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Abstract. With video-assisted surgery devices becoming more common in all fields of diagnostics and therapy,
the question of how well such systems are able to reproduce surface colors of organic tissue arises, especially in
cases where a proper distinction of different kinds of tissue—not only through their texture but also through their
color—might be crucial for the success of a surgery. Since modern devices are usually made of
a highly efficient, multispectral LED light source in combination with some light-guiding structures and a digital
camera system, an approach of optimizing these systems’ color reproduction properties based on the estimation
of in-situ spectral reflectances is proposed. Following the International Organization for Standardization (ISO)
standard procedure of colorimetric characterization, an initial color correction matrix was determined first by
solving a linear least-mean-squares optimization problem for a small set of artificial color samples mapping
the corresponding camera responses onto the samples’ tristimulus values. This initial matrix was then used
as a starting point for a second, nonlinear optimization, which makes use of the estimated reflectance spectra
in order to minimize the average squared color difference between the color corrected and the actually perceived
tristimulus values of the individual organic tissue samples. Compared to the ISO standard, which only knows
simple color patches to be used for the nonlinear optimization, a significant enhancement in the color reproduc-
tion of organic tissue could be confirmed with the newly proposed method being applied instead. © The Authors.
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1 Introduction

Over the past few decades, minimally invasive surgery (MIS)
techniques have become prevalent in various fields of surgi-
cal diagnostics and therapy,1 offering many benefits over
traditional surgery. These benefits include less tissue damage
and, therefore, less pain for the patients, shorter recovery
time as well as increased safety and precision.2–4 Moreover,
the use of MIS procedures instead of traditional open sur-
gery, especially for routine operations, can lead to signifi-
cantly reduced health care costs.5,6 Researchers at Johns
Hopkins University School of Medicine recently found
that by increasing the use of laparoscopic techniques by
50%, US-American hospitals collectively could prevent
thousands of postsurgical complications and save up to
$280 million per year.6

Currently, the majority of modern MIS systems are video
based, giving surgeons an extended, in some cases, even
three-dimensional view inside the patient’s body revealing
its anatomical topography and, therefore, allowing for better
visual support during surgery. Making use of digital endo-
scopes, such systems enable surgeons to operate through
a much smaller incision than would otherwise be required
for traditional open surgery. At the same time, the surgeon’s
exact view of the surgical field can be provided to nurses or
assisting surgeons with the same image quality by projecting
the digital image of the MIS system on an additional
monitor. This allows for better communication of surgical

workflows and strategies and, therefore, more efficient col-
laboration in the operating room.

Despite the advantages of video-based MIS technologies
and their increasing dissemination, there is still a lack
of international standards and norms regarding the color
reproduction properties of such fully digital visual systems.
Modern endoscopic devices usually consist of a digital RGB
camera system attached to a thin rigid or flexible tube, which
can be inserted through small incisions or natural orifices
(e.g., mouth or nostrils) into the patient’s body. The endo-
scopic tube is designed in such a way that tiny surgical
instruments can be inserted and used by the surgeon in
order to reach out for and operate on the internal organs.
It further contains a carefully optimized optical fiber and
lens system. In combination with an external light source
and the attached camera system, this ensures both the proper
illumination of the organs under inspection and the correct
transmission of the image from the objective lens to the cap-
turing device, i.e., the digital camera.

However, image quality and color reproduction still
remain a big issue for such medical applications, which—
according to the authors’ best knowledge—is addressed
by only a few manufacturers because of missing obligatory
standards in this field. Regarding other fields of application
of digital camera systems, it is a known consensus that the
issue of color reproduction has to be considered thoroughly
to obtain qualitatively good and pleasant results. In this con-
text, an interview-based investigation of the color image
preference of surgeons revealed that a high acceptance of
fully digital MIS devices could only be achieved if the expe-
rienced visual impressions resemble those usually perceived
when using purely optical systems, i.e., systems they got
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used to over the years, which basically provide genuine col-
orimetric information.7 Hence, even though a good surgeon
under the assumption of sufficient image contrast might still
efficiently perform a surgery, in case various organic
tissues were represented in colors deviating from their actual
ground truth, there is strong evidence that a proper color
reproduction is desirable to achieve high user acceptance.
Furthermore, it is the authors’ belief that a colorimetrically
genuine representation of the captured image data also pro-
vides an indispensable part for appropriate digital archiving
and teaching purposes.

Assuming raw image capturing, the color reproduction of
digital endoscopes and MIS devices is mainly influenced by
the camera color filters, the optical transmission properties
of the endoscopic tube, and the spectrum of the illuminating
light source, which in modern solutions is formed by a highly
efficient, multispectral LED light engine usually tuned to the
emission of cool white light. In this context, perfect color
reproductionmeans that the reproduced colors of, for example,
inner organs would exactly match their direct perception under
the same illumination. With this in mind, one can easily imag-
ine that amore or less perfect color reproduction and, therefore,
negligibly small colorimetric errors are crucial for the success
of a surgery, where different kinds of tissues must be distin-
guished by the surgeon not only through their texture but
also through their color. However, perfect color reproduction
is usually not the case because, in general, the RGB-sensor of a
digital camera system does not fulfill the required Luther–Ives
condition,8–10 i.e., the spectral response curves of the RGB-
sensor cannot be described as a linear combination of the
eye cone response functions. As a consequence, more or
less severe colorimetric errors occurwhen comparing the direct
perception of the surgical field to its reproduction.

