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1. Introduction

If A is a complex Banach algebra (not necessarily unilal) and xEA, <r(x) and r(x)
will denote the spectrum and spectral radius of x in A. If / is a closed two-sided ideal
in A let x +1 denote the coset in the quotient algebra All containing x. Then

r(x + I) =s inf r(x + y) (*)
ye/

Smyth and West (7) have considered algebras for which equality holds in formula (*)
for each x £ A and each closed two-sided ideal /. We call such algebras SR-algebras.
They showed that the following familiar algebras (i) C0(ft) where ft is a locally
compact Hausdorff space (ii) L\G) where G is a locally compact abelian group and
(iii) B(X) where X is c0 or /p(l « p <°°) are SR-algebras, while the algebra of analytic
functions on the unit disc in the supremum norm fails to be SR.

If A is commutative with Gelfand space 1(A) and with Gelfand transform algebra A
we prove in Proposition 1 that A is SR if A is dense in C0(2(A)). A partial converse to this
result in Proposition 2 states that if A is regular, commutative and SR, then A is dense in

It was conjectured in (7) that every C*-algebra is SR. This was proved by
Pedersen in (3). A quick proof of this theorem is a consequence of the following
formula for the spectral radius of any element x in a unital C*-algebra A given in
Proposition 4,

r(x) = inf |kaxe~a||.
a=a"SA

The proof consists of showing first that r(x) = inf ||yjcy"'|| over the invertible ele-
ments in A, and then taking the logarithm of the positive part of the polar decom-
position of y. These formulae appear to be new for general C*-algebras.

A trivial observation that the Riesz algebras introduced by Smyth in (6) are SR
leads to the fact that a large class of Banach algebras are SR.

2. Commutative algebras

Let A be a commutative Banach algebra. If x E A we denote by x the Gelfand
transform of x. A is the Gelfand transform algebra of A and if S(A) is the Gelfand space,
then A C C0(2.(A)). A is symmetric if A is closed under complex conjugation. If / is an
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ideal in A (always taken to be closed), h(I) denotes the hull of /. If / E C0(2(A)) and
O C 2(/4) we write |/|n for the supremum of / on fl. Thus if x G A,

r(x) = lila/,),
and since £(/*//) = /i(7),

r(x + I) = \x\k(l).

Proposition 1. Let A be a commutative Banach algebra such that A is dense in
C0(Z(A)). Then A is an SR-algebra.

Proof. Let / denote the closure of / in C0(Z(A)). Then, by hypothesis, J is an ideal in
C0(2(A)) also h(J) = h(I). Thus, since C0(2(A» is SR,

r(x + I) = \x\hu) = \x\hU) = inf \x + f\1(A)

= inf \x + y|SM) = inf r(x + y).
ye/ ye/

Corollary. / / A is symmetric or if 2(A) is totally disconnected then A is an
SR-algebra.

Proof. If A is symmetric the Stone-Weierstrass theorem implies that A is dense in
C0(2(A)). If 2(A) is totally disconnected this is also true (8, Corollary 8.)

This improves the result in (7) Proposition 1.

The converse problem of characterising commutative Banach algebras which are
SR is not completely solved, but we have the following result.

Proposition 2. Let Abe a regular commutative algebra which is SR. Then A is dense
in Co(.l(A)).

Proof. Let B be the closure of A in Ca(2(A). B separates the points of 20A) thus

If fi is a compact subset of S(A) put I = k(D.) the kernel of fl in A. Then h(I) = D, by
regularity. Let / be the closure of / in B. Then / is an ideal of B and h(J) = h(I) = il.
Now if x G A

\\x + J\\ = inf ||JC + /|| = inf ||x + y|| = inf r(x + y)
fej ye/ ye/

= r(x +1) (by hypothesis)

= l*k
Thus, since A is dense in B,
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Denoting by B\il the restriction algebra of B to fl we have shown that B/J is isometric to
B\fl. Therefore B\D. is closed in C(il) for each compact subset a of 2(A). It follows from
(8) Corollary 13.9 that B =

3. C*-algebras

If A is a unital C*-algebra, Inv(A) denotes the set of invertible elements of A.

