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ABSTRACT
Relevance feedback is a well established and effective framework
for narrowing down the gap between low-level visual features and
high-level semantic concepts in content-based image retrieval. In
most of traditional implementations of relevance feedback, a dis-
tance metric or a classifier is usually learned from user’s provided
negative and positive examples. However, due to the limitation
of the user’s feedbacks and the high dimensionality of the feature
space, one is often confront with the issue of thecurse of the dimen-
sionality. Recently, several researchers have considered manifold
ways to address this issue, such as Locality Preserving Projections,
Augmented Relation Embedding, and Semantic Subspace Projec-
tion. In this paper, by using techniques from spectral graph embed-
ding and regression, we propose a unified framework, calledspec-
tral regression, for learning an image subspace. This framework
facilitates the analysis of the differences and connections between
the algorithms mentioned above. And more crucially, it provides
much faster computation and therefore makes the retrieval system
capable of responding to the user’s query more efficiently.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval—Relevance feedback

General Terms
Algorithms, Performance, Theory

Keywords
Image Retrieval, Relevance Feedback, Dimensionality Reduction,
Manifold Learning, Subspace Learning, Spectral Regression

1. INTRODUCTION
Content-Based Image Retrieval (CBIR) has attracted substantial

interests as the volumes of image data have grown rapidly during
the last decade [9, 10, 15, 21, 22, 27, 28]. It is well known that one
of the most challenging problems in CBIR is to bridge the semantic
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gap between low-level visual features and high-level semantic con-
cepts. One feasible way to address this problem is through learning
from the user’s relevance feedback [21].

In real world image retrieval systems, the relevance feedbacks
provided by the user is often limited, typically less than 20, while
the dimensionality of the image space can range from several hun-
dreds to thousands. One of the crucial problems encountered in ap-
plying statistical techniques to image retrieval has been called the
“curse of dimensionality”. Procedures that are analytically or com-
putationally manageable in low dimensional spaces can become
completely impractical in a space of several hundreds or thousands
dimensions [8]. Thus, various techniques have been developed for
reducing the dimensionality of the feature space in the hope of ob-
taining a more manageable problem. The most popular dimension-
ality reduction (or, subspace learning) algorithms includes Princi-
pal Component Analysis (PCA) and Linear Discriminant Analysis
(LDA). PCA projects the data points into a lower dimensional sub-
space in which the sample variance is maximized while LDA finds
projective directions by maximizing the ratio of between-class scat-
ter to within-class scatter. Both PCA and LDA have been widely
applied to image retrieval, face recognition, and pattern recogni-
tion. However, PCA is unsupervised thus cannot utilize the rele-
vance feedback provided by the user. LDA is supervised, but it is
hard to learn a function with good generalization capability with a
small number of labeled examples (feedbacks) [8].

To this end, various researchers have considered the dimension-
ality reduction problem in semi-supervised situation. With both un-
labeled and labeled images (relevance feedbacks), one hopes to find
a better subspace for image representation. In this subspace, the se-
mantic structure of the image data can be better revealed. The state-
of-the-art semi-supervised subspace learning algorithms in CBIR
are incremental Locality Preserving Projection (LPP) [10], Aug-
mented Relation Embedding (ARE) [15] and Semantic Subspace
Projection (SSP) [28]. All of these algorithms consider the case
when the images live on or close to a submanifold of the ambi-
ent space. They estimate the geometrical and discriminant prop-
erties of the submanifold from random points lying on this un-
known submanifold (both labeled and unlabeled). The effective-
ness of these approaches have been verified in several experiments
[10, 15, 28]. However, it is not clear what is the intrinsic relation
between these algorithms although they have the same manifold
assumption. Moreover, the computation of these methods involves
eigen-decomposition of dense matrices which is expensive in both
time and memory. It is difficult to apply these approaches to very
high dimensional data of large size.

In this paper, we propose a novel subspace learning framework,
calledSpectral Regression(SR), which unifies many existing manifold-
based subspace learning algorithms and provides an efficient way



to solve the corresponding optimization problems. This framework
provides with us a nice platform to analyze the difference and re-
lationship between various kinds of algorithms. Moreover, it can
also be used to design news algorithms. Based on this framework,
we develop a novel semi-supervised subspace learning algorithm,
SR, which is shown to be able to make efficient use of both labeled
and unlabeled points to discover the intrinsic discriminant structure
in the data. The experimental results validate that the new method
achieves a significantly higher precision for image retrieval. The
specific contributions of this paper include:

• It provides a unified graph embedding analysis of three state-
of-the-art semi-supervised subspace learning algorithms: LPP,
ARE, and SSP (Section 2).

• It proposes a novel spectral regression approach to solve the
optimization problem of the linear graph embedding, which
reduces the cubic-time complexity to linear-time complexity
(Section 3).

• It develops a novel semi-supervised subspace learning algo-
rithm SR in this framework, which is shown to be able to
make efficient use of both labeled and unlabeled points to
discover the intrinsic discriminant structure in the data (Sec-
tion 3).

• We have performed extensive experimental comparisons of
the four algorithms and provided the explanation of different
behaviors of these algorithms based on the SR framework
(Section 5).

We summarize our findings and discuss extensions to the current
work in Section 6, which concludes the paper.

2. GRAPH EMBEDDING VIEW OF SUBSPACE
LEARNING

In this Section, we provide a general framework of analysis for
the existing subspace learning algorithms from the graph embed-
ding viewpoint. Particularly, the computational complexities of
these algorithms can be well studied within this framework.

