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Abstract 

Metabolomics datasets, by definition, comprise of measurements of large numbers of 

metabolites. Both technical (analytical) and biological factors will induce variation within 

these measurements that is not consistent across all metabolites. Consequently, criteria are 

required to assess the reproducibility of metabolomics datasets that are derived from all the 

detected metabolites. Here we calculate spectrum-wide relative standard deviations (RSD; 

also termed coefficient of variation, CV) for ten metabolomics datasets, spanning a variety of 

sample types from mammals, fish, invertebrates and a cell line, and display them succinctly 

as boxplots. We demonstrate multiple applications of spectral RSDs for characterising 

technical as well as inter-individual biological variation: for optimising metabolite 

extractions, comparing analytical techniques, investigating matrix effects, and comparing 

biofluids and tissue extracts from single and multiple species for optimising experimental 

design. Technical variation within metabolomics datasets, recorded using one- and two-

dimensional NMR and mass spectrometry, range from 1.6% to 20.6% (reported as the median 

spectral RSD). Inter-individual biological variation is typically larger, ranging from as low as 

7.2% for tissue extracts from laboratory housed rats to 58.4% for fish plasma. In addition, for 

some of the datasets we confirm that the spectral RSD values are largely invariant across 

different spectral processing methods, such as baseline correction, normalisation and binning 

resolution. In conclusion, we propose spectral RSDs and their median values contained herein 

as practical benchmarks for metabolomics studies. 
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Introduction 

Many factors are involved in conducting a high-quality metabolomics study, the most 

important of which is good experimental design and execution. A typical experiment involves 

collecting biological material, extracting and then measuring potentially hundreds of 

metabolites simultaneously by NMR spectroscopy or mass spectrometry (MS), spectral 

processing and multivariate statistical analysis. The principal goal is usually to discover 

metabolites that discriminate between two or more classes of samples. Consequently, it is 

essential to understand and minimise the spectrum-wide metabolic variation arising from 

technical sources as well as inter-individual metabolic variation within each class. Without 

this, the interpretation of results can be ambiguous, misleading and in the worst case, false.1, 2 

 

Relative standard deviation (RSD = standard deviation / mean *100%), also termed 

coefficient of variation (CV), is one approach for characterising measurement variability. For 

example, Keun et al. reported RSDs for the measurement of citrate, taurine and hippurate in 

urine by NMR.1 Clearly, if RSDs are to convey the reproducibility of whole metabolomics 

datasets, which by definition comprise of measurements of large numbers of metabolites, 

they should be calculated for all or at least the majority of detected peaks. To date there has 

been limited use of RSDs for capturing “spectrum-wide” variability in metabolomics studies. 

Previously, Ebbels et al. analysed the spectral variation both within and between rat strains in 

terms of the mean, standard deviation, skewness and kurtosis of each bin across an NMR 

spectrum.3 RSDs of peak retention times and concentrations have been reported for the 

analysis of ca. 80 metabolites using HPLC with electrochemical detection.2 RSDs of all data 

points, including those containing only noise, were reported graphically for the repeated 

NMR analysis of a blood sample.4 Also, Want et al. reported histograms of RSD distributions 

of metabolite intensities for comparing the quality of extraction protocols for MS-based 

serum profiling.5 A similar representation of RSDs was used to evaluate normalisation 

techniques for metabolomics data.6 

 
Spectral RSDs have great potential to provide practical benchmarks in all fields of 

metabolomics for assessing and ultimately improving data quality. For example, the spectral 

RSD of an established protocol can provide a useful frame of reference when developing new 

methodologies or when applying the original protocol to different biological samples. In 

addition, established spectral RSDs can provide new researchers in metabolomics with 

“target values” for achieving high quality studies. Here we calculate spectral RSDs as a 
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simple measure of variance across multiple metabolomics datasets, display them succinctly in 

the form of boxplots, and then highlight many applications of this benchmark.† RSDs can be 

calculated for any spectral dataset. Here we focus on binned (or bucketed) spectra from NMR 

spectroscopy and mass spectrometry, which encompasses the most widely used approaches in 

metabolomics. 

