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Summary. This paper is concerned with the spectral representation of the 
two-dimensional Love wave operator, associated with the propagation of 
monochromatic SH waves in a laterally uniform layered strip or half-space. 
A method is presented for obtaining a complete set of proper or improper 
eigenfunctions belonging to the operator, in terms of which the displacement 
field may be represented generally. The method is illustrated by means of 
two-layer models of an infinite strip, overlying another infinite strip or a 
half-space, with constant rigidity and density within each layer. 

1 Introduction 

In many problems of diffraction, reflection and transmission of Love waves at a horizontally 
discontinuous change in elevation (vertical step) or in material properties of layered struc- 
tures, we need to express the displacements on either side of the discontinuity, in terms of 
a complete set of eigenfunctions, proper or improper, associated with the Love wave 
operator. We may wish to do this, for instance, in order to be able to use such powerful 
techniques as the integral equation formulation together with the application of the 
Schwinger-Levine variational principle, which has proved effective in the treatment of 
acoustical (Miles 1946), electromagnetic (Marcuvitz 195 1) and water wave (Miles 1967) 
problems. Ordinarily it is straightforward to determine the eigenfunctions belonging to the 
discrete spectrum, but the calculation of the improper eigenfunctions for continuous spec- 
trum presents greater problems. We, therefore, present in this paper the spectral representa- 
tion of the two-dimensional Love wave operator, associated with the propagation of mono- 
chromatic SH waves in a laterally uniform layered strip or half-space. In the former case, we 
obtain a regular Sturm-Liouville system, and in the latter case a singular Sturm-Liouville 
system, both with discontinuous coefficients and corresponding interface conditions. Such 
systems have been discussed in detail by Sangren (1953) and Stallard (1955). Hudson (1962) 
has applied Sturm-Liouville oscillation theorems to the Love wave operator for such a 
medium. 
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226 M. H. Kazi 

The spectrum of eigenvalues, when the layered structure is of finite depth, is discrete 
(i.e. a point-spectrum), whereas the spectrum for a layered half-space is the disjoint union 
of the point-spectrum, giving rise to proper eigenfunctions, and the continuous spectrum, 
which yields improper eigenfunctions. These eigenfunctions (proper as well as improper) 
may be generated from a Green function. The essential step is to construct a Green function 
C as a function of a certain parameter A, and to integrate it around a large circle l A1 = R 
in the complex A-plane. For the case of a strip of finite depth C is meromorphic, and the 
sum of the residues at simple poles, lying on the real axis, gives the representation of the 
delta function as a series in the eigenfunctions. For the half-space problem, we have in 
addition to poles, a branch-point singularity. The sum of residues at the poles and the contri- 
bution from the branchcut yield the representation of the delta function in terms of proper 
and improper eigenfunctions. The method which we use here is a straightforward rnodifica- 
tion of the method described by Friedman (1956) and Stakgold (1967). 

2 Equations of motion 

We wish to represent the two-dimensional motion of a laterally homogeneous structure in a 
general way; the motion will consist of waves propagating along the x-axis (see Fig. 1). The 
medium to be considered is made up of N t 1 parallel, isotropic and solid layers. It may be 
finite in depth, with the N t 1 layers contained between two parallel surfaces or may be 
semi-infinite in depth with N layers overlying a half-space. The upper plane surface is sup- 
posed to be stress-free. The lower surface in the case of finite depth may be stress-free or 
may be rigidly futed. In the case of a layered half-space, we assume that the displacements 
are square-integrable as a function of depth, relative to the rigidity function, over the senu- 
infinite interval. 

The density p and the rigidity 1.1 of the material in each layer may vary continuously 
with depth, but are uniform in any direction parallel to the boundaries. The density p and 
the rigidity p may, however, be discontinuous across the N plane interfaces. 

We choose the axes in such a way that the xy-plane coincides with the upper free surface, 
the positive z-axis is directed into the medium and all displacements are uniform in the 
ydirection. The various layers and the interfaces are numbered from the free surface as 
shown in Fig. 1. 

The N interfaces have the equations z =zi, i =  1,2,  . . . , N ,  the upper free plane-surface has 
the equation z = zo = 0 and the lower bounding plane-surface, in the case of finite depth, has 
the equation z = zN+, = H. 

We shall consider horizontally polarized shear waves only, which means that there are no 
displacements in the x and z directions and the motion is in the y-direction only. Let 

PN-8 
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Figure 1. Ceometry of the problem. 
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The Love wave operator 227 

u(x, z .  t )  be the y-component of displacement. It must satisfy the differential equation 

a2v a 
atz ax ( 3 a 3  3 p(z)- = - p ( z ) -  + - p ( z ) -  , 

where 

when z E Ii = [ z :  zi < z < z i+  1, i = 0 , 1 , .  . . , N .  (In the case of a layered half-space, we take 
IN = ( z :  zN < z } . )  We assume that the functions pi(z), api/az and p i ( z )  are continuous and 
pi and pi are positive in the subintervals Ii ,  i = 0, 1 ,  . . . , N and that their limits, when z + zi 
or zi+l are finite. 