2.1 Graph based Subspace Learning
Givenm samples{xi}

m
i=1 ⊂ R

n, dimensionality reduction (or,
subspace learning) aims at finding{zi}

m
i=1 ⊂ R

d, d ≪ n, where
zi can “represent”xi. In the past decades, many algorithms, either
supervised or unsupervised, have been proposed to solve this prob-
lem. Despite the different motivations of these algorithms, they can
be nicely interpreted in a generalgraph embeddingframework.

Given a graphG with m vertices, each representing a data point,
let W be a symmetricm × m matrix with Wij having the weight
of the edge joining verticesi andj. TheG andW can be defined
to characterize certain statistical or geometric properties of the data
set. The purpose of graph embedding is to represent each vertex
of a graph as a low dimensional vector that preserves similarities
between the vertex pairs, where similarity is measured by the edge
weight.

Let y = [y1, y2, · · · , ym]T be the map from the graph to the real
line. The optimaly tries to minimize

∑

i,j

(yi − yj)
2Wij

under appropriate constraint. This objective function incurs a heavy
penalty if neighboring verticesi andj are mapped far apart. There-
fore, minimizing it is an attempt to ensure that if verticesi andj

are “close” thenyi andyj are close as well [7]. With some simple
algebraic formulations, we have

∑

i,j

(yi − yj)
2Wij = 2yT Ly,

whereL = D −W is thegraph Laplacian[6] andD is a diagonal
matrix whose entries are column (or row, sinceW is symmetric)
sums ofW , Dii =

∑
j
Wji. Finally, the minimization problem

reduces to find

y∗ = arg min
yT Dy=1

yT Ly = arg min
yT Ly
yT Dy

= arg max
yT Wy
yT Dy

, (1)

where the constraintyT Dy = 1 removes an arbitrary scaling fac-
tor in the embedding. Many recently proposed manifold learning
algorithms, like ISOAMP [26], Laplacian Eigenmap [2], Locally
Linear Embedding [20], can be interpreted in this framework with
different choices ofW . The two matricesW andD play the essen-
tial role in this graph embedding approach. The choices of these
two graph matrices can be very flexible. In later discussion, we
use GE(W, D) to denote the graph embedding with maximization
problem ofmax(yT Wy)/(yT Dy).

The graph embedding approach described above only provides
the mappings for the graph vertices in the training set. For some ap-
plications, a mapping for all samples, including new test samples,
is required. If we choose a linear function,i.e., yi = f(xi) = aT xi,
we havey = XT a whereX = [x1, · · · , xm] ∈ R

n×m. Eqn. (1)
can be rewritten as:

a∗ = arg max
yT Wy
yT Dy

= arg max
aT XWXT a
aT XDXT a

.

The optimala’s are the eigenvectors corresponding to the maxi-
mum eigenvalue of eigen-problem:

XWXT a = λXDXT a.

This approach is called linear extension of graph embedding. With
different choices of affinity matrixW and constraint matrixD, this
framework will lead to many popular linear dimensionality reduc-
tion algorithms,e.g., Linear Discriminant Analysis [4] and Locality
Preserving Projection [11].

In the following, we will analyze in detail the three state-of-the-
art semi-supervised subspace learning algorithms in CBIR. They
are incremental Locality Preserving Projection (LPP) [10], Aug-
mented Relation Embedding (ARE) [15], and Semantic Subspace
Projection (SSP) [28]. We will show that all of these three algo-
rithms are linear extensions of graph embedding.

All the three algorithms use ak-nearest neighbors graph to model
the local geometric structure of the data. Let the corresponding
weight matrix beW ∈ R

m×m, defined by

Wij =

{
1, if xi ∈ Nk(xj) or xj ∈ Nk(xi)
0, otherwise.

(2)

whereNk(xi) denotes the set ofk nearest neighbors ofxi.

LPP
With the user-provided feedbacks (label information), the incre-
mental LPP updates thek-nearest neighbors graphW as follows:

W LPP
ij =





1, if xi andxj share the same label,
0, if xi andxj have different labels,
Wij , otherwise.

(3)

LPP then finds the optimal projection directions as:

a∗ = arg min
aT XLLPP XT a
aT XDLPP XT a

, (4)



whereDLPP is a diagonal matrix whose entries are column sums
(or row sums, sinceW LPP is symmetric) ofW LPP andLLPP =
DLPP −W LPP is the graph Laplacian. It is easy to verify that the
objective function of LPP has the following equivalent variations:

a∗ = arg max
aT XW LPP XT a
aT XDLPP XT a

= arg max
aT XW LPP XT a
aT XLLPP XT a

.

LPP is the linear extension of graph embedding problem
GE(W LPP , DLPP ) or GE(W LPP , LLPP ).

ARE
Different from LPP, ARE uses an additional graph1 to encode the
label information provided by user’s relevance feedbacks. LetF+

denote the set of images in the user’s feedback that are relevant
to the query, andF− denote the set of irrelevant images. ARE
constructs the label graph as:

W ARE
ij =





−γ, if xi ∈ F+ andxj ∈ F+,
1, if xi andxj have different labels,
0, otherwise.

(5)

whereγ is a parameter used to take care of the possibility of unbal-
anced feedback. ARE then finds the optimal projection directions
as:

a∗ = arg max
aT XLAREXT a

aT XLXT a
, (6)

whereLARE andL are the graph Laplacians ofW ARE andW in
Eqn. (2) respectively. Clearly, ARE is the linear extension of graph
embedding problem GE(LARE , L).