 

Methods 

NMR spectral processing: Free induction decays from multiple datasets7-17 were processed 

using standard methods, including Fourier transformation, phasing, baseline correction and 

calibration with either XWINNMR (Bruker), TopSpin (Bruker) or ACD/1D NMR Processor 

(Advanced Chemistry Development) software. 1D 1H NMR spectra as well as 2D 1H J-

resolved spectra (JRES) and their 1D skyline projections (pJRES) were further processed 

using custom-written ProMetab software18 in Matlab (version 7). All 1D datasets were 

trimmed to 0.2-10 ppm and sectioned into 1960 bins of width 0.005 ppm. 2D JRES spectra 

were processed in the same way along the chemical shift axis, but no binning was performed 

along the spin-spin coupling axis. Bins containing, for example, residual water and urea were 

excluded, and groups of bins containing peaks that were susceptible to shifting were 

compressed together. Spectra were then normalised to a total intensity of unity. 

 

Noise estimation and removal from binned NMR spectra: For 1D data, each binned spectrum 

was divided into 32 sections and the standard deviation of each section calculated. The noise 

level for a given spectrum was estimated as 3 times the smallest standard deviation of these 

32 sections.19, 20 For 2D JRES data, a noise surface was calculated using a similar approach. 

For each 2D spectrum, a noise level was estimated (exactly as above) for each of the 128 

spin-spin coupling increments. Next the 2D JRES spectra and corresponding noise surfaces 

were concatenated into 1D row vectors. Bins containing only noise were removed from the 

NMR spectra (which are now all represented as 1D row vectors). This was achieved by 

comparing the intensity of each bin to the corresponding noise level, and discarding all bins 

that had intensities lower than the noise threshold. Next, all spectra within one class (or 

dataset) were compared, and only bins containing signal in every spectrum were retained for 

calculation of RSDs. 

 

                                                 
† The Matlab code is freely available upon request from the corresponding author. 
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MS spectral processing: Fourier transform ion cyclotron resonance (FT-ICR) mass spectra of 

fish liver extracts were initially processed as described previously,11 yielding a list of peaks 

between 70-500 Da for each sample. For each list, the total peak intensity was normalised to 

unity and the peaks were segmented into 430 bins of width 1 Da. 

 

RSD calculation: RSDs were calculated for each dataset as summarised in the example in 

Fig. 1. Five binned NMR spectra of fish liver extracts are overlaid and plotted in Fig. 1A. 

Following noise removal, as described above, an RSD was calculated for every bin. Fig. 1B 

shows the ranked mean bin intensity (of the five spectra) plotted against the corresponding 

bin RSD, highlighting the consistency of the RSD values across low and high intensity peaks. 

The distribution of the RSDs is shown in Fig. 1C, which is re-drawn as a boxplot in Fig. 1D. 

The boxplot facilitates visual comparison of RSDs from multiple datasets, showing lines at 

the lower quartile, median and upper quartile values, whiskers to display the range of the 

remaining data, and outliers as individual data points. Outliers correspond to RSD values that 

are 1.5 times the interquartile range (or more) below the lower quartile, or 1.5 times the 

interquartile range (or more) above the upper quartile. Throughout the manuscript the 

boxplots show RSD from 0-100% to enable comparisons across all datasets, and all results 

are summarised in Table 1. To establish if RSD distributions differed significantly they were 

analysed using the Wilcoxon rank sum test for comparing two distributions and the Kruskal-

Wallis test for multiple distributions (Matlab statistics toolbox). 

 

Applications for RSDs of technical replicates 

The principal use for RSDs of technical (or analytical) replicates is to evaluate spectral 

quality in terms of the experimental methods. Several potential uses were described above in 

the introduction, for example as a practical benchmark to compare the reproducibility of one 

method across several independent laboratories. Furthermore, this approach can provide 

“target values” for new practitioners in metabolomics to confirm they are achieving high data 

quality. Here we demonstrate four such applications using multiple technical replicates of 

single biological samples (i.e. the metabolic variability described here is purely from 

technical sources and not of biological origin). It is important to note at this stage that RSD 

values appear largely invariant to different spectral processing methods. As summarised in 

Table 1, we confirmed this by evaluating the effects of spectral processing software 

(ACD/1D NMR Processor versus Topspin), NMR bin width (0.04 versus 0.005 ppm), and 
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normalisation method (total spectral area of unity versus probabilistic quotient 

normalisation21), none of which altered the %RSDs by more than a few percent. 

