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Abstract

Subspace learning based face recognition methods have
attracted considerable interests in recent years, includ-
ing Principal Component Analysis (PCA), Linear Discrimi-
nant Analysis (LDA), Locality Preserving Projection (LPP),
Neighborhood Preserving Embedding (NPE) and Marginal
Fisher Analysis (MFA). However, a disadvantage of all
these approaches is that their computations involve eigen-
decomposition of dense matrices which is expensive in both
time and memory. In this paper, we propose a novel dimen-
sionality reduction framework, called Spectral Regression
(SR), for efficient regularized subspace learning. SR casts
the problem of learning the projective functions into a re-
gression framework, which avoids eigen-decomposition of
dense matrices. Also, with the regression based framework,
different kinds of regularizers can be naturally incorporated
into our algorithm which makes it more flexible. Computa-
tional analysis shows that SR has only linear-time complex-
ity which is a huge speed up comparing to the cubic-time
complexity of the ordinary approaches. Experimental re-
sults on face recognition demonstrate the effectiveness and
efficiency of our method.

1. Introduction

Many face recognition techniques have been devel-
oped over the past few decades. One of the most suc-
cessful and well-studied techniques to face recognition
is the appearance-based method [15, 22]. When using
appearance-based methods, an image of size n1 ×n2 pixels
is usually represented by a vector in an n1×n2-dimensional
space. In practice, however, these n1 × n2-dimensional
spaces are too large to allow robust and fast face recogni-
tion. Previous works have demonstrated that the face recog-
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nition performance can be improved significantly in lower
dimensional linear subspaces [1, 13, 22]. Two of the most
popular appearance-based face recognition methods include
Eigenface [22] and Fisherface [1]. Eigenface is based on
Principal Component Analysis (PCA) [7]. PCA projects the
face images along the directions of maximal variances. It
also aims to preserve the Euclidean distances between face
images. Fisherface is based on Linear Discriminant Analy-
sis (LDA) [7]. Unlike PCA which is unsupervised, LDA is
supervised. When the class information is available, LDA
can be used to find a linear subspace which is optimal for
discrimination.

Recently there are considerable interest in geometri-
cally motivated approaches to visual analysis. Various re-
searchers (see [2, 18, 21]) have considered the case when
the data lives on or close to a low dimensional sub-manifold
of the high dimensional ambient space. One hopes then
to estimate geometrical and topological properties of the
sub-manifold from random points (“scattered data”) lying
on this unknown sub-manifold. Along this direction, many
subspace learning algorithms have been proposed for face
recognition. Some popular ones include Locality Preserv-
ing Projection (LPP) [13], Neighborhood Preserving Em-
bedding (NPE) [12] and Marginal Fisher Analysis (MFA)
[23]. Despite the different motivations of these algorithms,
they can be nicely interpreted in a general graph embed-
ding framework [3, 13, 23]. One of the major limitations of
these approaches is that their computations involve dense
matrices eigen-decomposition which is expensive in both
time and memory. Moreover, when the number of features
is larger than the number of samples, some additional pre-
processing steps (e.g., PCA, SVD) are required to obtain
the stable solution of the optimization problem. These pre-
processing steps further increase the time cost. Thus, it is
difficult to apply these approaches to very high dimensional
data of large size.

In this paper, we propose a novel dimensionality reduc-
tion framework, called Spectral Regression (SR), for ef-
ficient regularized subspace learning. The proposed ap-
proach is fundamentally based on regression and spectral
graph analysis [6]. Specifically, SR decomposes the sub-
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space learning as a two-step approach: graph embedding
for responses learning and regression for projective func-
tions learning. The theoretical analysis shows that when
the sample vectors are linearly independent, which is usu-
ally the case for small sample size problem, SR can give
exactly the same solutions with ordinary subspace learning
approaches. While dense matrices eigen-decomposition is
avoided in SR which is a huge save of both memory and
time.