SSP
Similar to ARE, SSP also uses an additional graph to encode the
label information:

W SSP
ij =

{
1, if xi andxj have different labels,
0, otherwise.

(7)

SSP finds the optimal projection directions as:

a∗ = arg max
aT SDissa

aT SGSSima
, (8)

where

SDiss =
∑

i,j

(mi − mj)(mi − mj)
T W SSP

ij

SGSSim =
∑

i,j

(xi − xj)(xi − xj)
T W ij

W = D−1W (W is defined in Eqn. (3))

mi =
∑

j

xjW ij

Let M = [m1, · · · , mm]. It is easy to check thatM = XW
T

.
SinceW SSP is symmetric, we have

SDiss =
∑

i,j

(mi − mj)(mi − mj)
T W SSP

ij

= 2MDSSP MT − 2MW SSP MT

= 2XW
T
LSSP WXT

1The original ARE paper [15] uses two additional graphs. These
two graphs can be equivalently unified into one as shown in this
paper.

W is non-symmetric. LetD andD
′

denote the diagonal matrices
whose entries are row sums and column sums ofW respectively.

DefineW̃ = W + W
T

which is symmetric and̃D be the diagonal
matrices whose entries are row (or column) sumsW̃ . It is easy to
check thatD̃ = D + D

′

. We have

SGSSim =
∑

i,j

(xi − xj)(xi − xj)
T W ij

= XDXT − XWXT + XD
′

XT − XW
T
XT

= X(D̃ − W̃ )XT

= XL̃XT

whereL̃ is the graph Laplacian of̃W .
The objective function of SSP in Eqn. (8) can be rewritten as

a∗ = arg max
aT SDissa

aT SGSSima
= arg max

aT XW
T
LSSP WXT a

aT XL̃XT a

It is now clear that SSP is the linear extension of graph embedding

problem GE(W
T
LSSP W, L̃).

The above analysis shows that all the three subspace learning
algorithms are linear extensions of the graph embedding approach

arg max
yT By
yT Cy

⇒ arg max
aT XBXT a
aT XCXT a

(9)

with different choices of affinity graphB and constraint graphC.
The optimala’s (projection functions) are the eigenvectors corre-
sponding to the maximum eigenvalue of eigen-problem:

XBXT a = λXCXT a. (10)

2.2 Computational Analysis
To get a stable solution of the eigen-problem in Eqn. (10), the

matricesXCXT is required to be non-singular [24] which is not
true when the number of features is larger than the number of sam-
ples. The Singular Value Decomposition (SVD) can be used to
solve this problem. Supposerank(X) = r, the SVD decomposi-
tion of X is

X = UΣV T (11)

whereΣ = diag(σ1, · · · , σr) andσ1 ≥ · · · ≥ σr > 0 are the
singular values ofX, U ∈ R

n×r, V =∈ R
m×r and UT U =

V T V = I. Let X̃ = UT X = ΣV T andb = UT a, we have

aT XBXT a = aT UΣV T BV ΣUT a = bT X̃BX̃T b

and

aT XCXT a = aT UΣV T CV ΣUT a = bT X̃CX̃T b

Now, the objective function in (9) can be rewritten as:

b∗ = arg max
bT X̃BX̃T b

bT X̃CX̃T b
,

and the optimalb’s are the eigenvectors corresponding to the max-
imum eigenvalues of eigen-problem:

X̃BX̃T b = λX̃CX̃T b. (12)

It is clear thatX̃CX̃T is nonsingular and the above eigen-problem
can be stably solved. After we getb∗, thea∗ can be obtained by

a∗ = Ub∗. (13)



The above SVD approach has been widely used in many subspace
learning algorithms (e.g., LDA [4] and LPP [12]) to solve the sin-
gularity problem. For clarity, we name this approach as SVD+LGE
(Linear Graph Embedding). The LPP, ARE and SSP can be treated
as different instances of SVD+LGE.

Now let us analyze the computational complexity of SVD+LGE.
We consider the case that the number of features (n) is larger than
the number of samples (m) and use the termflam [23], a com-
pound operation consisting of one addition and one multiplication,
to present operation counts.

All these algorithms need to construct thek-nearest neighbor
graph in Eqn. (2). The cost is around1

2
m2n + 2mn + m2 log m

flam. 1
2
m2n + 2mn is used to calculate the pairwise distances and

m2 log m is used form times sorting2. The most efficient algo-
rithm to calculate the SVD decomposition requires3

2
m2n + 9

2
m3

flam [24]. Whenm < n, the rank ofX is usually ofm. Thus,
X̃ is square matrix of sizem × m. The calculation of matrices
X̃BX̃T and X̃CX̃T requires2m3 flam. The eigen-problem in
Eqn. (12) requires9

2
m3 flam [24]. Overall, the time complexity of

these subspace learning algorithms measured by flam is

m2(2n + log m) + 11m3,

which is cubic-time complexity with respect tom. For large scale
high dimensional data, these algorithms are unlikely to be applied.

3. SPECTRAL REGRESSION FRAMEWORK
FOR SUBSPACE LEARNING

Although those semi-supervised subspace learning algorithms
are effective in relevance feedback image retrieval, the high compu-
tational cost restricts them to be applied to large scale high dimen-
sional data sets. In this section, we describe our approach which
can overcome this difficulty.

