant result presented in the paper of Tim Boykett [2] which shows that any
one-dimensional automaton can be transformed into another of neighborhood size 2. In this way
it is just necessary to study this case to understand the rest. With this transformation a matrix
presentation of the local behavior is obtained, where each state has a connectivity matrix which
presents how the state is formed.

Experimental observations [15] [12] [8] suggest that such connectivity matrices have a single pos-
itive eigenvalue equal to 1 and also that these matrices are idempotent. The last feature is very
important because it establishes an important condition for deciding either a one-dimensional cel-
lular automaton is reversible or not. This paper proves that the previous characteristics are fulfilled
for all reversible one-dimensional cellular automaton. As an additional result the eigenvectors as-
sociated with the single positive eigenvalue 1 are used to find the invertible behavior of a given
reversible automaton.

The paper is organized as follows. Section 2 presents the basic concepts and the features of reversible
one-dimensional cellular automata, and how these features define the structure of the connectivity
matrices. Section 3 proves that these matrices have a single positive eigenvalue equal to 1; with
this result and using other ones from graph theory, the idempotent behavior of these matrices is
proved. Based on these features, section 4 establishes a procedure for calculating the inverse rule
by means of the eigenvectors of the single positive eigenvalue in the connectivity matrices. Section
5 present illustratives example of the previous results and the final section provides the concluding
remarks of the paper.
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2 Basic concepts of cellular automata

A one-dimensional cellular automaton consists of a one-dimensional array of cells, every cell takes a
single value from a finite set K of states. The assignation from states to cells of the array is called
a configuration of the automaton.

Let k be the cardinality of K. For n ∈ Z+, let Kn be the set of sequences with n states. For
some n ∈ Z+ a mapping ϕ : Kn → K is defined. The mapping is applied to all sequence with
n cells or neighborhood in a given configuration. Each neighborhood overlaps with its contiguous
neighborhoods in n− 1 cells.

The local mapping yields a new configuration, i.e. it induces a global mapping between configura-
tions of the automaton. For some state a ∈ K, the neighborhoods in Kn which evolve into a are the
ancestors of a and they have n− 1 more cells than a. Thus, for each m ∈ Z+, the ancestors of each
sequence w ∈ Km belong to Km+n−1. This property is important because it allows to transform
any automaton of neighborhood size n into another of neighborhood size 2. This transformation
is exposed in the paper of Boykett [2] and is useful to generalize results since properties fulfilled in
automata of neighborhood size 2 are fulfilled also in all the other cases. We present now a brief
description for this transformation.

Let n be the number of cells of a neighborhood in a one-dimensional cellular automaton. For
the sequences in Kn−1, their ancestors belong to K2n−2 and the evolution rule defines a mapping
ϕ : K2n−2 → Kn−1.Take a new set S of states with cardinality equal to kn−1. Then each sequence
in Kn−1 can be associated with a single state in S and the evolution rule also defines a mapping
τ : S2 → S. This mapping presents the same behavior that the evolution of the sequences in
K2n−2, but τ is also an evolution rule of neighborhood size 2. In this way the original automaton
is simulated by another, of course, the new automaton has a greater number of states than the
original one.

For a cellular automaton with evolution rule ϕ : K2 → K, the rule is presented by a matrix where
its indices are the states in K and the coordinates of each entry represent a whole neighborhood of
the automaton. Thus the value of each entry is the evolution of the neighborhood formed by the
coordinates of the entry.

2.1 Reversible one-dimensional cellular automata

A cellular automaton is reversible if its global mapping is invertible by another evolution rule.
That is, for the original evolution rule ϕ : Kn → K there is another rule ϕ−1 : Km → K (possibly
m 6= n) such that ϕ−1 defines the inverse global mapping of the automaton.