The specific contributions of this paper include:

• It reviews and provides a unified graph embedding
analysis (as well as the computational complexity anal-
ysis) of many existing subspace learning algorithms,
e.g., LDA, LPP and NPE (Section 2).

• It proposes a novel spectral regression approach to
solve the optimization problem of the linear graph em-
bedding, which reduces the cubic-time complexity to
linear-time complexity (Section 3).

• We have performed extensive experimental compar-
isons of our approach and the state-of-the-art ap-
proaches, which demonstrate the effectiveness and ef-
ficiency of our method. (Section 4).

We summarize our findings and discuss extensions to the
current work in Section 5, which concludes the paper.

2. Graph Embedding View of Subspace Learn-
ing

In this Section, we provide a general framework of anal-
ysis for the existing subspace learning algorithms from the
graph embedding viewpoint. Particularly, the computa-
tional complexities of these algorithms can be well studied
within this framework.

2.1. Graph based Subspace Learning

Suppose we have m face images {xi}m
i=1 ⊂ R

n, X =
[x1, · · · , xm]. In the past decades, many dimensionality re-
duction algorithms have been proposed to find a low dimen-
sional representation of xi. Despite the different motiva-
tions of these algorithms, they can be nicely interpreted in a
general graph embedding framework [3, 13, 23].

Given a graph G with m vertices, each vertex represents
a data point. Let W be a symmetric m × m matrix with
Wij having the weight of the edge joining vertices i and j.
The G and W can be defined to characterize certain statis-
tical or geometric properties of the data set. The purpose
of graph embedding is to represent each vertex of the graph
as a low dimensional vector that preserves similarities be-
tween the vertex pairs, where similarity is measured by the
edge weight.

Let y = [y1, y2, · · · , ym]T be the map from the graph to
the real line. The optimal y is given by minimizing∑

i,j

(yi − yj)2Wij

under appropriate constraint. This objective function incurs
a heavy penalty if neighboring vertices i and j are mapped
far apart. Therefore, minimizing it is an attempt to ensure
that if vertices i and j are “close” then yi and yj are close
as well [10]. With some simple algebraic formulations, we
have ∑

i,j

(yi − yj)2Wij = 2yT Ly,

where L = D − W is the graph Laplacian [6] and D is
a diagonal matrix whose entries are column (or row, since
W is symmetric) sums of W , Dii =

∑
j Wji. Finally, the

minimization problem reduces to find

y∗ = arg min
yT Dy=1

yT Ly = arg min
yT Ly
yT Dy

.

The constraint yT Dy = 1 removes an arbitrary scaling fac-
tor in the embedding. Notice that L = D − W , it is easy to
see that the above optimization problem has the following
equivalent variation:

y∗ = arg max
yT Dy=1

yT Wy = arg max
yT Wy
yT Dy

. (1)

The optimal y’s can be obtained by solving the maximum
eigenvalue eigen-problem:

Wy = λDy. (2)

Many recently proposed manifold learning algorithms, like
ISOAMP [21], Laplacian Eigenmap [2], Locally Linear
Embedding [18], can be interpreted in this framework with
different choice of W .

The graph embedding approach described above only
provides the mappings for the graph vertices in the train-
ing set. For classification purpose (e.g., face recognition),
a mapping for all samples, including new test samples, is
required. If we choose a linear function, i.e., yi = f(xi) =
aT xi, we have y = XT a. Eq. (1) can be rewritten as:

a∗ = arg max
yT Wy
yT Dy

= arg max
aT XWXT a
aT XDXT a

. (3)

The optimal a’s are the eigenvectors corresponding to the
maximum eigenvalue of eigen-problem:

XWXT a = λXDXT a. (4)



This approach is called Linear extension of Graph Embed-
ding (LGE). With different choices of W , the LGE frame-
work will lead to many popular linear dimensionality reduc-
tion algorithms, e.g., LDA, LPP and NPE. We will briefly
list the choices of W for these algorithms as follows.