3.1 Spectral Regression
In order to solve the this eigen-problem in Eqn. (10) efficiently,

we use the following theorem:

THEOREM 1. Lety be the eigenvector of eigen-problem

By = λCy (14)

with eigenvalueλ. If XT a = y, thena is the eigenvector of eigen-
problem in Eqn. (10) with the same eigenvalueλ.

PROOF. We haveBy = λCy. At the left side of Eqn. (10),
replaceXT a by y, we have

XBXT a = XBy = XλCy = λXCy = λXCXT a

Thus,a is the eigenvector of eigen-problem Eqn. (10) with the same
eigenvalueλ.

Theorem (1) shows that instead of solving the eigen-problem
Eqn. (10), the linear embedding functions can be acquired through
two steps:

1. Solve the eigen-problem in Eqn. (14) to gety.

2. Find a which satisfiesXT a = y. In reality, sucha might
not exist. A possible way is to finda which can best fit the
equation in the least squares sense:

a = arg min
a

m∑

i=1

(aT xi − yi)
2 (15)

2There exist more efficient algorithms to obtain thek-nearest
neighbors in stead of sorting them numbers. We will not discuss
this since it is beyond the scope of this paper.

whereyi is thei-th element ofy.

The advantages of this two-step approach are as follows:

1. BothB andC are sparse matrices and the topc eigenvectors
of eigen-problem in Eqn. (14) can be efficiently calculated
with Lanczos algorithms [24].

2. The technique to solve the least square problem is already
matured [23] and there exist many efficient iterative algo-
rithms (e.g., LSQR [18]) that can handle very large scale least
square problems.

In the situation that the number of samples is smaller than the
number of features, the minimization problem (15) isill posed. We
may have infinitely many solutions for the linear equations system
XT a = y (the system is underdetermined). The most popular way
to solve this problem is to impose a penalty on the norm ofa:

a = arg min
a

(
m∑

i=1

(
aT xi − yi

)2
+ α‖a‖2

)
(16)

This is called regularization and is well studied in statistics. The
regularized least square is also called ridge regression [8]. The
α ≥ 0 is a parameter to control the amounts of shrinkage. Now we
can see the third advantage of the two-step approach:

3 Since the regression was used as a building block, the regu-
larization techniques can be easily incorporated and produce
more stable and meaningful solutions, especially when there
exist a large number of features [8].

The two-step approach essentially performs regression after the
spectral analysis of the graph. Therefor, we name this new ap-
proachSpectral Regression(SR) [3].

3.2 Theoretical Analysis
The regularized least squares problem of SR in Eqn. (16) can be

rewritten in the matrix form as:

a = arg min
a

(
(XT a− y)T (XT a− y) + αaT a

)
. (17)

Requiring the derivative of right side with respect toa vanish, we
get

(XXT + αI)a = Xy

⇒ a = (XXT + αI)−1Xy
(18)

Whenα > 0, this regularized solution will not satisfy the linear
equations systemXT a = y anda will not be the eigenvector of
eigen-problem in Eqn. (10). It is interesting and important to see
when SR gives the exact solutions of eigen-problem (10). Specifi-
cally, we have the following theorem:

THEOREM 2. Supposey is the eigenvector of eigen-problem in
Eqn. (14), ify is in the space spanned by row vectors ofX, the
corresponding projective functiona of SR calculated in Eqn. (18)
will be the eigenvector of eigen-problem in Eqn. (10) asα deceases
to zero.

PROOF. See Appendix A.

When the the number of features is larger than the number of
samples, the sample vectors are usually linearly independent,i.e.,
rank(X) = m. In this case, we will have a stronger conclusion
for SR which is shown in the following Corollary.



Table 1: Computational complexity of SVD+LGE and SR (operation counts, flam [23])
CW CSV D CDEigen CAll

SVD+LGE
m2( 1

2
n + log m)

3
2
m2n + 9

2
m3 13

2
m3 m2(2n + log m) + 11m3

CSEigen CRLS

SR dp1m(k + 8) 2dp2mn m2( 1
2
n + log m) + dm(p1 + 2p2n)

CW : Complexity of the graph construction. m: the number of data samples.
CSV D: Complexity of SVD decomposition. n: the number of features. We consider the case thatn > m
CDEigen: Complexity of dense eigen-problem. k: the number of nearest neighbors.
CSEigen: Complexity of sparse eigen-problem. d: the number of dimensions calculated in SR.
CRLS : Complexity of regularized least squares. p1: the number of iterations in Lanczos.
CAll: Complexity of the whole algorithm. p2: the number of iterations in LSQR.

COROLLARY 3. If the sample vectors are linearly independent,
i.e., rank(X) = m, all the projective functions in SR are the eigen-
vectors of eigen-problem in Eqn. (10) asα deceases to zero. These
solutions are identical to those of SVD+LGE in Eqn. (13).

PROOF. See Appendix B.

3.3 Computational Complexity Analysis
Besides constructing thek-nearest neighbor graph, SR needs to

solve a sparse eigen-problem in Eqn. (14) and a regularized least
squares problem in Eqn. (16).

Thek-nearest neighbor matrixW in Eqn. (2) is sparse and there
is aroundk non-zero elements in each row. Both matricesB and
C are developed onW and they are also sparse (withk non-zero
elements in each row). The Lanczos algorithm can be used to iter-
atively compute the firstd eigenvectors withindp1m(k + 8) flam,
wherep1 is the number of iterations3 in Lanczos [24].