To correct for these systematic errors of digital cameras,
various linear and nonlinear characterization approaches and
methods have been proposed in the literature.11–20 Despite
their varying degree of complexity, they all have in common
that, for a given illuminant, they try to minimize the per-
ceived color differences between the reproduction of some
test colors and the direct perception of the same test
colors in a device-independant uniform color space (UCS).
In practice, most manufacturers apply a simple linear least-
mean-squares optimization based on some standardized
color charts, as described by Hubel et al.20 However, as one
might expect, the reflectance properties of such printed color
charts generally have nothing to do with those of real human
tissue a surgeon is confronted with in the operating room
and, therefore, such an optimization can only be considered
as a rough estimate rather than a colorimetrically proper
characterization. A significant improvement could only be
achieved if the in-situ reflectance properties of the human
tissue under inspection were known, which is usually not
the case. The aim of this paper, therefore, is to provide
an easy-to-implement reconstruction approach based on the
Wiener filter21 that estimates the spectral reflectances of
organic tissue from a series of images captured under varying
LED illumination. It should be further shown that once
the in-situ spectral reflectances are known, significantly
improved color correction is feasible.

The paper is organized as follows. In Sec. 2, the
applied Wiener-filter approach for estimating the spectral
reflectances is introduced. Section 3 gives an overview of

the experimental setup, whereas in Sec. 4, some results of
the spectral reflectance estimation are presented. In Sec. 5,
a method based on in-situ measured reflectance spectra is
discussed, which attempts to enhance the color correction
properties of video-assisted MIS devices. Finally, the paper
closes in Sec. 6 with some concluding remarks and an
outlook on future research intentions.

2 Wiener-Filter Estimation Approach

Estimating in-situ spectral reflectances from digital camera
responses of a modern endoscope generally is an ill-posed
problem22,23 since the dimensionality of the camera signals
is much smaller than the number of spectral components that
should be reconstructed. In the literature, several strategies
have been proposed to tackle this problem making use
of a priori knowledge of the underlying acquisition
process.12,22–36 In this context, one of the most important
and widely used reconstruction methods is the so-called
Wiener estimation, which is also the method of choice in
the present work. Despite its simplicity, the Wiener estima-
tion approach has been proven to provide accurate results
regarding the spectral reconstruction of nonflourescent
natural reflectances.22–26

Assuming a normal distribution and statistic independ-
ence of reflectances and system noise, the reflectance-
estimating Wiener Filter, which is applied to the camera
responses, minimizes the mean-squared error (MSE) between
the estimated and the actual reflectance of a surface color.

Basically, the responses cði;jÞ ¼ ½c
ði;jÞ
R ; c

ði;jÞ
G ; c

ði;jÞ
B �

T of a linear
trichromatic RGB camera system at a pixel location ði; jÞ on
the camera sensor are given by

EQ-TARGET;temp:intralink-;e001;326;407cði;jÞ ¼ δði;jÞSDðlÞrði;jÞ þ nði;jÞ; (1)

where S ¼ ðsTR; s
T
G; s

T
BÞ

T is a 3 × n dimensional matrix con-
taining the spectral sensitivities sR, sG, and sB of the digital
camera as row vectors, DðxÞ is an operator that transforms
a vector x into a diagonal matrix with the vector entries
x1; x2; : : : ; xn forming the diagonal, l defines the spectral
power distribution (SPD) of the illuminant, rði;jÞ is a n × 1
dimensional columnvector representing the spectral reflectance

of the captured surface, and nði;jÞ ¼ ½n
ði;jÞ
R ; n

ði;jÞ
G ; n

ði;jÞ
B �

T

denotes the additive noise of the three RGB channels.
Furthermore, the dimension variable n defines the spectral
sampling (e.g., n ¼ 401 for spectra from 380 to 780 nm
gives a 1 nm sampling) and δði;jÞ is some scaling factor
depending on the emitted radiance of the illuminant and
the measurement geometry, which is determined by the
distance and angle of the object’s surface with respect to
the camera and illuminant.

For the sake of simplicity, the pixel position indices ði; jÞ
are omitted in the following and Eq. (1) can be rewritten as
follows:

EQ-TARGET;temp:intralink-;e002;326;159c ¼ Λrþ n; (2)

where Λ ¼ δSDðlÞ is the combined lighting-sensitivity
matrix of the system. In order to solve the above equation
and to provide an accurate estimate r̂ for the actual reflec-
tance, a Wiener filter matrix W is introduced to be applied
to the RGB camera responses, which reads
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EQ-TARGET;temp:intralink-;e003;63;752r̂ ¼ Wc: (3)

According to Refs. 23–25 and 37, the above reflectance-
estimating Wiener filter matrix is defined in such a way that
it minimizes the MSE between the estimated and the actual
reflectance and, therefore, can be derived as follows:

EQ-TARGET;temp:intralink-;e004;63;686W ¼ KrrΛ
TðΛKrrΛ

T þKnnÞ
−1; (4)

where Krr and Knn are the n × n and 3 × 3 autocorrelation
matrices of reflectance spectra and system noise, respec-
tively. For this study, the noises of different color channels
are assumed to be independent, which means that Knn is
diagonal. Further details on the derivation of Eq. (4) are
given in Appendix.

3 Experimental Setup

Lacking a real MIS device equipped with a multispectral
LED light source, we decided to set up an experimental envi-
ronment, as shown in Figs. 1(a) and 1(b), which simulates
the surgical workflow using a commercially available single
lens reflex (SLR) camera and a customized six-channel LED
light engine. Here, the abdomen or thorax of a patient is
abstracted by a 40 cm × 40 cm × 60 cm wooden box
with diffusely reflecting white painted walls on the inside
in order to guarantee homogeneous illumination of the
organic tissue under inspection. Please keep in mind that

this setup should only provide a first proof-of-concept rather
than mirroring reality.