Lemma. Let x be an element of a unital C*-algebra A such that r(x) < 1. Then there
exists y £ Inv(A) such that ||yxy~'|| < 1.

Proof. Since r(x) < 1 the series 2^o||(*n)**l = 2n=ol|xn||2 is convergent. Thus
z = S^oC*")**" e A and z 2= 1. Therefore y = z"2G A and y & 1 so y G Inv(A).
Moreover

= By"1 2 (jc*)-jt-y-'||

Therefore ||yxy '|| < 1 as required.

Proposition 4. / / A is a unital C*-algebra

r(x)= inf \\eaxe-°\\= inf ||yxy-'|| (x £ A).
a=a'e.A yEInv(/4)

Proof. If xE A choose a positive number 8 such that r(x8~l)< 1. By Lemma 3
there exists y£lnv(A) such that ||yA:5"1y'"l|| < 1. As y is invertible, it has a polar
decomposition y = «|y| in A, where u is a unitary element of A and |y| = (y*y)2. Thus
|y|£lnv(A) and there exists e > 0 such that <r(|y|)C(e, °°). Hence a=log(y)£v4,
and a is hermitian. Also

||yxy"'|| = \\ueaxe~au*\\ = \\eaxe~"\\ < 8,

as u is unitary.

Hence

Jnf_Je°xe-°\\^r(x)

and since for each a £ A

the reverse inequality holds, and the theorem is proved.
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Proposition 4 leads to a short proof of the fact that every C*-algebra is SR.

Corollary. C*-algebras are SR-algebras.

Proof. If / is a closed two-sided ideal of a non-unital C*-algebra A, then / is also
a closed two-sided ideal of the C*-algebra formed by adjoining an identity. Thus it is
sufficient to prove the result for unital C*-algebras A. By Proposition 4 if x G A, since
All is a C*-algebra

r(x +1) = inf \\e°+'(x + 7)e-(a+/)||
aeA

= inf \\e"xe-a +1\\
aBA

= mimi\\e°{x
aSA yel

= infinf\\ea(x
yel aeA

= inf r(x + y).
yel

We record that Rota (4) proved the second part of the formula in Proposition 4 in
the case A = B(H).

4. Riesz algebras

Let A be a complex Banach algebra with radical Rad(A). If A' = A/Rad A, the
socle of A', Soc(A'), exists. A is called a Riesz algebra by Smyth (6) if the hull of the
pre-image of Soc A' is empty, in other words the pre-image of Soc A' is contained in
no primitive ideal of A. Smyth (8, Theorem 10) has proved that a Banach algebra is a
Riesz algebra if, and only if, the non-zero part of the spectrum of every element is a
countable discrete set.

Proposition 5. A Banach algebra which is a Riesz algebra is SR.

Proof. Let A be such an algebra and let I be a closed two-sided ideal in A. If
x G A let O^AG cr(jt), The spectral projection p = p(A; JC) associated with the
isolated point A G <r(x) is an element of A (5, lemma 2.1). Clearly p +1 is the spectral
projection in All associated with the isolated point A G cr(jc + 7). Thus

\ £ a(x +1) <=> p +1* I e> p 01.

Now if Ag a-(x + / ) , pxEl and \0 <r(x -px).
Smyth's characterisation implies that the set {/u. E. cr{x):\ix\> t >0} is a finite set.

Denote the associated spectral projection by p,. Then

r(x +1) =£ f o p, G / 4> ptx G /.

https://doi.org/10.1017/S0013091500016448 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500016448


SPECTRAL RADIUS FORMULAE 275

since r(x - p,x) =£ t this gives

r(x +1)=£ t => inf r(x + y)=s t,
ye/

whence the result.

In the semi-simple case the Riesz algebras introduced by Smyth are exactly the
modular annihilator algebras of Barnes (1). Consequently the following Banach
algebras are Riesz algebras: algebras of compact operators, inessential operators or
Riesz operators, algebras with a dense socle, semi-simple dual algebras, semi-simple
annihilator algebras, compact algebras and completely continuous algebras. Since
closed subalgebras and quotient algebras of Riesz algebras are again Riesz algebras, it
follows that closed subalgebras and quotient algebras formed from the above class of
algebras are also SR.
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