The regularized least squares problem in Eqn. (16) can be effi-
ciently solved by the iterative algorithm LSQR [18]. In each iter-
ation, LSQR needs to compute two matrix-vector products in the
form of Xp andXT q. The remaining work load of LSQR in each
iteration is3m+5n flam [17]. Thus, the time cost of LSQR in each
iteration is2mn + 3m + 5n. If LSQR stops afterp2 iterations4,
the time cost isp2(2mn + 3m + 5n). Finally, the total time cost
for d projective functions isdp2(2mn + 3m + 5n).

We summarize our complexity analysis results in Table 1 and
only show the dominant part of the time cost for simplicity. It is
clear to see the computational advantage of SR over traditional
SVD+LGE, especially for the large scale high dimensional data
(with largem andn). Please refer our technical report [3][4] for
more detailed analysis.

3.4 An Algorithm Instance
SR provides an efficient framework for graph embedding prob-

lems. With the different choices of affinity graphB and constraint
graphC as discussed in Section (2), SR can efficiently calculate
the solutions of LPP, ARE and SSP. Moreover, the spectral regres-
sion framework provides us a powerful platform to design new al-
gorithms. In this subsection, we describe an algorithm instance
developed under this framework, which will then be tested in the
later experiments. For simplicity, we will name this algorithm as
SR. In the remaining part of the paper, SR will be referred to this
particular algorithm if there is no specific description.

SR is a semi-supervised subspace learning algorithm. Given a
labeled set{xi}

l
i=1 and an unlabeled set{xi}

m
i=l+1. These sam-

ples belong toc classes and letlr be the number of labeled samples
in ther-th class (

∑c

r=1 lr = l). Let X = [x1, · · · , xm]. Without
3Lanczos algorithm converges very fast, 20 iterations are usually
enough to achieve a satisfactory precision [24].
4LSRQ converges very fast [18]. In our experiments, 30 iterations
are enough.

loss of generality, we assume that the firstl examples are labeled
and these examples are ordered according to their labels. The algo-
rithmic procedure of SR is stated below:

1. Construct the adjacency graph: Construct thek-nearest
neighbors graph matrix with label informationW as in Eqn.
(3). Calculate the graph LaplacianL = D − W , whereD is
a diagonal matrix whose(i, i)-th element equals to the sum
of thei-th column (or row, sinceW is symmetric) ofW .

2. Construct the labeled graph: Construct the weight matrix
W SR ∈ R

m×m for labeled graph as

W SR
ij =





1/lr, if both xi andxj belong to
ther-th class,

0, otherwise.
(19)

It is clear thatW SR has the structure as follows

W SR =

[
Wl×l 0

0 0

]

whereWl×l ∈ R
l×l has the following structure

Wl×l =




W (1) 0 · · · 0

0 W (2) · · · 0
...

...
. . .

...
0 0 · · · W (c)


 (20)

whereW (r) ∈ R
lr×lr with all the elements equal to1/lr

(r = 1, · · · , c).

It is easy to check thatW SR is of rankc. Let DSR be the
diagonal matrix whose(i, i)-th element equals to the sum of
thei-th column (or row, sinceW SR is symmetric) ofW SR.
The firstl diagonal elements ofDSR are 1 and all the other
elements ofDSR are zero.

3. Responses generation: Find thec eigenvectors of general-
ized eigen-problem with respect to non-zero eigenvalues:

W SRy = λ
(
DSR + L

)
y

SinceW SR is of rankc, we will have exactlyc eigenvectors
with respect to non-zero eigenvalues [24]. We denote them
asy1, · · · , yc.

4. Regularized least squares: Find c vectorsa1, · · · , ac ∈
R

n. ar (r = 1, · · · , c) is the solution of regularized least
square problem:

ar = arg min
a

(
m∑

i=1

(aT xi − yr
i )2 + α‖a‖2

)



whereyr
i is thei-th element ofyr. Our theoretical analysis

shows that the regularized least squares gives the eigenvector
solution whenα decreases to zero. In practical we can set
α = 10−6.

5. SR Embedding: Let A = [a1, a2, · · · , ac], A is a n × c
transformation matrix. The samples can be embedded intoc
dimensional subspace by

x → z = AT x

It is clear that our algorithm is a linear extension of graph embed-
ding problem:

y∗ = arg max
yT W SRy

yT

(
DSR + L

)
y
.

To get a better understanding that why we choose this graph em-
bedding, we need to examine our graph structure. Notice that the
SR essentially computes the optimal projections with respect to the
following objective function

a∗ = arg max
aT XW SRXT a

aT X
(
DSR + L

)
XT a

(21)

Let Xl = [x1, · · · , xl] be the labeled data matrix. Notice the spe-
cial structure ofW SR andDSR, we have

a∗ = arg max
aT XW SRXT a

aT XDSRXT a + aT XLXT a

= arg max
aT XlWl×lX

T
l a

aT XlXT
l a + aT XLXT a

The above objective function essentially includes two parts

O1 = max
aT XlWl×lX

T
l a

aT XlXT
l a

and O2 = min aT XLXT a,

where the first part focuses on the labeled set and the second part
focuses on the whole data set.

It is easy to see thatO2 is the objective function of Locality
Preserving Projection (LPP) [11]. MinimizingO2 means that SR
tries to preserve the local geometric structure of the whole data set.
When the labeled data pointsXl are centered, we haveXlX

T
l =

St andXlWl×lX
T
l = Sb [12], whereSt is the total scatter matrix

andSb is the between-class scatter matrix [4]. Since the within-
class scatter matrixSw = St − Sb, we have

O1 = max
aT XlWl×lX

T
l a

aT XlXT
l a

= max
aT Sba
aT Sta

= max
aT Sba
aT Swa

,

which is exactly the objective function of Linear Discriminant Anal-
ysis (LDA) [4]. Thus, maximizingO1 means that SR tries to cal-
culate the projections with the best class separability on the labeled
examples.