As can be seen from Fig. 1(a), the illumination is realized
from above by a six-channel (red, deep red, green, blue,
warm-white, and cool-white) edge-LED arrangement con-
sisting of multicolor LED stripes being installed on all
four sides of the box’s lid. Several diffusing panels covering
the LEDs and forming the bottom of the lid guarantee diffuse
and homogeneous light emission into the artificial abdomen/
thorax. An aperture ring with a diameter of 10 cm embedded
in the center of the lid together with a specially designed
fixture allows for an easy insertion and alignment of different
measurement devices. Furthermore, each LED channel can
be controlled separately via pulse-width modulated (PWM)
dimming and the corresponding normalized SPDs are
illustrated in Fig. 2. They were measured in 0 deg ∕0 deg
geometry using a white reflectance standard placed centrally
inside the experimental box in combination with an
Instrument SystemsCAS 140CTarray spectrometer connected
to a TOP 200 radiance measuring head, as shown in Fig. 1(b).

During the actual experiment, i.e., the image capturing
and subsequent spectral reconstruction of organic tissue
reflectances, the spectrometer head is removed from the
box and a Canon 750D SLR digital camera is inserted at
exactly the same position with its objective facing perpen-
dicularly down toward the test object being placed right
beneath the camera in the center of the bottom of the exper-
imental box. Instead of human organs, freshly butchered pig

Fig. 1 Illustrations of the artificial abdomen/thorax used in the experiments. The surgical workflow of
a video-assisted MIS device should be simulated using a commercially available SLR camera and
a customized six-channel PWM-controlled LED light engine. The artificial abdomen/thorax is formed
by a 40 cm × 40 cm × 60 cm wooden box with diffusely reflecting white painted walls on the inside in
order to guarantee homogeneous illumination. (a) Schematic representation of the experimental
setup. The organic tissue sample is placed inside the box right beneath the measurement device,
which is kept in position by a specially designed fixture. The illumination is realized using a multicolor
edge-LED arrangement covered by diffusing panels and installed on all four sides of the lid. (b) Image
showing the experimental setup as it can be found in our laboratory. Here, the radiance measuring head
of the employed array spectrometer is attached to the fixture facing down toward the homogeneously
illuminated test sample inside the box. Measurements were always performed in this 0 deg∕0 deg
geometry.

Journal of Electronic Imaging 053012-3 Sep∕Oct 2018 • Vol. 27(5)

Babilon et al.: Spectral reflectance estimation of organic tissue for improved color correction. . .

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Electronic-Imaging on 09 Aug 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



and cattle organs were used as test objects to investigate
the performance of the reconstruction algorithm. Due to
biological similarity, it is supposed that results can easily
be transferred to MIS applications involving human tissue.

As mentioned in Sec. 2, an easy-to-implement Wiener
filter approach is used to estimate the spectral reflectances
of the different test organs from the digital RGB camera
responses of the Canon 750D. One problem that arises
with this estimation method is that more than three camera
responses are usually needed to obtain high accuracy.38 This
is because of the extremely ill-posed nature of the calculation
when mapping only three values R, G, and B to reflectance
intensities at a few hundred different wavelengths (e.g., 401
different wavelengths from 380 to 780 nm if 1 nm sampling
is applied). In order to overcome this problem, we combine
multiple captures of the test organs illuminated by different
LED SPDs [six in our case, see Fig. 2]. As stated in Ref. 39,
this allows us to significantly increase the effective dimen-
sion and, as a result, make a more accurate estimate of
the spectral reflectances without the need of additional con-
straining assumptions on their properties (positivity, bound-
edness, and smoothness must be fulfilled for naturally
occurring reflectance spectra).

Hence, the reflectance-estimating Wiener filter of Eq. (4)
needs to be adjusted accordingly. Considering the six differ-
ent illumination conditions l1; : : : ; l6 of our experimental
box, the combined lighting-sensitivity matrix Λ must be
rewritten as follows:

EQ-TARGET;temp:intralink-;e005;63;191Λ ¼ δ½Dðl1ÞS
T ; : : : ; Dðl6ÞS

T �T ; (5)

which is now 18 × n dimensional. The corresponding 18 × 1
dimensional camera response vector c is consequently
given by

EQ-TARGET;temp:intralink-;e006;63;127c ¼ ðcT1 ; : : : ; c
T
6 Þ

T ; (6)

and contains the dark current corrected RGB camera values
of the organic tissue surface captured under the six different
LED SPDs. Concerning the computation of the autocorrelation

matrix of reflectance spectra Krr, a database consisting of
more than 300 different spectral reflectances of organic ani-
mal tissue (mostly pig and cattle organs) previously mea-
sured in our laboratory has been used.

Last but not least, the noise autocorrelation matrix Knn

still needs to be determined. Here, we follow the recommen-
dation given in Ref. 40, where the noise of camera channel
μ ¼ R;G; B under the v’th illuminant was estimated through
the variance σ2μν in the signal value of some central region A

surrounding the evaluation point pði; jÞ of which the spectral
reflectance should be reconstructed. Assuming the noise of
different camera channels to be independent, as stated in
Sec. 2, its autocorrelation matrix can finally be expressed
as follows:

EQ-TARGET;temp:intralink-;e007;326;598Knn ¼ DðηÞ; (7)

where the 18 × 1 column vector

EQ-TARGET;temp:intralink-;e008;326;556η ¼ ðσ2R1; σ
2
G1; σ

2
B1; : : : ; σ

2
R6; σ

2
G6; σ

2
B6Þ

T (8)

is formed by the single variances as described above calcu-
lated for each camera channel and LED illuminant.