LDA:
Suppose we have c classes and the t-th class have mt

samples, m1 + · · · + mc = m. Define

Wij =


1/mt, if xi and xj both belong to

the t-th class;
0, otherwise.

(5)

With such W , it is easy to check that D = I . Please see
[13], [5] for the detailed derivation.

LPP:
Let Nk(xi) denote the set of k nearest neighbors of xi.

Wij =

{
e
− ‖xi−xj‖2

2σ2 , if xi ∈ Nk(xj) or xj ∈ Nk(xi)
0, otherwise.

(6)

For supervised case, one can also integrate the label infor-
mation into W by searching the k nearest neighbors of xi

among the points sharing the same label with xi. Please see
[13] for the details.

NPE:
Let Nk(xi) denote the set of k nearest neighbors of xi

and M be a m × m local reconstruction coefficient matrix.
M is defined as follows:

For i-th row of M , Mij = 0 if xj /∈ Nk(xi). The other
Mij can be computed by minimizing the following objec-
tive function,

min ‖xi −
∑

j∈Nk(xi)

Mijxj‖2,
∑

j∈Nk(xi)

Mij = 1.

Define
W = M + MT − MT M (7)

and it is easy to check that D = I . Please see [12], [23] for
the detailed derivation. The label information can also be
integrated into W by searching the k nearest neighbors of
xi among the points share the same label with xi.

2.2. Computational Analysis

All the above mentioned linear subspace learning algo-
rithms need to solve the eigen-problem in Eqn. (4). To get a
stable solution of this eigen-problem, the matrices XDXT

is required to be non-singular [9] which is not true when the
number of features is larger than the number of samples.
The Singular Value Decomposition (SVD) can be used to

solve this problem. Suppose rank(X) = r, the SVD de-
composition of X is

X = UΣV T

where Σ = diag(σ1, · · · , σr) and σ1 ≥ · · · ≥ σr > 0
are the singular values of X , U ∈ R

n×r, V =∈ R
m×r and

UT U = V T V = I . Let X̃ = UT X = ΣV T and b = UT a,
we have

aT XWXT a = aT UΣV T WV ΣUT a = bT X̃WX̃T b

and

aT XDXT a = aT UΣV T DV ΣUT a = bT X̃DX̃T b

Now, the objective function in (3) can be rewritten as:

b∗ = arg max
bT X̃WX̃T b

bT X̃DX̃T b
,

and the optimal b’s are the eigenvectors corresponding to
the maximum eigenvalues of eigen-problem:

X̃WX̃T b = λX̃DX̃T b. (8)

It is clear that X̃DX̃T is nonsingular and the above eigen-
problem can be stably solved. After we get b∗, the a∗ can
be obtained by

a∗ = Ub∗. (9)

When the sample vectors are centered, SVD is essentially
the same to PCA. This approach has been widely used in
many subspace learning algorithms (e.g., LDA [1], LPP
[13] and NPE [12]) to solve the singularity problem. For
clarity, we name this computational approach as SVD+LGE
(Linear Graph Embedding).

Now let us analyze the computational complexity of
SVD+LGE. We consider the case that the number of fea-
tures (n) is larger than the number of samples (m), which
is usually the case for face recognition. The term flam [19],
a compound operation consisting of one addition and one
multiplication, is used to present operation counts.

The most efficient algorithm to calculate the SVD de-
composition requires 3

2m2n + 9
2m3 flam [20]. Thus, the

time complexity of the SVD+LGE approach measured by
flam is at least 3

2m2n+ 9
2m3, which is cubic-time complex-

ity with respect to m. For large scale high dimensional data,
this approach is unlikely to be applied.

Another way to deal with the singularity of XDXT is
to apply the idea of regularization, by adding some constant
values to the diagonal elements of XDXT , as XDXT +
αI , for any α > 0. It is easy to see that XDXT +αI is non-
singular. This approach is used in LDA which leads to Reg-
ularized Discriminant Analysis (RDA) [8]. XDXT + λI
will be a n×n dense matrix and solving the eigen-problem



in Eqn. (4) requires at least 9
2n3 flam. Moreover, the cal-

culation of matrices XWXT and XDXT requires at least
2mn2 flam. This high computational complexity restricts
the regularized subspace learning approach to be applied on
high dimensional data.