The above analysis links our approach to LDA and LPP. Specif-
ically, SR searches for the project axes on which the data points
with different labels can be best separated and meanwhile the lo-
cal geometric structure on both labeled and unlabeled data is best
preserved.

4. CONTENT-BASED IMAGE RETRIEVAL
USING SPECTRAL REGRESSION

In this section, we describe how to apply Spectral Regression to
CBIR. Particularly, we consider relevance feedback driven image
retrieval.

Table 2: Image features used in the experiment
Feature Name Dimension

Color Histogram [16] 166
Color Correlogram [13] 144

Color Moment [25] 9
Wavelet Texture [1] 18

Canny Edge [5] 72

All 409

4.1 Features for Image Retrieval
Low-level image representation is a crucial problem in CBIR.

General visual features includes color, texture, shape, etc. Color
and texture features are the most extensively used visual features in
CBIR. Compared with color and texture features, shape features are
usually described after images have been segmented into regions or
objects. Since robust and accurate image segmentation is difficult
to achieve, the sue of shape features for image retrieval has been
limited to special applications where objects or regions are readily
available. In this work, we use a 409-dimensional features as shown
in Table (2) which combines color, texture and shape infomration.

In fact, if the low-level visual features are accurate enough, that
is, if the Euclidean distances in the low-level feature space can ac-
curately reflect the semantic relationship between images, then one
can simply perform nearest neighbor search in the low-level fea-
ture space and the retrieval performance can be guaranteed. Un-
fortunately, there is no strong connection between low-level visual
features and high-level semantic concepts based on the state-of-
the-art computer vision techniques. Thus, one has to resort to user
interactions to discover the semantic structure in the data.

4.2 Relevance Feedback Image Retrieval
Relevance feedback is one of the most important techniques to

narrow down the gap between low level visual features and high
level semantic concepts [21]. Traditionally, the user’s relevance
feedbacks are used to update the query vector or adjust the weight-
ing of different dimensions. This process can be viewed as an on-
line learning process in which the image retrieval system acts as a
learner and the user acts as a teacher. The typical retrieval process
is outlined as follows:

1. The user submits a query image example to the system. The
system ranks the images in database according to some pre-
defined distance metric and presents to the user the top ranked
images.

2. The user provides his relevance feedbacks to the system by
labeling images as “relevant” or “irrelevant”.

3. The system uses the user’s provided information to re-rank
the images in database and returns to the user the top images.
Go to step 2 until the user is satisfied.

All the four subspace learning algorithms (LPP, ARE, SSP and
SR) can use the user’s relevance feedbacks to update their graphs,
which leads to better subspace for semantic concepts. Letq denote
the query image andA be the transformation matrix of one sub-
space learning algorithm, i.e.x′

i = AT xi andq′ = AT q. The
distance betweenx′

i andq′ can be computed as follows:

dist(x′

i,q
′) =

√
(x′

i − q′)T (x′

i − q′)

=
√

(xi − q)T AAT (xi − q)

For a general subspace learning algorithm, one needs to estimate
the optimal dimensionality of the subspace which could be very
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Figure 1: Precision at top 40 returns of the four algorithms after the 1st feedback iteration (a) and the 2nd feedback iteration (b).
Our SR algorithm is the best for almost all the categories.

hard in practical. Our analysis shows that there will be onlyc di-
mensions for SR subspace, wherec is the number of classes. For
image retrieval,c = 2 since there are two classes (relevant or not).
Since all the other three suffer the problem of dimensionality es-
timation, this is one of the advantages of applying SR instead of
LPP/ARE/SSP.

In many situations, the number of images in the database can be
extremely large, which makes the computation of all the algorithms
infeasible. In order to reduce the computational complexity, we do
not take all the images in the database to construct thek nearest
neighbors graphs. Instead, we only take the top 400 images at the
previous retrieval iteration, plus the labeled images, to find the op-
timal projection.

5. EXPERIMENTS AND DISCUSSIONS
In this section, we present several experimental results and com-

parisons to show the effectiveness and efficiency of the proposed
algorithm. All of our experiments have been performed on a P4
3.20GHz Windows XP machines with 2GB memory.

5.1 Evaluation and Implementation Settings
The COREL data set is widely used in many CBIR systems, such

as [10, 15, 27, 28]. For the sake of evaluations, we also choose this
data set for testing. 30 categories of color images were selected,
where each consists of 100 images. Each image is represented as a
409-dimensional vector as described in Section 4.1.

To exhibit the advantages of using our approach, we need a re-
liable way of evaluating the retrieval performance and the com-
parisons with other systems. Different aspects of the experimental
design are described below.

Evaluation Metrics
Due to the relatively low recall in CBIR system, we do not use the
precision-recallcurve [14]. Instead, we useprecision-scope curve
andprecision rateas the performance evaluation metrics [15]. The
scope is specified by the number (N ) of top-ranked images pre-
sented to the user. The precision is the ratio of the number of rel-
evant images presented to the user to the scopeN . The precision-
scope curve describes the precision with various scopes and thus
gives an overall performance evaluation of the algorithms. On the
other hand, the precision rate emphasizes the precision at a partic-
ular value of scope.