 

Optimising metabolite extractions: Two protocols were compared for extracting metabolites 

from a chub liver (Leuciscus cephalus), 6% perchloric acid (n=10) and 2:1 methanol:water 

(M:W; n=5).7 The two distributions of RSDs derived from 1D NMR spectra are significantly 

different (p<0.001; Fig. 2), and highlight the considerably higher reproducibility of the M:W 

extraction (median RSD of 4.6%) versus perchloric acid (median of 20.6%). This is 

consistent with observations from the original study that NMR spectra of perchloric acid 

extracts showed considerable pH-induced peak shifting.7 

 

Sampling, extraction and matrix effects: Different sample types, such as biofluids, cells or 

tissues, are typically collected and the metabolites extracted using protocols of differing 

complexities. Also, the resulting extracts will be present in different sample matrices. 

Together these factors will affect the reproducibility of the metabolomics data. NMR spectra 

of four disparate sample types were compared: urine from a dog that was collected by free-

catch, divided (n=5) and prepared by simple buffer addition;8 a flask of acute myeloid 

leukaemia cells (cell line K562) that was divided (n=5), centrifuged, washed and extracted 

using methanol:chloroform:water (M:C:W);9 adductor muscle from a Mediterranean mussel 

(Mytilus galloprovincialis) that was rapidly dissected, frozen, homogenised from the frozen 

state, divided (n=6) and then extracted using M:C:W;10 and liver from a 3-spined stickleback, 

(Gasterosteus aculeatus) that was processed in an identical manner to the mussel tissue 

(n=6). Fig. 2 shows the differences between the four RSDs (p<0.001) and confirms that the 

simplest collection and extraction procedure used in conjunction with the simplest aqueous 

matrix results in the most reproducible data (median RSD of 1.6% for urine). The rapid 

dissection, freeze clamping, homogenisation and extraction of more complex tissue samples 

increases the median RSD to 3.4% (stickleback) and 6.1% (mussel). The preparation of cell 

extract replicates, requiring several minutes of centrifugation and washing prior to the 

quenching of metabolism, yielded the least reproducible data (median RSD of 14.0%). These 

values serve as valuable benchmarks. 

 

Comparison of analytical approaches: Three datasets were recorded using different NMR 

experiments, comprising traditional 1D 1H, 1D projections of JRES spectra, and intact 2D 

JRES spectra. In all cases, the same five replicates of a European flounder (Platichthys flesus) 
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liver extract were analysed. The boxplots corresponding to the three sets of RSD values 

illustrate that 1D NMR spectroscopy yields the most reproducible data (median RSD of 

3.1%), the intact 2D JRES spectra show the highest variability (19.8%), and the pJRES data 

is intermediate between the other two with a median RSD of 12.5% (p<0.001; Fig. 2). This 

can be explained in part by considering the number of scans used for each type of 

experiment: 100 averaged transients for each more quantitative 1D spectrum but only 16 for 

each JRES spectrum, yielding higher precision in the 1D measurement. The median RSD 

value for the technical variability of dab (Limanda limanda) liver, measured using direct 

infusion FT-ICR mass spectrometry, is 13.1%.11 Since this value was not determined using 

the same biological samples as for the NMR measurements, a direct comparison of the MS 

and NMR approaches is not possible. However, 1D NMR is renowned for excellent 

analytical precision and therefore might be expected to yield a lower median RSD. 

 

Applications for RSDs of inter-individual variation within one class 

Variation between individuals in one class (or group) includes genuine biological inter-

individual differences as well as technical variation. Quantifying this inter-individual 

variation can be useful for optimising experimental design, as illustrated below. 

 

Comparison of biofluids and tissue extracts from single species: It is commonly believed (but 

rarely shown) that inter-individual metabolic variability is biofluid or tissue dependent. 