It should be noted that in the present study, the digital
camera is operated in raw image capturing mode. Instead
of using a debayering algorithm, the camera response vector
cði;jÞ belonging to pði; jÞ is therefore obtained by averaging
the corresponding signal values within the surrounding pixel
region A. Furthermore, the spectral responsivities sR, sG, and
sB of the Canon 750D, which are necessary to construct the
Wiener Filter, were measured using a monochromator setup,
as described in Ref. 41. Results are illustrated in Fig. 3.
As can be seen, the Canon 750D used in our experiments
is unresponsive to incident light below 400 nm and above
700 nm due to its built-in ultraviolet and infrared band-
elimination filters. For this reason, we limit the range of
all subsequent measurements and calculations to a spectral

Fig. 3 Relative spectral responsivity of the Canon 750D color chan-
nels ðRGBÞmeasured by using amonochromator setup. Note that the
spectral responsivity of a camera system results from the combination
of the spectral transmittance of the used objective, the spectral
transmittance of the Bayer pattern, and the spectral sensitivity of
the monochrome camera sensor underneath.

Fig. 2 Normalized SPDs of the six different PWM-controlled LED
channels red, deep red, green, blue, warm-white (WW), and cool-
white (CW). The SPDs were measured in 0 deg∕0 deg geometry
using a white reflectance standard and an array spectrometer.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 4 Comparison of the measured (dashed blue line) and estimated (solid red line) reflectance spectra
of eight different organic tissue samples. The relatively large noise in the measured spectra below
430 nm is due to the very low light emission of the LED light source at small wavelengths (see
Fig. 2) leading to a bad signal-to-noise ratio in the measurement device. When calculating the quotient
given by Eq. (9), this eventually results in large noise values. (a) Steak, muscle, (b) heart, fat, (c) liver,
(d) kidney, (e) lung, (f) stomach, (g) tongue, and (h) spleen.
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range between these 400 and 700 nm with a 1 nm sampling,
i.e., n ¼ 301.

4 Results of the Spectral Reflectance Estimation

In order to evaluate the accuracy of the Wiener estimation
approach described in this paper, the results of both mea-
sured and estimated reflectances should be compared for
a certain variety of organic tissue. Here, the term “measured”
refers to the results obtained from direct radiometric
measurements provided by a spectrometer, while the term
“estimated” denotes the spectral reflectances that were
reconstructed from RGB camera responses by applying
the Wiener filter approach discussed above. The following
tissue samples have been chosen: a pig’s heart, tongue,
stomach, lung, liver, spleen, and kidney as well as a freshly
butchered beef steak representing muscle tissue.

For the measurements of the spectral reflectances, the
same measurement equipment and geometry, as shown in
Fig. 1, was used with the radiance measuring head of the
array spectrometer being placed on the top of the experimen-
tal box and connected to the fixture holding it in position. The
measuring aperturewas adjusted to 0.3 deg. The PWMvalues
of the six LED channels were optimized to simulate CIE D65
illuminant and we measured the resulting SPD lw reflected by
a calibrated white standard with known spectral reflectance
rw, which had been positioned right beneath the spectrometer
head, see Fig. 1(a). Afterward, the white standard was
removed from the box and a tissue sample was placed at
exactly the same position. We measured the light lsample

being reflected from its surface. The spectral reflectance of
the tissue sample can eventually be calculated by

EQ-TARGET;temp:intralink-;e009;63;410rsample ¼
lsample · rw

lw
; (9)

where the computation has to be performed wavelength-
wise.

Next, the measuring head was removed and replaced by
the Canon 750D without touching or moving the organic tis-
sue sample under inspection. Note that due to the specially
designed fixture, the optical axis of the camera and of the
spectrometer head could be adjusted to virtually lie exactly
on top of each other so that, in both cases, the same evalu-
ation point p0 given by the intersection of the optical axis
with the tissue surface could be chosen for direct measure-
ment and reconstruction.

During image capturing, the six different LED channels
were separately switch on and off one after the other and,
for each of these illumination conditions, an image of the
organic tissue sample was taken resulting in a total number
of six RGB raw images per sample. The images were stored
to disk and subsequently processed by applying the Wiener
filter matrix W to the extracted camera response vector c at
location p0, as described in Secs. 2 and 3, to obtain an esti-
mate r̂ for the actual spectral reflectance rsample. To guarantee
that the same spectral information reflected from the organic
tissue surface was used for both the direct measurement and
the estimation, the pixel area A surrounding p0, which is
needed to calculate the variances of the noise matrix and
the camera response vector (see Sec. 3), was limited to
the size of the measuring spot of the spectrometer projected
onto the surface of the tissue sample. This additional