In a real image retrieval system, a query image is usually not in

the image database. To simulate such environment, we usefive-fold
cross validationto evaluate the algorithms which is also adopted in
the paper [15]. More precisely, we divide the whole image database
into five subsets with equal size. Thus, there are 20 images per
category in each subset. At each run of cross validation, one subset
is selected as the query set, and the other four subsets are used as
the database for retrieval. The precision-scope curve and precision
rate are computed by averaging the results from the five-fold cross
validation.

Automatic Relevance Feedback Scheme
We designed an automatic feedback scheme to model the retrieval
process. For each submitted query, our system retrieves and ranks
the images in the database. The top 10 ranked images were selected
as the feedback images, and their label information (relevant or ir-
relevant) is used for re-ranking. Note that, the images which have
been selected at previous iterations are excluded from later selec-
tions. For each query, the automatic relevance feedback mechanism
is performed for four iterations. The similar scheme was used in
[10], [15], [28].

Compared Algorithms
To demonstrate the effectiveness and efficiency of our proposed
image retrieval algorithm (SR), specifically the instance we de-
scribed in Section 3.4, we compare it with three state-of-the-art
semi-supervised subspace learning algorithms,i.e. incremental Lo-
cality Preserving Projection (LPP) [10], Augmented Relation Em-
bedding (ARE) [15] and Semantic Subspace Projection (SSP) [28].

A crucial problem of LPP (or, ARE and SSP) is how to deter-
mine the dimensionality of the subspace. In our experiments, we
iterate all the dimensions and select the dimension with respect to
the best performance. For SR, we simply use the 2-dimensional
subspace. For all these algorithms, the Euclidean distances in the
reduced subspace are used for ranking the images in the database.
All these algorithms need to construct ak-nearest neighbors graph,
we empirically setk = 5.

It is important to note that all the three algorithms (LPP, ARE
and SSP) can be fit into the spectral regression framework to be
efficiently computed. However, to show the advantages of SR,
we implemented all the three algorithms in their ordinary ways
(SVD+LGE approach described in Section 2).

5.2 Image Retrieval Performance
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Figure 2: Compare the retrieval performance of different algorithms. (a)-(c) Via illustrating with the precision-scope curves, we
plot the results in the 1st, 2nd, and 4th feedback iteration, respectively. The SR algorithm performs the best on the entire scope for
all the three feedback iterations.

In real world, it is not practical to require the user to provide
many rounds of feedbacks. The retrieval performance after the first
two rounds of feedbacks is the most important. Figure (1) shows
the precision at top 40 after the first and second round of feedback
for all the 30 categories. As can be seen, the retrieval performance
of these algorithms varies with different categories. Our SR ap-
proach performs the best for almost all the 30 categories.

Figure 2 shows the averageprecision-scopecurves of the differ-
ent algorithms for the 1st, 2nd and 4th feedback iterations. The
baselinecurve describes the initial retrieval result without feed-
back information. Specifically, at the beginning of retrieval, the
Euclidean distances in the original 409-dimensional space are used
to rank the images in the database. After the user provides rele-
vance feedbacks, the LPP, ARE, SSP, and SR algorithms are then
applied to re-rank the images in the database. Our SR algorithm
significantly outperforms the other three algorithms on the entire
scope. The overall performances of LPP, ARE and SSP are very
close to each other. ARE performs better than the other two at
the first round, especially with a small scope. All these four al-
gorithms are significantly better than the baseline, which indicates
that the user provided relevance feedbacks are very helpful for im-
proving the retrieval performance. By iteratively adding the user’s
feedbacks, the corresponding precisions (at top 20, top 40 and top
60) of the algorithms are respectively shown in Figure 3. As can be
seen, our SR algorithm performs the best for all rounds of relevance
feedback.

Table 3 gives the processing time for each query of the four algo-
rithms. All the three algorithms LPP, ARE and SSP are computed
by SVD+LGE approach as we described in Section 2. It is clear
to see the SR has a significant computational advantage over the
SVD+LGE approach. This results verified our theoretical analysis
on computational complexity in Table 1.

5.3 Model Selection onk
All the four algorithms are semi-supervised subspace learning

algorithms. They use ak-nearest neighbor graph to model the local
geometric structure of both labeled and unlabeled data. Thus, a in-
teresting and important question could be how these algorithm sen-
sitive to the parameterk. This is so called model selection, which is
a crucial problem in most of the learning problems. In some situa-
tions, the learning performance may vary drastically with different
choices of the parameters and we have to apply some model selec-

Table 3: Time on processing one query for each method (s)
tW tSV D tGEigen tAll

LPP

0.062
0.453

0.494 1.009
ARE 0.489 1.004
SSP 0.487 1.002

tSEigen tRLS

SR 0.024 0.041 0.127
tW : time on the graph construction.
tSV D: time on SVD decomposition.
tGEigen: time on generalized eigen-problem.
tSEigen: time on sparse eigen-problem
tRLS : time on regularized least squares

Table 4: Graph embedding for different algorithms
numerator denominator

LPP W L

ARE LARE L

SSP W
T
LSSP W L̃

SR W SR DSR + L
W is defined in Eqn. (3),L is the graph Laplacian.

tion methods (such as Cross Validation and Bootstrapping, [8]) for
estimating the generalization error. In this subsection, we evaluate
the performance of the four algorithms with different values ofk.

Figure (4) shows the precision at top 40 returns of the four al-
gorithms after the first round of feedback with respect to different
values ofk. As can be seen, SR and ARE are more stable with
different values ofk. We will try to explain this result in the dis-
cussion subsection. Overall, since all the algorithms try to discover
the local geometrical structure of the data space, it is usually set to
a small number, typically less than 10.