The study of reversible one-dimensional cellular automata is relevant because they represent systems
which conserve information through time, besides they offer a model for simulating several physical,
chemical and biological reversible systems. In this paper we only study reversible one-dimensional
cellular automata with neighborhood size 2 since all the other cases can be transformed to this one.
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2.2 Properties of reversible one-dimensional cellular automata

The properties of reversible one-dimensional cellular automata are widely discussed by Gustav A.
Hedlund [4]. In his work Hedlund proves two fundamental properties of these systems. A reversible
one-dimensional cellular automaton of k states and neighborhood size 2 in both invertible rules
holds that:

1. Each finite sequence of states has k ancestors.

2. The ancestors of each finite sequence have L initial states, a common central part and R final
states, with LR = k.

Ancestors

initial
cells

final
cells

Common central cells

Successor sequence

Figure 1: Form of the ancestors in a reversible automaton of neighborhood size 2.

Property 1 is called the uniform multiplicity of ancestors and the values L and R in Property 2 are
known as Welch indices. Another relevant result is provided by Masakazu Nasu [14], proving that
the ancestors of a given finite sequence have one initial state equal to one and only one final state.
In a reversible one-dimensional cellular automaton of neighborhood size 2, for each s ∈ K a new
matrix As is obtained from the matrix presentation of ϕ. In As the row and column indices are
the states of the automaton. The value of each entry aij in As is defined as follows:

aij =


1 if ϕ(ij) = s

0 any other case
(1)

In this way, As is a 0− 1 matrix which presents the neighborhoods evolving into s. As is called the
connectivity matrix of s. First of all, there are k connectivity matrices (one for each state in K).
Based on the papers developed by Hedlund and Nasu, we prove the next result.

Theorem 1. For each s ∈ K let As be the connectivity matrix associated with s, let aij be an entry
of As and let An

s be the n− th power of As. Then As holds the following properties:
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1. The sum of elements in An
s is equal to k.

2. There is a single positive entry equal to 1 in the main diagonal of An
s .

3. For i 6= j, if aij = 1 then aji = 0 in An
s .

Proof.

1. This property is a straightforward result from the uniform multiplicity of ancestors because
every state must have the same number of ancestors that all its extensions. Hence the number
of ancestors is equal to the average of ancestors per state, in this case k2/k = k.

2. The single diagonal value equal to 1 assures a unique ancestor for the sequence composed by
repetitions of s. If all = 1 then the sequence sn formed by n repetitions of s has a unique
ancestor defined by ln+1.

3. Suppose that An
s holds that aji 6= 0 in An

s , then the sequence sn has two ancestors in Kn+1,
one defined as jvi and another as iwj where v, w ∈ Kn−1. But a consequence is that the
sequence s2n has two cyclic ancestors (jviwj and iwjvi) and the automaton is not reversible
which is a contradiction.

Every connectivity matrix has a graphical representation, the indices of the matrix are the set of
nodes and the entries of the matrix define the arcs between nodes. If an entry aij is equal to 1
then there is an arc from node i to node j, in opposite case there is no arc between i and j. The
graphical representation of a connectivity matrix has k arcs by the property 1 of Theorem 1, and
this graph also has a single cycle of one node by the properties 2 and 3 of Theorem 1.

The graphical representation of a connectivity matrix is useful for obtaining a better understanding
of its spectral properties by means of theory of graphs. In the next sections we discusse these
properties and how they reflect the local behavior of reversible one-dimensional cellular automata.

3 Eigenvalues and idempotent behavior

In this section we use some results in theory of graphs for characterizing the spectrum of the
connectivity matrices, let us begin with the definition of liner directed graphs.

Definition 1. A linear directed graph is a digraph in which the indegree and the outdegree of each
node is 1.

In other words a linear directed graph consists only of cycles. The next theorem shows that the
linear directed subgraphs of a given graph define the coefficients of the characteristic polynomial
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corresponding with the adjacency matrix of the graph (in this case with the connectivity matrix).
These coefficients will be useful to know the features of the spectrum of these matrices (i.e. the set
of eigenvalues).