3. Spectral Regression Framework for Sub-
space Learning

The high computational cost restricts those popular sub-
space learning algorithms to be applied to large scale high
dimensional data sets. In this section, we describe our ap-
proach which can overcome this difficulty.

3.1. Spectral Regression

In order to solve the eigen-problem in Eqn. (4) effi-
ciently, we use the following theorem:

Theorem 1 Let y be the eigenvector of eigen-problem in
Eqn. (2) with eigenvalue λ. If XT a = y, then a is the
eigenvector of eigen-problem in Eqn. (4) with the same
eigenvalue λ.

Proof We have Wy = λDy. At the left side of Eqn. (4),
replace XT a by y, we have

XWXT a = XWy = XλDy = λXDy = λXDXT a

Thus, a is the eigenvector of eigen-problem Eqn. (4) with
the same eigenvalue λ.

Theorem (1) shows that instead of solving the eigen-
problem in Eqn. (4), the linear projective functions can be
obtained through two steps:

1. Solve the eigen-problem in Eqn. (2) to get y.

2. Find a which satisfies XT a = y. In reality, such a
might not exist. A possible way is to find a which can
best fit the equation in the least squares sense:

a = arg min
a

m∑
i=1

(aT xi − yi)2 (10)

where yi is the i-th element of y.

The advantages of this two-step approach are as follows:

1. The matrix D is guaranteed to be positive definite and
therefor the eigen-problem in Eqn. (2) can be stably
solved. Moreover, we will show later how this eigen-
problem is trivial and the eigenvectors y can be directly
obtained with a supervised graph matrix W .

2. The technique to solve the least square problem is al-
ready matured [9] and there exist many efficient itera-
tive algorithms (e.g., LSQR [16]) that can handle very
large scale least square problems.

In the situation that the number of samples is smaller
than the number of features, the minimization problem (10)
is ill posed. We may have infinitely many solutions to the
linear equations system XT a = y (the system is underde-
termined). The most popular way to solve this problem is
to impose a penalty on the norm of a:

a = arg min
a

(
m∑

i=1

(
aT xi − yi

)2 + α‖a‖2

)
(11)

This is so called regularization and is well studied in statis-
tics. The regularized least square is also called ridge regres-
sion [11]. The α ≥ 0 is a parameter to control the amounts
of shrinkage. Now we can see the third advantage of the
two-step approach:

3 Since the regression is used as a building block, the
regularization techniques can be easily incorporated
and produce more stable and meaningful solutions, es-
pecially when there exist a large number of features
[11].

The regularized least squares in Eqn. (11) can be rewrit-
ten in the matrix form as:

a = arg min
a

(
(XT a − y)T (XT a − y) + αaT a

)
. (12)

Requiring the derivative of right side with respect to a van-
ish, we get

(XXT + αI)a = Xy

⇒ a = (XXT + αI)−1Xy
(13)

When α > 0, this regularized solution will not satisfy the
linear equations system XT a = y and a will not be the
eigenvector of eigen-problem in Eqn. (4). It is interesting
and important to see when (13) gives the exact solutions
of eigen-problem (4). Specifically, we have the following
theorem:

Theorem 2 Suppose y is the eigenvector of eigen-problem
in Eqn. (2), if y is in the space spanned by row vectors of X ,
the corresponding projective function a calculated in Eqn.
(13) will be the eigenvector of eigen-problem in Eqn. (4) as
α deceases to zero.

Proof See Appendix A.

When the the number of features is larger than the num-
ber of samples, the sample vectors are usually linearly in-
dependent, i.e., rank(X) = m. In this case, we will have a
stronger conclusion which is shown in the following Corol-
lary.