constraint allows for a better and more meaningful compari-
son between the direct measurement and the performance of
the Wiener filter algorithm, since it eliminates in sufficiently
good approximation, the uncertainties attributed to the differ-
ent measuring geometries that otherwise would have had
a large impact and, therefore, enables the proper determina-
tion of the scaling factor δ in the current experimental setup.
Here, this factor was optimized in such a way that the spec-
tral reflectance of a known color sample measured at the
same position and under the same geometry as later the
organic tissue samples was reconstructed as good as pos-
sible. With the same calibrated white standard as mentioned
previously being chosen for this purpose, negligibly small
deviations of less than 0.5% at each wavelength were
observed between the known reflectance spectrum of the
white standard and its Wiener filter estimate obtained for
the optimal scaling factor δopt:, which was subsequently
used as a fixed value in the definition of the lighting-sensi-
tivity matrix Λ given by Eq. (5) and, therefore, in the final
Wiener filter matrix W to be applied to the camera response
vector c. Please note that with the scaling factor δ being de-
pendent on the measuring geometry, especially on the dis-
tance between tissue sample and illuminating light source,
a thorough precalibration similar to the one described here
must be provided by the manufacturers of such future MIS
devices in order to allow for a proper in-situ reflectance
estimation of organic tissue.

Finally, regarding the performance validation of the
Wiener filter ansatz for such a purpose, the measurement
protocol and experimental setup described in this and the
preceding section, respectively, were used to reconstruct
the spectral reflectances of several different organic tissue
samples from digital camera responses. Figure 4 summarizes
the obtained reconstruction results and compares them with
the corresponding measured reflectances derived from
Eq. (9). With the exception of the noisy part of the measured
spectra below 430 nm, pretty good agreement can be
observed for all samples. In Table 1, the degree of deviation
between the estimated and measured reflectances is
expressed in terms of the MSE metric and the CIEDE2000
color differences ΔE00.

42 Although the former is pretty
common in statistics to be used for comparative purposes
with a value of zero indicating perfect agreement, the latter
being the current CIE recommendation for computing small
color differences allows for drawing conclusions about
the similarity of the visual appearance of the estimation
and the measurement when hypothetically viewed under

Table 1 Overview of the observed degree of deviation between the
estimated and measured reflectance spectra of various organic tissue
samples in terms of MSE,ΔE00, andΔEchrom:

00
values. Due to the large

measurement noise below 430 nm, only signals at larger wavelengths
were considered for the calculations. In addition, reference illuminant
D65 was assumed for computing the color differences.

Steak Heart Liver Kidney Lung Stomach Tongue Spleen

ΔE00 2.10 0.74 1.63 1.50 4.08 1.32 1.07 3.66

ΔEchrom:
00

2.04 0.37 1.35 1.49 2.51 0.42 0.99 3.60

MSE×104 0.50 0.97 0.35 0.26 6.32 7.28 0.71 0.79
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identical illumination conditions, which in the present case
are assumed to be defined by reference illuminant D65. For
completeness, the chromatic-only differences ΔEchrom:

00 are
also tabulated.

As can be seen, relatively small MSE values ranging
between 7.28 × 10−4 and 2.61 × 10−5 with an average
of 2.15 × 10−4 are obtained for various tissue samples.
Compared to the MSE performance of the Wiener filter
approach reported by other researchers,22,38,43,44 where typ-
ical values were found to be of the order of ∼7 × 10−4,
this basically indicates good to excellent absolute agreement
between the estimated and measured reflectances. Further-
more, regarding the corresponding CIEDE2000 measure,
most of the tissue samples, with the exception of lung
and spleen, exhibit barely noticeable color differences
ranging between 0.74 and 2.10ΔE00 with an average of
1.39ΔE00 close to the empirically determined just noticable
limit defined by a ΔE00 of unity.

45 Again, these results indi-
cate excellent performance of the Wiener filter estimation
and conform with previous findings.44 Even the larger
color differences obtained for the tissue samples of lung
and spleen, which might be noticed also by unexperienced
observers45 (but only if they had the chance of comparing the
reconstructed and the original tissue samples side by side),
are not critical and still in an acceptable range because for the
intended application of the spectral reconstruction algorithm
in the present work, it is more important to reproduce the
general trend of the in-situ reflectance spectra, as shown
in Fig. 4, than to exactly match their theoretical visual
appearance. In other words, even though the estimated tissue
reflectances, which are used for optimizing the color correc-
tion matrix as described in the next section, show some kind
of offset in comparison to their ground truth, the resulting
linear color correction matrix—as we will see—still features
excellent performance with respect to reproducing the color
appearance of the original tissue samples.

5 Enhanced Color Correction for Video-Assisted
Surgery

5.1 Basic Method

With the in-situ spectral reflectances being known from spec-
tral reconstruction, an optimized color correction becomes
feasible. Following International Organization for Stan-
dardization (ISO) 17321-1:2012,46 which defines the recom-
mended standard method for the color characterization of
digital cameras, a two-step optimization process is applied
here. In the first step, an initial 3 × 3 color correction matrix
Minit is derived from a training set of k color patches, whose
spectral reflectances ri are known, where i ¼ 1; : : : ; k.

Assuming D65 reference illuminant, the resulting camera
responses ci for the i’th color patch can be calculated by
using Eq. (2), while the corresponding tristimulus values
ti ¼ ðtX;i; tY;i; tZ;iÞ

T are given by

EQ-TARGET;temp:intralink-;e010;326;708ti ¼ NODðlD65Þri; (10)

where O ¼ ðoTx ; o
T
y ; o

T
z Þ

T is a 3 × n dimensional matrix con-
taining the color matching functions ox, oy, and oz of the
2-deg standard observer as row vectors and lD65 gives the
SPD of the D65 referent illuminant. The normalization
constant N with

EQ-TARGET;temp:intralink-;e011;326;622N ¼
100

lTD65oy
(11)

is chosen in such a way that a perfectly diffusing, white color
patch (spectral reflectance equals unity for all wavelengths)
yields a tristimulus value tY of 100.