Tissue is under greater homeostatic control than biofluids and so one would predict that 

metabolic variability increases from tissue to plasma to urine, the latter being particularly 

susceptible to diet and lifestyle. Fig. 3A compares the RSDs derived from NMR datasets of 

three sample types, all derived from 8 marine invertebrates (red abalone, Haliotis 

rufescens).12 The RSD distributions for foot muscle, digestive gland and haemolymph (blood) 

are significantly different (p<0.001) with haemolymph showing the greatest inter-individual 

variability, consistent with the prediction of homeostatic control. The RSDs of NMR spectra 

of rat brain and plasma, obtained from five individuals,13 again show that the biofluid exhibits 

somewhat greater variability (p<0.001; Fig. 3B). Interestingly, these inter-individual median 

RSDs of 7.2% (brain) and 8.0% (plasma) are considerably smaller than for fish and marine 

invertebrate tissues and biofluids (that range from 16.0-58.4%), likely reflecting the 

conserved metabolism in laboratory-raised Sprague-Dawley rats, which were all male adults, 

of mass 325-375 g and were individually housed in environmentally-controlled chambers 

under a 12:12 hr light:dark cycle. As a further example, Fig. 3C shows the variance within 
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NMR spectra of testis, urine and plasma from 7 fathead minnow (Pimephales promelas).17 

The tissue again exhibits the lowest RSDs (median of 29.4%), while the two biofluids have 

similar inter-individual metabolic variability (p=0.263). It should be noted that while tissues 

are generally under greater homeostatic control, some exhibit considerable heterogeneity (e.g. 

tumour tissue) and therefore will produce larger than expected biological variation. Overall 

these results can help to guide experimental design, for example by identifying which sample 

type yields the lowest inter-individual variability. 

 

Comparison of different species: The same sample type can also be compared across different 

species, which may be particularly useful for determining the feasibility of studying non-

model organisms; i.e. to confirm that the inter-individual metabolic variability for that species 

is sufficiently low to produce interpretable data. Fig. 3D compares the RSDs from NMR 

spectra of rat urine (n=5) and fathead minnow urine (n=7). All samples were buffered and 

processed using identical procedures. However, the RSDs are quite different (p<0.001), 

potentially reflecting differing biochemistries of these organisms (which could be related to 

animal husbandry, described below). 

 

Optimisation of organism “husbandry”: Inter-individual variation can be used to assess 

protocols for the culturing or husbandry of organisms, as the condition in which animals are 

kept will have a large impact on their metabolic variability. This is particularly true for 

metabolomics studies of wildlife when organisms are housed in “foreign” laboratory 

environments. Inter-individual variation was compared for mussels (M. galloprovincialis) 

collected directly from the field (n=14), versus animals collected from the field and then 

maintained in a controlled laboratory environment for 48 hr (n=14).10 The median RSDs 

derived from NMR spectra show that the laboratory introduces a small but significant 

increase in the metabolic variability in two tissues, the adductor muscle (p<0.05) and mantle 

(p<0.001) as shown in Fig. 3E. It was concluded that direct sampling from the field was 

preferable, as discussed in the original paper.10 

 

Applications for RSDs of inter-individual variation between classes 

The goal of most metabolomics experiments is to discriminate between sample classes based 

upon their metabolic compositions. It is therefore important and useful to confirm that 

technical variation is small relative to the inter-individual variation within each class, prior to 

interpreting the biological variation. This is clearly illustrated in the following three 
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examples. Furthermore, RSDs can be used to assess the differences in inter-individual 

variation between “control” and “exposed/stressed” classes. It is often stated by practitioners 

of metabolomics that the control class shows the most inter-individual variation. However, 

this is typically qualitative and anecdotal. For example, based upon the scatter of data points 

in a PCA scores plot, control female fathead minnow were determined to vary more 

compared to fish exposed to oestrogenic compounds.22 This was hypothesised to arise from 

the control fish being in various stages of the reproductive cycle. After the exposure, 

however, the reproductive status of the female fish was more uniform, resulting in a 

metabolic response that was quite “focused”. The calculation of RSDs can be used to assess 

and quantify such observations, as discussed in the following three examples. Of course 

many more biological studies would need to be characterised in this manner to assess the 

prevalence of the control class showing higher variability. 