Theorem 2. (Milić, Sachs, Spialter [3]) Let G be a digraph and let A be its connectivity matrix
with the following characteristic polynomial:

p(A) =| A− Iλ |= (−λ)n + (−λ)n−1p1 + · · ·+ pn

Then:

pi =
∑

B∈B〉

(−1)per(B) (i = 1, 2, · · · , n)

where Bi is the set of all the linear directed subgraphs B of G with exactly i nodes. per(B) is the
number of components of B, i.e. the number of cycles defining B.

Theorem 2 says that each coefficient pi depends only of the set B〉 of linear directed subgraphs of
G with exactly i nodes. The contribution from each B ∈ B〉 to pi is 1 if B has an even number of
cycles and −1 if B contains an odd number of cycles.

A formal proof of Theorem 2 is not provided in this paper (it can be consulted in the book by
Cvetkovic, Doob and Sachs [3]), but its details related with reversible automata are explained. For
a reversible one-dimensional cellular automaton of k states and neighborhood size 2, let A be a
connectivity matrix with entries aij and let G be its associated graph. Take the coefficient pk from
p(A) given by the determinant of A, then pk has the following form:

pk =
∑
n!

±a1αa2β . . . akγ (2)

where the indices of each term a1αa2β . . . akγ are defined by some permutation of k elements (Equa-
tion 3).

First index

Second index

 1 2 · · · k

α β · · · γ

 (3)

If some term a1αa2β · · · akγ is different form zero, then there are arcs (1, α), (2, β), . . . , (kγ) in G.
But these arcs define a set of disjoint cycles, in this way the coefficient pk is defined by the linear
directed subgraph with k nodes in G. For 1 ≤ i ≤ k, each coefficient pi of p(A) depends on the
minors or subdeterminants of order i, i.e. pi depends on the linear directed subgraphs of i nodes
in G (Equation 4).
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p(A) = (−λ)k +(−λ)k−1
k∑

i=1

aii +(−λ)k−2
k∑

i<j

aii aij

aji ajj
+(−λ)k−3

k∑
i<j<m

aii aij aik

aji ajj ajk

aki akj akk

+ · · ·+ | A | (4)

By Theorem 1 the graph associated with a connectivity matrix has only a single cycle of one node.
There are not bigger cycles because they imply multiple ancestors for undefined repetitions of the
state represented by the connectivity matrix. Hence a straightforward result from Theorem 2 is
the following one:

Corollary 3. Let A be the connectivity matrix of some state in a reversible one-dimensional cellular
automaton of k states and neighborhood size 2, then the following inequality is fulfilled:

p(A) = λk − λk−1

Proof. There is a single cycle of one node in the graphic representation of A, then there is a unique
linear directed subgraph of one element. Hence p1 = −1 and pi = 0 for i = 2 · · · k by Theorem
2.

Corollary 3 has another important implication for the spectrum of a given connectivity matrix.

Corollary 4. Let A be the connectivity matrix of some state in a reversible one-dimensional cel-
lular automaton of k states and neighborhood size 2, then the spectrum of A has a single positive
eigenvalue λA = 1 and another eigenvalue 0 of multiplicity k − 1.

Proof. By Corollary 3 p(A) = λk − λk−1, hence the eigenvalues are calculated as follows:

λk − λk−1 = 0 ⇒ λk−1(λ− 1) = 0 (5)

Equation 5 shows a single positive eigenvalue λA = 1 and another eigenvalue λ = 0 of multiplicity
k − 1.

Corollary 3 also presents another property which is useful to determine either a one-dimensional
cellular automaton is reversible or not, this property is the idempotent behavior of these matrices
and it is proved in the next corollary.

Corollary 5. Let A be the connectivity matrix of some state in a reversible one-dimensional cellular
automaton of k states and neighborhood size 2, then A is idempotent.