With this input, the initial color correction matrix is even-
tually be obtained by solving the linear least-mean-squares
optimization problem, which maps the camera responses
onto the corresponding tristimulus values. It can be shown
that the corresponding solution is given by Ref. 47:

EQ-TARGET;temp:intralink-;e012;326;490Minit ¼ TCTðCCTÞ−1; (12)

where T ¼ ðt1; t2; : : : ; tkÞ and C ¼ ðc1; c2; : : : ; ckÞ are 3 × k
dimensional matrices concatenating the tristimulus and cam-
era response values of the k color patches, respectively. As
recommended by the ISO standard, the training set used to
calculate Minit in the present work consisted of 18 colored
patches extracted from an X-Rite ColorChecker® Classic
and 21 neutral grey patches with their CIELAB correlate
of lightness L� ranging from 12 to 92 in approximately
equally spaced steps.

Once the initial color correction matrix is found, one can
proceed with the second step of optimization. According to
the ISO standard, a nonlinear optimization technique should
be applied in order to find the final color correction matrix,
which minimizes the average squared perceived color differ-
ence between the color corrected and the actual tristimulus
values of a second training set of color patches. For this pur-
pose, the ISO standard recommends to use eight different
color patches originally designated for calculating the
so-called sensitivity metamerism index (SMI), which, using
the framework of the CIE color rendition index,48 gives
a measure for the remaining colorimetric errors of digital
camera systems. Hence, the resulting optimization problem
can be formulated as follows:

EQ-TARGET;temp:intralink-;e013;63;192MSMI ¼ argmin
MSMI

�
1

8

X8

i¼1

fΔE00½L
�a�b�ðMSMIcSMI;iÞ; L

�a�b�ðtSMI;iÞ�g
2

�

; (13)

subject to MSMI ¼ Minit gives the initial condition and

EQ-TARGET;temp:intralink-;sec5.1;63;130MSMI · ð255;255;255ÞT ¼ ð95.047;100;108.883ÞT ;

where the second constraint has been introduced to guarantee
the white point preservation to reference illuminant D65 and
L�a�b�ð: : : Þ denotes the transformation of the tristimulus values

to CIELAB color space using the formulae given in Ref. 49.
Again, the CIEDE2000 color difference formulaΔE00 is applied
here.

By replacing the standard SMI colors in Eq. (13) with
the estimated in-situ reflectance spectra of Fig. 4, a second
color correction matrixMopt: can be calculated, which is now
specifically optimized for accurately reproducing the color
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properties of the organic tissue under inspection. In order to
compare the performance of this more sophisticated color
correction with the performance of the standard method,
the eight original tissue samples of Fig. 4 have been chosen
for testing with the corresponding results being reported in
the following section.

5.2 Results of the Optimized Color Correction and
Further Implementation Notes

Assuming D65 reference illuminant, the resulting
CIEDE2000 color differences ΔE00 between the color cor-
rected and the actual tristimulus values of the eight original
tissue samples selected for performance validation can be
calculated using either of the two color correction matrices.
The corresponding distributions of the obtained color
differences are eventually compared and visualized in Fig. 5.

As can be seen, the application of the specifically opti-
mized matrix Mopt: for performing the color correction
leads to heavily reduced color differences ΔE00 for all
eight tissue samples when compared to the application
of the standard matrix MSMI. While the former shows an
average color difference of only 0.42ΔE00, the latter
performs much worse giving an average color difference of
1.22ΔE00, which is approximately three times larger. By
making use of a two-sample t-test for unequal variances,50,51

whose application requirements have been tested using
the Shapiro–Wilk test52–54 (checking for normality) in com-
bination with the Brown–Forsythe extension of Levene’s
test55 (checking for equal variances), the significance of
the observed improvement for the optimized color correc-
tion matrix Mopt: could clearly be confirmed (T ¼ 4.42,
p ¼ 0.0016, α ¼ 0.05) showing a large effect size d56 of
2.21. Hence, it can be concluded that especially in cases

where a proper distinction of different kinds of tissue is nec-
essary, significant enhancement in color correction by a fac-
tor of three might be crucial for the success of a surgery.
Furthermore, with a demand for improved color reproduction
properties of digital systems being reported for such kind of
applications (see Sec. 1), these results clearly emphasize the
importance of our in-situ approach for modern MIS surgery.
In the attempt of providing a better visualization of the ben-
efit of our proposed method, Fig. 6 exemplarily compares for
the organic samples of lung and muscle tissue the respective
color image representations of the debayered raw image data
as being extracted from the Canon 750D imaging device
before color correction and the color corrected image data
obtained by applying Mopt: to the raw camera responses
at each pixel location. As can be seen, the image quality
on the right-hand side of Fig. 6 associated with the optimized
color correction seems to be much improved compared to
what raw image processing would deliver: it is not just
that the colors and tissue structures appear to be much
more realistic, the color corrected images also provide
more perceived depth and visual information than their
uncorrected counterparts. Please note that in all cases, the
same white balance was applied.