Corollary 3 If the sample vectors are linearly independent,
i.e., rank(X) = m, all the projective functions calculated
by Eqn. (13) are the eigenvectors of eigen-problem in Eqn.
(4) as α deceases to zero. These solutions are identical to
those of SVD+LGE in Eqn. (9).

Proof See Appendix B.

Our above two-step approach essentially performs re-
gression after the spectral analysis of the graph, we called it
Spectral Regression (SR) [4].

3.2. Eigenvectors of Eigen-problem in Eqn. (2)

Now let us study the eigenvectors of eigen-problem in
Eqn. (2). We consider the case that both LPP and NPE
construct their graph by incorporating the label informa-
tion, i.e., searching the k nearest neighbors of xi among the
points share the same label with xi.

Without loss of generality, we assume that the data points
in {x1, · · · , xm} are ordered according to their labels. It is
easy to check that the matrix W in these three algorithms
has a block-diagonal structure

W =


W (1) 0 · · · 0

0 W (2) · · · 0
...

...
. . .

...
0 0 · · · W (c)

 (14)

where c is the number of classes, W (t) ∈ R
mt×mt and mt

is the number of samples in t-th class. We also have the D
as the diagonal matrix. Thus, the eigenvalues and eigenvec-
tors of Wy = λDy are the union of the eigenvalues and
eigenvectors of its blocks (the latter padded appropriately
with zeros) [9]:

W (t)y(t) = λD(t)y(t).

It is straightforward to show that the above eigen-problem
has an eigenvector e(t) ∈ R

mt associated with the largest
eigenvalue 1, where e(t) = [1, 1, · · · , 1]T [6]. Thus the top
c eigenvectors of eigen-problem in Eqn. (2) are

yt = [ 0, · · · , 0︸ ︷︷ ︸∑ t−1
i=1 mi

, 1, · · · , 1︸ ︷︷ ︸
mt

, 0, · · · , 0︸ ︷︷ ︸∑ c
i=t+1 mi

]T . (15)

These eigenvectors correspond to the same largest eigen-
value 1. Since 1 is a repeated eigenvalue, we could just
pick any other c orthogonal vectors in the space spanned by
{yt} in Eqn. (15), and define them to be our c eigenvec-
tors [9]. The vector of all ones is naturally in the spanned
space. This vector is useless since the responses of all the
data points are the same. In reality, we can pick the vector
of all ones as our first eigenvector and use Gram-Schmidt

process to get the remaining c − 1 orthogonal eigenvectors.
The vector of all ones can then be removed.

For the W in LDA, we can easily see that all the ele-
ments of W (t) are equal to 1/mt. Thus the rank of W (t)

is 1 and there is only one non-zero eigenvalue which is ex-
actly 1. We have exactly c eigenvectors (or c − 1 useful
eigenvectors after Gram-Schmidt process) with respect to
non-zero eigenvalue for eigen-problem in Eqn. (2). For the
W in LPP and NPE, we can get more eigenvectors since the
rank of W (t) is usually larger than 1. For a c class problem,
previous studies [1][12] show that c−1 projective functions
are usually enough.

Our above analysis shows that when W is constructed by
integrating label information, the top c − 1 eigenvectors of
eigen-problem in Eqn. (2) can be directly obtained. More-
over, although the graphs used in LDA, LPP and NPE are
different, the top c − 1 eigenvectors of their graph matri-
ces are the same. Thus the projective functions calculated
in SR are the same. By Theorem 2 and Corollary 3, these
projective functions are identical to those of SVD+LGE ap-
proach in Eqn. (9) when the sample vectors are linearly in-
dependent. Our analysis here gives the reason why the three
algorithms LDA [1], LPP [13] and NPE [12] achieve simi-
lar performance for high-dimensional low sample size prob-
lems.