In order to obtain a general representation, we first of all examine harmonic waves, 
travelling in the positive x-direction with positive real frequency w and wave number k: 

v ( x ,  z ,  t) = V ( z )  exp [i(wt - kx)] . (2.3) 
(We shall assume w to be fixed and choose k to satisfy the propagation conditions.) 
Equation (2.1) becomes 

L being the Love wave operator. 
The interface conditions of welded contact between the layers are given by the equations: 

V k ( Z k )  = V k - l ( Z k ) ,  

P k ( Z k )  V&k) = P k - l ( Z k )  V;r--I(Zk) ,  

k = 1,2, . . . , N ,  

and 

where (') denotes differentiation with respect to z .  
The end-conditions for the finite depth problem will be chosen as 

or 

1 Vi(0) = 0 

Vh(H) =o.  

For the layered halfispace problem, we shall assume, in addition to the end-condition 
VA(0) = 0, the following condition: 
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228 M. H. Kazi 

The system (2.4)-(2.8) is a regular Sturm-Liouville (S-L) system, and the system 
(2.4)-(2.6), (2.9) is a singular S-L system, with N points of discontinuity and corre- 
sponding interface conditions. Such systems have been discussed in detail by Sangren (1953) 
and Stallard (1955). Hudson (1962) has applied standard Sturm-Liouville theory to investi- 
gate the existence of Love waves in a heterogeneous medium and to find the form of 
variation of the wavelength and the group velocity of the waves with period. Here, we shall 
describe a technique, based upon the use of Green’s function, to obtain the representation of 
any displacement in terms of the proper and improper eigenfunctions belonging to the 
system. We will seek wider application by taking a more general form of the S-L problem. 

3 Regular S-L systems with discontinuous coefficients. The finite depth problem 

Consider the differential equations 

defined over an interval (a, b),  where 

d 

and () denotes differentiation with respect to z ;  A is a parameter, real or complex. (Equation 
(3.1) reduces to (2.4) when p ( z )  = -r(z) = p(z ) ,  q ( z )  = p ( z )  uz and A’= kZ.) 

Let 

a = zo < z ,  < z2 < . . . < ZN+I  = b ,  

and p ( z )  = p,(z), q ( z )  = q,(z), r ( z )  = r;(z) and y ( z )  = y i ( z ) ,  when Z E I ~  = { z :  zi < z < ~ j + ~ } ,  

j = 0, 1,. . . , N .  We assume that in each subinterval Ii, the functions pj (z ) ,  4 i ( z )  and r j ( z )  are 
continuous and single-valued and that their limits when z tends to zi or zj+l exist and are 
finite. Moreover, r (z )  does not vanish at any point of a subinterval and preserves the same 
sign in all the subintervals. 

We suppose that at each interface or point of discontinuity zk ,  k = 1,2,. . . ,N,  the y i  
satisfy the conditions 

yk(zk) = dkYk-I(Zk)+ eky ; - , (Zk)  (3.2a) 

yL(zk) = bkyk - I ( z k )  ’ C k Y k -  I(zk)? (3.2b) 

and at end-points y ( z )  satisfies the Sturmian conditions: 

Bacv) = ~ l Y ( a ) + a 2 Y f ( a )  = 0, 

Bbcv)  = Ply@) +B*u’(b) = 0, 

where 

I ~ I  I + la21 # 0 and 1011 + 1021 + 0. 

The system (3.1)-(3.3) is the regular, self-adjoint S-L system with N points of dis- 
continuity. The usual results of ordinary S-L theory for regular systems hold for discon- 
tinuous, regular, S-L systems with interface conditions after necessary modification. We 
quote the following results, the proofs of most of which can be found in Sangren (1953): 

(1) The eigenvalues A, of the system are real, if the following conditions are satisfied: 
(a) r ( z )  preserves the same sign and does not vanish throughout its domain of definition, 

dkck - bkek # 0, 

(3.3a) 

(3.3b) 
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The Love wave operator 229 

(b) p i ( z )  is positive or identically zero in the subinterval If ,  i =  0, 1 , .  . . , N and for at least 
one subinterval p i ( z )  > 0, (c) cidi - biei > 0 ,  j = 1 , 2 ,  . . . , N .  

(2) The eigenfunctions form a complete orthonormal set. The modified orthonormality 
condition is given by: 

where @,(z) and &(z)  are the normalized eigenfunctions belonging to the distinct eigen- 
values A, and A,, respectively, @,(z) denotes the complex conjugate of @,(z), and A ( z )  
is a piecewise constant function defined by 

where 

and A. is a non-zero constant which may be chosen arbitrarily. Condition (3.6) ensures the 
self-adjointness of the system. 

(3) The spectrum of eigenvalues is discrete. 