Proof. Since p(A) = λk −λk−1 by Corollary 3, Cayley-Hamilton theorem says that Ak −Ak−1 = 0.
In this way Ak = Ak−1 proving the idempotent behavior of A.
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Given the idempotent behavior of the connectivity matrices, one question is the shape that a
connectivity matrix Ak−1 has such that Ak = Ak−1. The answer is in the properties of reversible
automata, the matrix has k elements equal to 1 by the uniform multiplicity principle. Since the
Welch indices holda that LR = k then the matrix must have L initial states, each connected with
the same R final states. In this way the matrix has L identical rows, each with R entries equal
to 1. Ak−1 has a single diagonal element equal to 1 showing a single initial state equal to a single
final state and the other initial states are different from the other final states; therefore Ak−1 has L
nonzero identical rows and R nonzero identical columns, where L−1 rows are in different positions
that R− 1 columns. Hence the shape of Ak−1 is in Equation 6.

Ak−1 =



1 · · · 1 · · · 0 · · ·
...

...
...

...
...

...
1 · · · 1 · · · 0 · · ·
...

...
...


︸ ︷︷ ︸

R equal columns


L equal rows (6)

This shape of the connectivity matrices yielded by their idempotent behavior provides a way both
for detecting either a cellular automaton is reversible or not. For n ∈ Z+, calculate the connectivity
matrices for all the sequences of n states, if all the matrices have the shape depicted in Equation
6 then the automaton is reversible, in other case we have to check the sequences with n + 1 states.
The connectivity matrix of a given sequence of states is obtained by the product of the connectivity
matrices corrsponding with the states which form the sequence, for instance, let a, b be states in
K; the connectivity matrix Aab corresponding with the sequence ab is obtained by the following
product:

Aab = AaAb (7)

One problem is to define the maximum length of the sequences to review, this problem is resolved
with a length equal to k − 1 for reversible one-dimensional cellular automata with a Welch index
equal to 1 [14, 5]. This problem is not resolved for reversible automata with both Welch indices
different from 1 and up to now the best bound in this case is equal to k2 [1, 10, 16]. In the
next section we explain how the inverse rule of a reversible automaton is calculated by means of
the eigenvectors corresponding with the single positive eigenvalue equal to 1 of the connectivity
matrices.

4 Eigenvectors and inverse rule

In a reversible one-dimensional cellular automaton a connectivity matrix shows both the number of
ancestors of a given sequence and their initial and final states. Once defined the reversible shape of
the connectivity matrices, an interesting question is to know either this shape is useful or not to find
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the inverse rule of the automaton. To answer this question we use the eigenvectors corresponding
with the eigenvalue equal to 1 associated with the reversible shape of the connectivity matrices.

4.1 Calculating the eigenvectors of the connectivity matrices

For a connectivity matrix A in the reversible shape and its positive eigenvalue λA = 1, an important
part in the study of the spectrum of A is the form of the vectors < e| and |e > such that:

< e|A =< e|λA and A|e >= λA|e > (8)

The vectors < e| and |e > are the eigenvectors of A associated with λA. We solve the system of
scalar equations presented by (A − IλA) = 0to obtain < e|, analogously |e > is obtained solving
(A − IλA)T = 0. Since A has L equal rows and R equal columns, (A − IλA) takes the shape
presented in Equation 9.


1− λA · · · · · · 1 · · ·

... −λA

1 · · · −λA 1 · · ·
...

. . .
...

 (9)

Replacing λA = 1 in the system of scalar equations the next equation is obtained.


0 · · · · · · 1 · · · 0
... −1

...
1 · · · −1 1 · · · 0
...

. . .
...

...

 (10)

The eigenvector |e > must represent a linear combination which resolves all the equations in
Equation 10, therefore we must analize the shape of the system for knowing the eigenvector |e >:

• Observing the system we can see that |e > can not take into account columns with entries
1 and diagonal entries −1 because the i-th row where aii = 0 represents a scalar equation
in which |e > would take positive values which could not be nullified. This avoids that the
linear combination of the elements in the row is equal to zero.