 

Effect of environment on fish liver metabolome: Flounder were collected from the Rivers 

Alde (n=19; clean) and Tyne (n=18; industrialised and more polluted) to determine the 

effects of different environments (and potentially different genetic make-ups) on the liver 

metabolome.14 RSDs were derived from NMR spectra of individuals from each site as well as 

from technical replicates of one individual (Fig. 4A). Clearly, technical variation is 

considerably lower than the biological variation between fish from either site. Furthermore, 

the significant difference (p<0.001) between the inter-individual variations for the two sites 

suggests that the two fish populations are responding differently to their environments, with 

the “control” fish from the clean site showing greater metabolic variability. The metabolites 

responsible for this high metabolic variation in fish from the River Alde are identified in Fig. 

5, which highlights the 20 NMR bins that are associated with the largest RSD values. The 

peaks with the greatest relative standard deviations are clearly distributed across the 

spectrum, and include both low and high intensity signals. This sort of plot could be derived 

for any metabolomics dataset in order to identify, for example, those metabolites that vary as 

a result of a particular extraction method (e.g., for technical replicates) or that vary within a 

particular biological class (e.g., for biological replicates). 

 

Effect of drug treatment on cellular metabolome: K562 leukaemia cells were treated with 

medroxy progesterone acetate. Fig. 4B illustrates the RSDs derived from NMR spectra of 

both treated (n=12) and untreated (n=12) flasks of cells, as well as from five technical 

replicates. Again the technical replicates show the least metabolic variation. For this study, 
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although there is again a significant difference between the inter-individual variations 

(p<0.01), the cells treated with the drug exhibit greater metabolic variability. 

 

Effect of disease on metabolome: NMR spectra of foot muscle were obtained from healthy 

abalone shellfish (n=8), animals with withering syndrome (n=5), as well as technical 

replicates from one individual (n=5).12 Fig. 4C shows that the technical replicates have the 

smallest variation (median of 5.4%), confirming that variability arising from the methodology 

is minor compared to the biological differences. Furthermore, the diseased class exhibits a 

significantly higher inter-individual variation than the healthy controls (p<0.01). As 

withering syndrome is a chronic disease that progressively degrades the metabolic condition 

of the shellfish over many months, this high variation can be rationalised in terms of the 

animals being in various stages of the disease. Overall, considering just these few examples, 

it suggests that no “golden rule” exists for the control class exhibiting higher variability. 

 

Conclusions 

Following an extensive literature search we have found relatively minimal exploitation of 

RSD distributions for assessing the reproducibility of metabolomics datasets. Here we have 

calculated and reported RSDs as median values and graphically using boxplots. Ten NMR 

and MS datasets have been analysed in terms of technical variation or inter-individual 

variation, spanning a variety of sample types including fish, invertebrates, mammals and a 

model cell line. We have clearly demonstrated multiple applications of RSDs for assessing 

the quality of metabolomics datasets as well as for improving experimental design. We 

conclude that this benchmark could be of considerable value to both existing and new 

practitioners in the field, for both the interpretation of technical and biological variation, and 

therefore recommend that a database of RSD values be established. 
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Table 1. Summary of spectral RSDs for multiple metabolomics datasets. 
Technical variation 

(one individual) Inter-individual variation Species Sample Class Extraction method Analytical 
technique 

No. of ‘signal 
bins’ median %RSD %RSD range median %RSD %RSD range 

Fish          
chub liver - M:W 1D NMR 682 4.6 53   

 liver - perchloric acid 1D NMR 682 20.6 267   
3-spined stickleback liver - M:C:W 1D NMR 914 3.4 32   
European flounder liver - M:C:W 1D NMR 1166 3.1 34   

 liver - M:C:W pJRES NMR 1202 12.5 58   
 liver - M:C:W 2D JRES NMR 1840 19.8 97   
 liver field (Alde) M:C:W 1D NMR 1073   30.1 a 183 
 liver field (Tyne) M:C:W 1D NMR 991   24.9 198 

dab liver - M:C:W FT-ICR MS 219 13.1 68   
fathead minnow testis b control M:C:W 1D NMR 690   29.4 c 122 

 plasma b control pH 7.4 buffer added 1D NMR 524   58.4 174 
 urine b control pH 7.4 buffer added 1D NMR 273   52.9 146 

Marine invertebrates          
red abalone foot muscle - perchloric acid 1D NMR 989 5.4 179   

 foot muscle d healthy perchloric acid 1D NMR 964   16.0 125 
 foot muscle diseased perchloric acid 1D NMR 691   21.5 146 
 digestive gland d healthy perchloric acid 1D NMR 919   19.7 132 
 haemolymph d healthy perchloric acid 1D NMR 671   25.2 92 