It is easy to check that the values of the i-th and j-th
entries of any vector y in the space spanned by {yt} in Eqn.
(15) are the same as long as xi and xj belong to the same
class. Thus the i-th and j-th rows of Y are the same, where
Y = [y1, · · · , yc−1]. Corollary (3) shows that when the
sample vectors are linearly independent, the c−1 projective
functions of LDA (LPP, NPE) are exactly the solutions of
the c − 1 linear equations systems XT at = yt. Let A =
[a1, · · · , ac−1] be the transformation matrix which embeds
the data points into the LDA (LPP, NPE) subspace as:

AT X = Y T .

The columns of matrix Y T are the embedding results of
samples in the LDA (LPP, NPE) subspace. Thus, the data
points with the same label are corresponding to the same
point in the LDA (LPP, NPE) subspace when the sample
vectors are linearly independent.

These projective functions are optimal in the sense of
separating training samples with different labels. However,
they usually overfit the training set thus may not be able to
perform well for the test samples, thus the regularization is
necessary.

3.3. Computational Complexity Analysis

The SR computation involves two steps: responses gen-
eration (calculate the eigenvectors of eigen-problem in Eqn.
(2)) and regularized least squares. The cost of the first step
is mainly the cost of Gram-Schmidt method, which requires



Table 2. Performance comparisons on PIE
Error rates (mean±std-dev%) Computational time (s)
LDA RDA SR LDA RDA SR

G30/P140 8.8±0.3 5.9±0.3 6.1±0.2 59.37 396.2 17.39
G40/P130 8.6±0.2 5.0±0.2 5.2±0.2 131.2 404.5 20.11
G50/P120 9.3±0.4 4.6±0.3 4.8±0.3 241.3 413.1 22.71
G60/P110 10.1±1.2 4.2±0.2 4.5±0.2 394.9 421.8 25.49
G80/P90 7.5±0.2 3.9±0.2 4.2±0.2 442.1 442.1 31.13
G100/P70 6.2±0.2 3.7±0.2 4.0±0.2 455.4 455.4 35.98
G120/P50 5.6±0.3 3.5±0.2 3.8±0.2 471.6 471.6 41.57
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Figure 1. Recognition error rates and computational time
of each algorithm on PIE.

Table 1. Computational complexity (operation counts, flam [19])
SVD+LGE 3

2m2n + 9
2m3

RLGE 2mn2 + 9
2n3

SR 2csmn
m: the number of data samples.
n: the number of features.

We consider the case that n > m
c: the number of classes.
s: the number of iterations in LSQR.

(mc2 − 1
3c3) flam [19]. The regularized least squares prob-

lem in Eqn. (11) can be efficiently solved by the iterative
algorithm LSQR [16]. In each iteration, LSQR needs to
compute two matrix-vector products in the form of Xp and
XT q. The remaining work load of LSQR in each iteration
is 3m + 5n flam [16]. Thus, the time cost of LSQR in each
iteration is 2mn + 3m + 5n. If LSQR stops after s itera-
tions1, the time cost is s(2mn+3m+5n). Finally, the total
time cost for c projective functions is cs(2mn + 3m + 5n).

We summarize our complexity analysis of SR in Table
1, together with SVD+LGE and Regularized LGE (RLGE).
We only show the dominant part of the time cost for sim-
plicity (we assume m � c). It is clear to see the com-
putational advantage of SR over traditional SVD+LGE and
RLGE, especially for the large scale high dimensional data
(with large m and n). Please refer our technical report [4, 5]
for more detailed analysis.

4. Experimental Results

In this section, we investigate the performance of our
proposed SR approach for face recognition. The face recog-
nition task is handled as a multi-class classification problem
− we map each test image to a low-dimensional subspace
via the embedding learned from training data, and then clas-
sify the test data by the nearest centroid criterion.

4.1. Datasets and Compared Algorithms

The CMU PIE and Extended Yale-B face databases are
used in our experiments. The CMU PIE face database2

1LSRQ converges very fast [16]. In our experiments, 30 iterations are
enough.