• |e > can not take the j − th column with a diagonal entry −1 such that the j-th row in A is
null, because the scalar equation presented by the j-th row could not be zero.

• |e > can take the j − th column where both the entry ajj = −1 and the j-th row is nonzero
in A, because the diagonal element can be nullified by the element aji = 1 such that aii = 1
in A.
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The previous explanation implies that |e > takes also the i-th column where aii = 0 in (A − Iλ).
It does not affect the solution of the system because |e > does not take any positive value in the
i-th row of (A− Iλ). The form of |e > is presented in Equation 11.

|e > =
{

1 0 1 0 · · ·
}T

(A− Iλ) = 0 =


0 · · · · · · 1 · · · 0
... −1

...
1 · · · −1 1 · · · 0
...

. . .
...

...


(11)

Hence |e > takes only the nonzero rows of A, that is, for |e >= {ai}T with i = 0 . . . k − 1, if
ai = 1 then the i − th row in A is nonzero. In other words |e > represents the L initial states
of the ancestors presented by the connectivity matrix A in the reversible shape, the set of these
initial states is called a left Welch subset. The previous characteristics are analogous for the
eigenvector < e| calculated by means of resolving the system represented by (AIλA)T . In this case
for < e| = {ai}, i = 0 . . . k − 1, if ai = 1 then the i-th column in A is nonzero (Equation 12).
That is, < e| takes the R final states of the ancestors presented by the connectivity matrix in the
reversible shape, this final states form a right Welch subset.

< e| =
{

1 0 0 1 · · ·
}

(A− Iλ)T = 0 =



0 · · · 1 0 · · · 0
... −1

...
...

... −1
...

1 · · · 1 −1 · · · 0
...

...
. . .

...


(12)

4.2 Finding the inverse rule

For a connectivity matrix A in the reversible shape corresponding with a given sequence, its eigen-
vectors |e > and < e| associated with λA = 1 represent the initial and final states of the ancestors
presented by A; these sets of ending states are the Welch subsets of the automaton. The indices
of the entries different from 0 in |e > and < e| are the indices of the nonzero rows and columns in
A; since these indices are states of the automaton then the initial and final states of the ancestors
represented by A are the indices of the positive entries in |e > and < e|. In this way we can
use the eigenvectors from all the connectivity matrices to obtain the inverse rule of the reversible
automaton, this process has the following implementation:

1. For each sequence w with n states, take its connectivity matrix Aw.
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2. If any connectivity matrix does not have the reversible shape and n > k then the automaton
is discarded. But if n ≤ k then repeat step one for sequences of n + 1 states.

3. If all the matrices have the reversible shape then take the eigenvectors < ew| and |ew > from
each matrix Aw.

4. For each sequence w take the eigenvector < e| = {ai} and replace each entry ai = 1 with
ai = i.

5. For the sequences v, w with n states, take the product < ev|ew >= i for some i ∈ K, then
ϕ−1(vw) = i.

The explanation of the procedure is that the product < ev|ew > yields the common state which is
both right ancestor state of v and left ancestor state of w, i.e. the state in which the sequence vw
evolves backwards. The use of eigenvectors offers a way for calculating the inverse rule by means
of vector products, which makes the procedure easier for computational implementation.

5 Illustrative examples

In this section we present two examples which show the idempotent behavior of the connectivity
matrices and how they are useful (in their reversible shape) for obtaining the inverse evolution
rule. Both examples have 4 states and neighborhood size 2, the first example presents a reversible
automaton with left Welch index equal to 1 and the second corresponds with a reversible automaton
with both Welch indices equal to 2.

5.1 Reversible automaton with L = 1

Take the one-dimensional cellular automaton with k = 4 and neighborhood size 2 in Table 1.
0 0 0 2
1 1 1 0
2 2 2 1
3 3 3 3


Table 1: Evolution rule of a reversible automaton.