5.4 Discussion
The spectral regression framework provides us a nice platform to

analyze different algorithms. All the four algorithms we compared
in the experiment are linear extensions of graph embedding. Their
essential differences should lie on the different choices of graphs
(affinity graph and constraint graph). For convenience, we list the
different graphs used by four algorithms in Table 4.

The numerator indicates part of the objective function that the
algorithm tries tomaximize, while the denominator indicates the
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Figure 3: Precisions at top 10 (P@10), top 20 (P@20), and top 50 (P@50) of the three
algorithms. As can be seen, our MMP algorithm performs the best, especially at the
first round of relevance feedback.
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Figure 4: Model selection for LPP, ARE,
SSP and SR: P@40 vs. different values
of the parameterk.

part which will beminimized. It can be see that the denomina-
tors of all the four algorithms are essentially same, which is the
Laplacian ofk-nearest neighbor graph5. All these algorithms try
to minimize aT XLXT a which is essentially the objective func-
tion of LPP [11]. The differences between these algorithms are in
the numerator part. BothLARE andW SR are only dependent on

the labeled data, whileW andW
T
LSSP W are dependent on the

wholek-nearest neighbor graph. This explains why LPP and SSP
are more sensitive to the parameterk as shown in Figure 4. As we
analyzed in the previous section,W SR is essentially the graph of
between-class scatter matrix. Thus,SR can obtain the projective
axes on which the data points with different labels are best sep-
arated. This is the reason why SR can achieve significant better
results than other three algorithms.

6. CONCLUSION AND FUTURE WORK
This paper presents a novel subspace learning framework, called

Spectral Regression, for relevance feedback image retrieval. This
framework can interpret many stat-of-the-art graph based subspace
learning algorithms, such as LPP [10], ARE [15] and SSP [28],
which provides us better understanding of these algorithms. The
spectral regression can naturally be used by all these algorithms for
a much more efficient computation. Moreover, our framework can
be used as a general platform to develop new algorithms for sub-
space learning. As shown in this paper, we have proposed a novel
semi-supervised subspace learning algorithm called SR by design-
ing a between-class scatter graph for labeled examples and a local
neighbor graph for both labeled and unlabeled examples. This new
algorithm is shown to be able to make efficient use of both labeled
and unlabeled points to discover the intrinsic discriminant structure
in the data. The experimental results validate that the new method
achieves a significantly higher precision for image retrieval.

Several questions remain to be investigated in our future work:

1. We only discuss the linear extension approach of graph em-
bedding in this paper. However, it is easy to extend our
framework to reproducing kernel Hilbert space.

2. It would be very interesting to explore different ways of con-
structing the image graph to model the semantic structure in

5With some additional label information as in Eqn. (3).

the data. There is no reason to believe that the nearest neigh-
bor graph is the only or the most natural choice. For exam-
ple, for web image search it may be more natural to use the
hyperlink information to construct the graph.
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APPENDIX

A. PROOF OF THEOREM 2

PROOF. Supposerank(X) = r, the SVD decomposition ofX
is

X = UΣV T (22)

whereΣ = diag(σ1, · · · , σr), U ∈ R
n×r, V ∈ R

m×r and we
haveUT U = V T V = I. They is in the space spanned by row
vectors ofX, therefor,y is in the space spanned by column vectors
of V . Thus,y can be represented as the linear combination of the
column vectors ofV . Moreover, the combination is unique because
the column vectors ofV are linear independent. Suppose the com-
bination coefficients areb1, · · · , br. Let b = [b1, · · · , br]

T , we
have:

V b=y ⇒ V T V b=V T y ⇒ b=V T y ⇒ V V T y=y (23)

To continue our proof, we need introduce the concept of pseudo
inverse of a matrix [19], which we denote as(·)+. Specifically,
pseudo inverse of the matrixX can be computed by the following
two ways:

X+ = V Σ−1UT

and

X+ = lim
λ→0

(XT X + λI)−1XT

The above limit exists even ifXT X is singular and(XT X)−1

does not exist [19]. Thus, the regularized least squares solution in
SR

a =
(
XXT + αI

)
−1

Xy α→0
= (XT )+y = UΣ−1V T ȳ

Combine with the equation in Eqn. (23), we have

XT a = V ΣUT a = V ΣUT UΣ−1V T y = V V T y = y

By Theorem (1),a is the eigenvector of eigen-problem in Eqn.
(10).

B. PROOF OF COROLLARY 3

PROOF. The matricesB andC are of sizem×m and there are
m eigenvectors{yj}

m
j=1 of eigen-problem (14). Sincerank(X) =

m, all them eigenvectorsyj are in the space spanned by row vec-
tors of X. By Theorem (2), allm correspondingaj of SR are
eigenvectors of eigen-problem in Eqn. (10) asα decreases to zero.
They are

aSR
j = UΣ−1V T yj .

Consider the eigen-problem in Eqn. (12), since them eigenvectors
yj are also in the space spanned by row vectors ofX̃ = UT X =

ΣV T , eigenvectorbj will be the solution of linear equations sys-
tem X̃T bj = yj . The row vectors ofX̃ = ΣV T are linearly
independent, thusbj is unique and

bj = Σ−1V T yj .

Thus, the projective functions of SVD+LGE

aSV D+LGE
j = Ubj = UΣ−1V T yk = aSR

j