In practice, the whole process of recovering the true color
information from captured RGB images can be implemented
to work reliably and without any noticeable disruption of the
surgical workflow simply by adopting a short flashing
sequence of the different LED channels combined with
a fast image capturing to create the necessary input data
for running the Wiener filter estimation (see Sec. 3).
Including the subsequent reconstruction of the targeted tissue
reflectance spectra from the RGB camera responses, this can
principally be realized to be accomplished within a few hun-
dred milliseconds. With the application of the Wiener filter
approach being basically given by a simple and fast-perform-
ing matrix multiplication [see Eq. (3)], the limiting factor in
this context is the integration time of the actual imaging sys-
tem. Assuming, for example, an MIS device which offers
60 fps, it would only take 100 ms for the flashing sequence
and image capturing to be finished in case that the device
light source consists of six different individual LED channels
similar to the ones used in the present study. Hence, it can be
concluded that the higher the frame rate the faster the flash-
ing sequence and, therefore, the spectral reconstruction can
be performed.

Regarding the issue of explicitly selecting the tissue sam-
ples, which are intended for being spectrally reconstructed,
two complementary modes of operation are favored during a
surgery.7 First, the surgeon should be given the option to run
an auto-tuned optimization of the color correction applied to
the digital reproduction of the perceived surgical field. For
this purpose, a certain number of arbitrary yet suitable
pixel positions has to be selected automatically by the
MIS device (the corresponding algorithm still needs to be
developed) in order to perform the reflectance estimation
of meaningful in-situ tissue samples that can eventually
be used to enhance the color reproduction of the digital sys-
tem following the methodology described above. Second,
they should have the option to define the pixel positions
on their own by using an appropriate, device-dependent
input method. Besides allowing for an improved device
color correction, which explicitly considers the spectral

Fig. 5 Illustration of the CIEDE2000 color differences ΔE00 between
the color corrected and the actual tristimulus values of the original tis-
sue samples shown in Fig. 4. The results of the standard color cor-
rection matrixMSMI are compared to those obtained for the specifically
optimized matrix Mopt:. As further emphasized by the corresponding
box plots shown in the inset, the latter gives much smaller color
differences for all tissue samples indicating superior color reproduc-
tion properties. With the statistical comparison of both methods show-
ing a p value of 0.0016 and an effect size d of 2.21, a significant
enhancement of the color correction for video-assisted surgery
based on in-situ reflectance estimation could clearly be confirmed.

Journal of Electronic Imaging 053012-8 Sep∕Oct 2018 • Vol. 27(5)

Babilon et al.: Spectral reflectance estimation of organic tissue for improved color correction. . .

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Electronic-Imaging on 09 Aug 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



characteristics of (critical) tissue samples judiciously
selected by the surgeon, it also enables them to add further
information and tissue metadata for archiving and teaching
purposes. As a long-term goal, this kind of data in combi-
nation with the corresponding reconstructed reflectance
spectra and, for example, an intelligent machine-learning
algorithm could additionally be used (i) for automated tissue
recognition as a support of the surgical workflow and (ii) to
continuously extend and customize the database applied to
train the Wiener filter leading to an improved performance of
the MIS device for specific applications.

In any case, after having defined a certain number of
device pixel positions (either automatically by the system
or manually by the surgeon), the flashing sequence for ena-
bling the reflectance estimation of the corresponding tissue
samples must only be triggered once, i.e., with the exception
of this quite short period of time, where the individual LED
channels are switched on and off one after the other, the real-
time image capturing is not affected by the applied Wiener
filter estimation. The subsequent optimization of the color
correction matrix can efficiently be performed on the micro-
controller or CPU of the MIS device, which takes another
few milliseconds and can easily be decoupled from the con-
tinuous image capturing so that like in the case of the Wiener
filter estimation, this parallelly performed computation has
no negative effect on the image quality, the contrast, or
the actual imaging time of the MIS device. On the contrary,
once the optimized color correction matrix has been calcu-
lated, it can be used to simply replace its standard counterpart
in the imaging processing pipeline eventually leading to
superior image quality and color reproduction properties

as it has been shown previously in this work. However, it
should again be noted here that the final implementation
of the proposed method into a real video-assisted MIS device
is still pending and, therefore, might entail further problems
that one is not aware of yet.

6 Conclusion and Outlook

In this paper, an approach of optimizing the color reproduc-
tion properties of modern MIS devices based on the estima-
tion of in-situ spectral reflectances applying the Wiener filter
approach was proposed. Even though the Wiener filtering is
widely used in image processing as a common way of reduc-
ing noise and image blurring21,57–59 as well as in color sci-
ence as a method for estimating camera sensitivities39 and
object reflectances from camera response data,22–26,37,38,40

its usage described in the current paper is the first time
that the results of such an estimation were adopted for the
in-situ enhancement of the color reproduction properties
of an imaging system based on the context-specific optimi-
zation of the corresponding color correction matrix for sur-
gical applications. From this perspective, the current work
should be considered as a first proof-of-concept, which,
nonetheless, already clearly emphasizes the potential bene-
fits resulting from the newly proposed method when being
implemented into modern video-assisted MIS devices. In
addition, it gives a detailed overview on how such an imple-
mentation can efficiently be performed and, at the same time,
highlights further possible advantages such a system would
offer like, for example, automated tissue recognition and
true color archiving. Hence, it can be concluded that the
present paper provides a significant contribution for future

Fig. 6 Comparison between the exemplaric color image representations of the debayered raw image
data (a and c) and the color corrected image data using Mopt: (b and d) for the organic tissue samples
of lung (upper row) and muscle (lower row). The blue square-shaped targets define the measurement
points at various locations on the surface of the respective tissue sample. Please note that in all cases,
the same white balance was applied.
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developments on the topic of video-assisted MIS surgery
giving guidance for researchers and manufacturers working
in this field on how to achieve superior image quality and
additional system benefits.