Mediterranean mussel adductor muscle - M:C:W 1D NMR 1088 6.1 56   
 adductor muscle field M:C:W 1D NMR 938   24.4 111 
 adductor muscle laboratory M:C:W 1D NMR 754   26.0 138 
 mantle field M:C:W 1D NMR 1044   23.5 90 
 mantle laboratory M:C:W 1D NMR 854   26.9 97 

Mammals          
dog urine - buffer to pH 7.05±0.05 1D NMR 1177 1.6 51   
rat brain e control perchloric acid 1D NMR 702   7.2 87 

 plasma e control pH 7.4 buffer added 1D NMR 852   8.0 106 
 urine e control pH 7.4 buffer added 1D NMR 981   32.2 164 

human immortalised 
K562 cell line cell extract - M:C:W 1D NMR 1054 14.0 90   

 cell extract untreated M:C:W 1D NMR 682   20.5 84 
 cell extract treated M:C:W 1D NMR 682   22.0 112 
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a To confirm that spectral processing has a minimal effect on the median RSD, this dataset (originally segmented into 0.005 ppm bins and each spectrum normalised to a total 

area of one) was reprocessed, firstly using a bin width of 0.04 ppm (yielding a median RSD of 29.9%) then using probabilistic quotient normalisation21 (yielding a median 

RSD of 27.2%). 
b All samples obtained from the same fathead minnows. 
c To confirm that spectral processing has a minimal effect on the median RSD, this dataset (originally apodised, Fourier transformed, phased, baseline corrected and calibrated 

using ACD/1D NMR Processor software) was reprocessed using Topspin software, yielding a median RSD of 26.7%. 
d Samples obtained from the same abalone. 
e Brain and plasma derived from one cohort of rats and urine derived from a different group of individuals. 

 



 16

Figure captions 

Fig. 1. Calculation of spectral RSD values. (A) Five overlaid, binned 1D NMR spectra of fish 

liver extracts (bin width of 0.005 ppm). (B) Following removal of bins that contain only 

noise, RSDs are calculated for each remaining bin and then ranked according to bin signal 

intensity. A trendline (with running median of 10 bins) highlights that the RSDs are largely 

invariant to signal intensity. (C) Histogram of RSD values showing a right-skewed 

distribution. (D) Boxplot of RSD values which summarises succinctly the lower quartile, 

median and upper quartile values, whiskers to display the range of data, and outliers as 

individual data points. 

 

Fig. 2. Boxplots of RSDs derived from technical replicate spectra for 10 independent 

datasets, as described in main text. These datasets facilitate comparisons of the 

reproducibilities associated with two solvent extraction methods, four types of biological 

sample, two analytical techniques, and three types of NMR experiment. Key: M:W = 

methanol:water extraction; M:C:W = methanol:chloroform:water extraction; JRES = J-

resolved NMR spectroscopy; pJRES = 1D projection of 2D JRES spectrum. 

 

Fig. 3. Boxplots of RSDs derived from several NMR datasets that facilitate comparisons of 

inter-individual metabolic variation across classes. (A) Three types of biological sample from 

abalone shellfish. (B) Tissue and biofluid samples from rat. (C) Three types of biological 

sample from fathead minnow. (D) Urine samples from two different species. (E) Comparison 

of husbandry and sampling techniques for two tissues from marine mussels. The RSD range 

has been clipped to show 0-100% only to facilitate comparison across all boxplots. 

 

Fig. 4. Boxplots of RSDs derived from several NMR datasets that compare technical 

variation (in one sample) to inter-individual metabolic variation across classes. (A) Effect of 

sampling site on flounder liver extracts. (B) Effect of drug treatment on K562 leukaemia cell 

lines. (C) Effect of withering syndrome disease on abalone adductor muscle. In all cases, 

technical variability is shown to be smaller than inter-individual variability. 

 

Fig. 5. Mean of the 19 1D NMR spectra of flounder liver extracts for the 19 fish sampled 

from the River Alde. Circles have been drawn around the 20 NMR bins that are associated 

with the largest RSD values (i.e., bins with the highest intra-class variation). 
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