2http://www.ri.cmu.edu/projects/project 418.html

contains 68 human subjects with 41,368 face images as a
whole. The face images were captured by 13 synchronized
cameras and 21 flashes, under varying pose, illumination
and expression. We choose the five near frontal poses (C05,
C07, C09, C27, C29) and use all the images under different
illuminations and expressions, thus we get 170 images for
each individual.

The Extended Yale-B face database3 contains 16128 im-
ages of 38 human subjects under 9 poses and 64 illumi-
nation conditions [14]. In this experiment, we choose the
frontal pose and use all the images under different illumina-
tion, thus we get 64 images for each person.

All the face images are manually aligned and cropped.
The size of each cropped image is 64 × 64 pixels for PIE
and 40×40 pixels for Extended Yale-B, with 256 gray levels
per pixel. The features (pixel values) are then scaled to [0,1]
(divided by 256).

The image set is then partitioned into the gallery and
probe set with different numbers. For ease of representa-
tion, Gp/Pq means p images per person are randomly se-
lected for training and the remaining q images are for test-
ing.

Our analysis showed that when the sample vectors are
linearly independent, which is usually the case when the
number of features is larger than the number of samples,
the top c − 1 projective functions of LDA, LPP and NPE
are essentially the same. Thus, we choose LDA and RDA
as the representatives of SVD+LGE and RLGE approaches
for experimental comparison due to the space limit.

4.2. Face recognition results

The recognition error rates, as well as the computational
time, of different algorithms on PIE and Yale-B databases
are reported on the Table 2 and 3 respectively. For each
Gp/Pq, we average the results over 20 random splits and
report the mean as well as the standard deviation. For both
RDA and SR, the regularization parameter α is set to be
0.01 empirically.

The main observations from the performance compar-
isons include:

3http://vision.ucsd.edu/∼leekc/ExtYaleDatabase/ExtYaleB.html



Table 3. Performance comparisons on Extended Yale-B
Error rates (mean±std-dev%) Computational time (s)
LDA RDA SR LDA RDA SR

G10/P54 12.7±1.1 11.6±1.0 12.0±1.2 0.600 22.13 1.029
G20/P44 6.8±0.7 4.2±0.8 4.7±0.9 3.340 23.20 1.269
G30/P34 5.4±0.6 1.8±0.4 2.0±0.5 10.24 23.95 1.509
G40/P24 10.4±1.3 0.9±0.3 1.0±0.4 21.55 24.60 1.751
G45/P19 7.5±1.3 0.6±0.3 0.7±0.3 25.21 25.21 1.876
G50/P14 5.0±0.8 0.4±0.3 0.5±0.3 25.81 25.81 2.008
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Figure 2. Recognition error rates and computational time
of each algorithm on Yale-B.

• The LDA (SVD+LGE approach) seeks the projective
functions which are optimal on the training set. It does
not consider the possible over-fitting. RDA and SR are
regularized versions of LDA. The Tikhonov regular-
izer is used to control the model complexity. In all the
test cases, RDA and SR are significantly better than
LDA, which suggests that over-fitting is a very crucial
problem which should be addressed in subspace learn-
ing approach. It is interesting to find that the over-
fitting problem is especially severe when the number
of samples and the number of features are close to each
other.

• When the number of samples is smaller than the num-
ber of features, LDA (SVD+LGE) uses SVD to solve
the singularity problem. This leads to O(m3) time
complexity. RDA (RLGE approach) directly solves the
eigen-problem of n × n dense matrix, which leads to
O(n3) time complexity. SR only needs to solve c − 1
regularized least squares which is very efficient (with
O(mn) time complexity).

• Considering both accuracy and efficiency, SR is the
best choice among three of the compared approaches.
It provides an efficient and effective regularized sub-
space learning solution for large scale data sets.

4.3. Model selection for SR

The α ≥ 0 is an essential parameter in our SR approach
(as well as the regularized LGE approaches) which controls
the smoothness of the estimator. Our theoretical analysis
showed that when the sample vectors are linearly indepen-
dent, SR provides the same solution as the SVD+LGE ap-
proach as α decreases to zero. We empirically set it to be
0.01 in the previous experiments. In this subsection, we try
to examine the impact of parameter α on the performance
of SR.