Calculating the connectivity matrices for the ancestors of the sequences with two states, the au-
tomaton in Table 1 has four kinds of connectivity matrices showing Welch indices L = 1 and R = 4.
The connectivity matrices of the automaton are presented in Table 2.

The connectivity matrices show that the automaton is reversible with Welch indices L = 1 and
R = 4. In every row eigenvector, each value equal to 1 shall be replaced by the value of its index.
The inner products of the whole set of eigenvectors are presented in Table 3.
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Matrices and eigenvectors

A =


1111
0000
0000
0000

 B =


0000
1111
0000
0000

 C =


0000
0000
1111
0000

 D =


0000
0000
0000
1111


< eA| = {1, 1, 1, 1} < eB | = {1, 1, 1, 1} < eC | = {1, 1, 1, 1} < eD| = {1, 1, 1, 1}

|eA >= {1, 0, 0, 0}T |eB >= {0, 1, 0, 0}T |eC >= {0, 0, 1, 0}T |eD >= {0, 0, 0, 1}T

Connectivity matrices

A00 = A A01 = A A02 = A A03 = B
A10 = B A11 = B A12 = B A13 = C
A20 = C A21 = C A22 = C A23 = A
A30 = D A31 = D A32 = D A33 = D

Table 2: Connectivity matrices associated with the automaton in Table 1.

Replacing indices: < eA| = {0, 1, 2, 3} < eB | = {0, 1, 2, 3}
< eC | = {0, 1, 2, 3} < eD| = {0, 1, 2, 3}

eA eB eC eD

eA

eB

eC

eD


0 1 2 3
0 1 2 3
0 1 2 3
0 1 2 3



Table 3: Inner products of the eigenvectors presented by a matrix, the entry (eA, eB) is the inner
product < eA|eB >.

In this way we take the inner products in Table 3 to obtain the invertible rule of the reversible
automaton; for instance, the sequence 00 has associated the row eigenvector < eA| = {0, 1, 2, 3} and
the sequence 03 has associated the column eigenvector < eB| = {0, 1, 0, 0}T . In this way the inverse
evolution of the sequence 0003 is obtained by means of the inner product < eA|eB >= 1; following
the same procedure for all sequence of four states, then inverse evolution rule of the automaton
is obtained (Table 4). In this table, the indices by rows and columns represents all the sequences
ab of two states and each entry (ab, a′b′) of the table shows the inverse evolution of the sequence
(aba′b′) of four sates.
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00 01 02 03 10 11 12 13 20 21 22 23 30 31 32 33
00
01
02
03
10
11
12
13
20
21
22
23
30
31
32
33



0 0 0 1 1 1 1 2 2 2 2 0 3 3 3 3
0 0 0 1 1 1 1 2 2 2 2 0 3 3 3 3
0 0 0 1 1 1 1 2 2 2 2 0 3 3 3 3
0 0 0 1 1 1 1 2 2 2 2 0 3 3 3 3
0 0 0 1 1 1 1 2 2 2 2 0 3 3 3 3
0 0 0 1 1 1 1 2 2 2 2 0 3 3 3 3
0 0 0 1 1 1 1 2 2 2 2 0 3 3 3 3
0 0 0 1 1 1 1 2 2 2 2 0 3 3 3 3
0 0 0 1 1 1 1 2 2 2 2 0 3 3 3 3
0 0 0 1 1 1 1 2 2 2 2 0 3 3 3 3
0 0 0 1 1 1 1 2 2 2 2 0 3 3 3 3
0 0 0 1 1 1 1 2 2 2 2 0 3 3 3 3
0 0 0 1 1 1 1 2 2 2 2 0 3 3 3 3
0 0 0 1 1 1 1 2 2 2 2 0 3 3 3 3
0 0 0 1 1 1 1 2 2 2 2 0 3 3 3 3
0 0 0 1 1 1 1 2 2 2 2 0 3 3 3 3



Table 4: Inverse evolution rule of the reversible automaton with Welch index L = 1.