Lacking an appropriate MIS device and the opportunity to
test our approach under realistic conditions, an artificial
abdomen/thorax was constructed to simulate the surgical
workflow in the laboratory. While an array spectrometer con-
nected to a radiance measuring head was used for the direct
measurements of the spectral reflectances of test samples
placed inside the thorax, the necessary input data for the
Wiener filter to perform an accurate reflectance estimation
were provided by a combination of a commercially available
SLR digital camera and a customized six-channel LED light
source. With this experimental setup, good to excellent
agreement between the direct measurements and the reflec-
tance estimation could be observed for a variety of different
organic tissue samples.

Once the in-situ reflectance spectra were known from
spectral reconstruction—at least to a sufficiently good
approximation—it could be shown that an optimized color
correction was feasible. Based on the results of the spectral
reflectance estimation, a variation of the ISO standard
method originally designated for the color characterization
of digital cameras was applied here to derive a more sophis-
ticated color correction matrix specifically optimized for
accurately reproducing the color properties of the organic tis-
sue samples under inspection. Statistical analysis eventually
confirmed a significant enhancement in color reproduction
when the proposed method is applied compared to what
could be achieved by the standard procedure of colorimetric
characterization. On average, three times smaller color
differences could be observed, which, in a surgical applica-
tion, may lead to less tissue damage and an increase in safety
for the patient, especially in cases where a proper distinction
of different kinds of tissue might be crucial for the success of
a surgery.

Future research intentions mainly aim for porting, testing,
and optimizing our approach on a real MIS device. In this
context, it should be analyzed which LED channels are indis-
pensable and which can be considered to be redundant in
order to provide sufficiently good reconstruction results
for achieving significantly enhanced color reproduction
properties. So far, the LED selection in the current work
was more or less arbitrary with the sole objective of being
able to imitate reference illuminant D65 as good as possible.
Even though verification is still pending, the blue LED
channel in particular is supposed to be superfluous for the
intended application of reconstructing the spectral reflec-
tance properties of human tissue and could most likely be
omitted in a prospective implementation.

Since the reported results so far were only obtained for
ex vivo animal tissue samples, a further research question
that still remained unanswered but should be addressed in
the near future is whether the Wiener filter-based approach
implemented for the current work is also suitable to be
used for applications involving in vivo real human tissue.
Due to biological similarity, it is indeed assumed that com-
parably excellent results could also be obtained in these
cases—nevertheless, proof is still necessary and can only be
provided after the proposed method has been successfully
ported to a feature-complete MIS test device, which, as

stated at the beginning of the last paragraph, should therefore
be the main focus of further considerations.

Appendix

As stated in Sec. 2, the Wiener filter matrix W is intended to
minimize the MSE

EQ-TARGET;temp:intralink-;e014;326;667e ¼ hðr − r̂ÞTðr − r̂Þi (14)

between the actual r and the estimated r̂ reflectance spec-
trum, where

�
•

�
denotes the expectation value operator.

By applying Eq. (3), this MSE can be rewritten as follows:
EQ-TARGET;temp:intralink-;e015;326;603

e ¼ hrTr − rT r̂ − r̂Trþ r̂T r̂i

¼ hrTri − hrT r̂i − hr̂Tri þ hr̂T r̂i

¼ hrTri − hrTWci − hcTWTri þ hcTWTWci; (15)

where the camera response vector c is given by Eq. (2) and
consists of a combined lighting-sensitivity matrix Λ applied
to the actual reflectance and an additive noise term n.

Mathematically, the task of finding a minimum of
Eq. (15) with respect to W can be performed by setting
its corresponding partial derivative to zero, i.e.,

EQ-TARGET;temp:intralink-;e016;326;470

∂e

∂W
¼ −2hrcTi þ 2WhccTi ¼ 0; (16)

where the following matrix expressions were used:60

EQ-TARGET;temp:intralink-;e017;326;418

∂aTXb

∂X
¼ abT ; (17)

EQ-TARGET;temp:intralink-;e018;326;376

∂aTXTb

∂X
¼ baT ; (18)

EQ-TARGET;temp:intralink-;e019;326;339

∂aTXTXb

∂X
¼ XðabT þ baTÞ: (19)

Solving Eq. (16) for the Wiener filter matrix gives
EQ-TARGET;temp:intralink-;e020;326;290

W ¼ hrcTihccTi−1

¼
hrðrTΛT þ nTÞi

hðΛrþ nÞðrTΛT þ nTÞi

¼
hrrTiΛT þ hrnTi

ΛhrrTiΛT þ hnnTi þ ΛhrnTi þ hnrTiΛT
: (20)

Under the assumption of dealing with random noise of
zero mean and variance σ, which is independent of the
spectral reflectance, the subsequent equations hold for the
respective expectation values:

EQ-TARGET;temp:intralink-;e021;326;155hrnTi ¼ hri hnTi
|ffl{zffl}

¼ 0

¼ 0; (21)

EQ-TARGET;temp:intralink-;e022;326;102hnrTi ¼ hni
|{z}

¼ 0

hrTi ¼ 0: (22)
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Hence, Eq. (20) simplifies to

EQ-TARGET;temp:intralink-;e023;63;741W ¼ KrrΛ
TðΛKrrΛ

T þKnnÞ
−1; (23)

giving the final form of the Wiener filter matrix, where
Krr ¼ hrrTi and Knn ¼ hnnTi represent the autocorrelation
matrices of the reflectance spectra and the noise vector,
respectively.
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