Figure (3) shows the performance of SR as a function of
the parameter α. For convenience, the X-axis is plotted as
α/(1 + α) which is strictly in the interval [0, 1]. It is easy
to see that SR can achieve significantly better performance
than LDA over a large range of α. Thus, the parameter
selection is not a very crucial problem in SR algorithm.
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Figure 3. Model selection for SR. The curve shows the error rates
of SR with respect to α/(1 + α). The solid line shows the error
rate of LDA.

5. Conclusions

In this paper, we propose a new regularized subspace
learning framework called Spectral Regression (SR). Our
framework is developed from a graph embedding viewpoint
of dimensionality reduction algorithms. It combines the
spectral graph analysis and regression to provide an effi-
cient and effective approach for regularized subspace learn-
ing problem. Specifically, SR only needs to solve a set of
regularized least squares problems and there is no eigen-
vector computation involved, which is a huge save of both
time and memory (from cubic time complexity to linear
time complexity). Many recently proposed popular lin-
ear subspace learning algorithms, e.g., LDA [1], LPP [13],
and NPE [12] can be interpreted as the linear extensions of
specific graph embedding. Thus, all these algorithms can
be fit into SR framework and their optimization problems
can be efficiently solved. Extensive experimental results
show that our method consistently outperforms the ordinary
SVD+LGE (linear graph embedding) and regularized LGE
approaches considering both effectiveness and efficiency.
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Appendix

A. Proof of Theorem 2

Proof Suppose rank(X) = r, the SVD decomposition of X is

X = UΣV T

where Σ = diag(σ1, · · · , σr), U ∈ R
n×r , V ∈ R

m×r and we
have UT U = V T V = I . The y is in the space spanned by row
vectors of X , therefor, y is in the space spanned by column vec-
tors of V . Thus, y can be represented as the linear combination of
the column vectors of V . Moreover, the combination is unique be-
cause the column vectors of V are linear independent. Suppose the
combination coefficients are b1, · · · , br . Let b = [b1, · · · , br]

T ,
we have:

V b=y ⇒ V T V b=V T y ⇒ b=V T y ⇒ V V T y=y (16)

To continue our proof, we need introduce the concept of pseudo
inverse of a matrix [17], which we denote as (·)+. Specifically,
pseudo inverse of the matrix X can be computed by the following
two ways:

X+ = V Σ−1UT

and
X+ = lim

α→0
(XT X + αI)−1XT

The above limit exists even if XT X is singular and (XT X)−1

does not exist [17]. Thus, the regularized least squares solution in
Eqn. (13)

a =
(
XXT + αI

)−1

Xy α→0
= (XT )+y = UΣ−1V T ȳ

Combine with the equation in Eqn. (16), we have

XT a = V ΣUT a = V ΣUT UΣ−1V T y = V V T y = y

By Theorem (1), a is the eigenvector of eigen-problem in Eqn. (4).

B. Proof of Corollary 3

Proof The matrices W and D are of size m × m and there are
m eigenvectors {yj}m

j=1 of eigen-problem (2). Since rank(X) =
m, all these m eigenvectors yj are in the space spanned by row
vectors of X . By Theorem (2), all m corresponding aj of SR
in Eqn (13) are eigenvectors of eigen-problem in Eqn. (4) as α
decreases to zero. They are

aSR
j = UΣ−1V T yj .

Consider the eigen-problem in Eqn. (8), since the m eigenvectors
yj are also in the space spanned by row vectors of X̃ = UT X =

ΣV T , eigenvector bj will be the solution of linear equations sys-
tem X̃T bj = yj . The row vectors of X̃ = ΣV T are linearly
independent, thus bj is unique and

bj = Σ−1V T yj .

Thus, the projective functions of SVD+LGE

aSV D+LGE
j = Ubj = UΣ−1V T yk = aSR

j