An example of the evolutiuon of the automaton is presented in Figure 2.

0 2 1 0 1 3 1 2 0 3 3 2
AAU���AAU���AAU���AAU���AAU ���AAU���AAU���AAU���AAU���AAU���AAU���AAU���

2 0 3 0 1 1 2 0 2 1 3 2 2
AAU���AAU���AAU���AAU���AAU ���AAU���AAU���AAU���AAU���AAU���AAU���AAU���
2 1 3 1 1 0 2 0 3 1 2 2
AAU���AAU���AAU���AAU���AAU ���AAU���AAU���AAU���AAU���AAU���AAU���AAU���

2 3 1 2 1 0 0 2 1 2 0 2 2
AAU���AAU���AAU���AAU���AAU ���AAU���AAU���AAU���AAU���AAU���AAU���AAU���
3 2 0 3 0 0 0 3 0 2 0 2
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0 2 1 0 1 3 1 2 0 3 3 2
����

�3
����

�3
AAKQQ ����

�3
AAKQ

Qk
����

�3
AAKQ

Qk
����

�3
AAKQ

Qk
����

�3
AAKQ

Qk
����

�3
AAKQ

Qk
����

�3
AAKQ

Qk
����

�3
AAKQ

Qk
����

�3
AAKQ

Qk
����

�3
AAKQ

Qk
�����AAKQ

Qk
AAKQ

Qk
Q

Qk
�

�3

2 0 3 0 1 1 2 0 2 1 3 2 2
����

�3
AAKQ ����

�3
AAKQ

Qk
����

�3
AAKQ

Qk
����

�3
AAKQ

Qk
����

�3
AAKQ

Qk
����

�3
AAKQ

Qk
����

�3
AAKQ

Qk
����

�3
AAKQ

Qk
����

�3
AAKQ

Qk
����

�3
AAKQ

Qk
����

�3
AAKQ

Qk
����AAKQ

Qk
Q

Qk
�

�3

2 1 3 1 1 0 2 0 3 1 2 2
����

�3
����

�3
AAKQQ ����

�3
AAKQ

Qk
����

�3
AAKQ

Qk
����

�3
AAKQ

Qk
����

�3
AAKQ

Qk
����

�3
AAKQ

Qk
����

�3
AAKQ

Qk
����

�3
AAKQ

Qk
����

�3
AAKQ

Qk
����

�3
AAKQ

Qk
�����AAKQ

Qk
AAKQ

Qk
Q

Qk
�

�3

2 3 1 2 1 0 0 2 1 2 0 2 2
����

�3
AAKQ ����

�3
AAKQ

Qk
����

�3
AAKQ

Qk
����

�3
AAKQ

Qk
����

�3
AAKQ

Qk
����

�3
AAKQ

Qk
����

�3
AAKQ

Qk
����

�3
AAKQ

Qk
����

�3
AAKQ

Qk
����

�3
AAKQ

Qk
����

�3
AAKQ

Qk
����AAKQ

Qk
Q

Qk
�

�3

3 2 0 3 0 0 0 3 0 2 0 2

Inverse evolution

Figure 2: Evolution of the reversible automaton with Welch index L = 1.
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6 Concluding remarks

The spectral properties and the eigenvectors of the connectivity matrices are very useful to obtain
important properties of the local behavior for reversible one-dimensional cellular automata. A
relevant tool in this sense is the presentation of every automaton by another of neighborhood size
2, this simulation yields that the connectivity matrices have a very suitable shape to analyze them.

Jarkko Kari [7] has made an analysis of the behavior in additive reversible automata using their
matrix representation. Connectivity matrices, de Bruijn diagrams and their relations with symbolic
dynamics is established by the paper of Benjamin Weiss about sofic systems [18]. However, the
results is sofic systems have not been widely applied over connectivity matrices, therefore more
work is needed in this direction.
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