We now return to the system (2.4)-(2.8). It is a self-adjoint. regular S-L system with 
IV points of discontinuity and IV interface conditions with 

pi = -ri  = p i ( z ) ,  i = 0, 1, 2, . . . ,  N ,  4i = piw2, X = k Z  

dk = 1 ,  ek =o,  bk = o  and ck = p k - ] ( Z k ) / p k ( z k ) ,  k = 1, 2, . . . ,/v. 
Hence 

We choose A.  = 1, thus giving Aj = 1, i =  1 , 2 , .  . . , N .  The conditions (a), (b), (c), given 
above are all satisfied. Hence the results ( I ) ,  (2) and (3) are valid and the orthonormality 
condition of eigenfunctions becomes: 

(3.7) 

Hudson (1962) has also shown that the Love waves exist for any variation in density, 
such that it is integrable as a function of depth, and any variation in rigidity such that i t  is 
a piecewise continuous function of depth. 

4 Green’s function for regular S-L systems. The formula for spectral representation 

Green’s function C ( z ,  { ;A)  for the S-L system (3.1)-(3.3) satisfies the following con- 
ditions: 

(Gl) Gi(z,  f ;  A), the restriction of the function C ( z ,  { ;A)  to the interval z, G z G z,+], 
j = 0, 1,  . . . , N ,  is continuous at each point of the interval. 
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230 M. H. Kazi 

(C2) Each Gj(z,  5 ;  A) possesses a continuous first-order derivative for j + k ,  where k is 
such that { € I k ;  Gk possesses a continuous first-order derivative at each point of the interval 

except at the point z = 5 ,  where it has a jump discontinuity, given by: 
1 

(c3) L ( G j ) = o , z E b , j #  k ;L(Gk)=O,Z#  {. 
(G4) C(z ,  {; A) satisfies the interface conditions (3.2) and the end-point conditions(3.3). 
The inhomogeneous problem, where y satisfies 

L64 - AP(Z)Y = f ( z )  (4.2) 

together with equations (3.2) and (3.3) can be solved with the help of Green’s function of 
the associated homogeneous problem. y ( z )  is given by 

We can also set up the series expansion ofy(z) in terms of the complete set of normalized 
eigenfunctions {&(z)} of the homogeneous system. Let 

Forming the generalized inner product (relative to the weight function A ( z ) p ( z ) )  of 
equation (4.4) with @k(Z),  we obtain: 

(Y(z ) ,  @ k ( Z ) )  = a n  ( @ P I ?  @ k )  = a k ,  
n 

Equations (4.5) and (4.6) yield the following representation of the delta function: 

Next, we find the bilinear series for Green’s function. On multiplying the differential 
equation in (4.2) by A(z)@,(z )  and integrating with respect to z between the limits a to b ,  
we get: 
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The Love wave operator 

But 

Ja Ja 

From (4.4) and (4.1 l), we obtain 

which is the unique solution of (4.2). 
In the case f ( z )  = 6 (z  - {), y ( z )  = G ( z ,  {; A) and so 

23 1 

(4.9) 

(4.10) 

(4.1 1) 

(4.12) 

(4.13) 

which is the bilinear series for C ( z ,  {;A). It can be shown (Stakgold 1967) that Green’s 
function G(z ,  f ;  A) is a meromorphic function of A with simple poles located at the points 
Al, h2, . . . , An . . . on the real axis. On integrating (4.13) around a large circle 1x1 = R in the 
complex A-plane and using (4.7), we find 

(The limiting process is such that R does not take the values I An I.) 
For the system (2.4)-(2.8), the formula (4.14) becomes: 

(4.14) 

(4.15) 

The equation (4.15) is useful, because it enables us to find the spectrum and the corre- 
sponding eigenfunctions from the knowledge of Green’s function. In order to determine 
the eigenfunctions of the problem, we integrate the Green function C ( z ,  {; A) over a large 
circle of radius R in the complex A-plane, and find the residues at the poles. The set of poies, 
all lying on the real axis in the complex A-plane, constitutes the spectrum of eigenvalues. The 
corresponding eigenfunctions normalized according to the condition: 

( @ m , @ n )  = Fmn (4.16) 
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may then be identified from the sum of the residues. The representation of the delta func- 
tion as a sum over eigenfunctions can be utilized to obtain similar representation for any 
function u(z) .  We shall illustrate the method by means of a two-layer model, with piecewise 
constant distribution of the rigidity and the density functions, in Section 7. 

5 The condition at  infinity for the layered half-space problem 

If in the system (3.1)-(3.3), (3.6), a or b is infinite, or if on the finite interval r (x )  vanishes 
or q ( x )  or p ( x )  become infinite at the end-points, then the S-L system is called a self- 
adjoint singular S-L system with discontinuous coefficients and interface conditions. 

Since the interval is semi-infinite in the layered half-space problem, the system (2.4)- 
(2.7), (2.9) is a singular S-L problem with N points of discontinuity and corresponding 
interface conditions. The method for finding the spectral representation of the Love wave 
operator associated with the layered half-space problem is based on the integration of 
Green’s function in complex wave-number domain, as in the case of the finite depth problem. 

First of all, let us consider the Green function G ( z ,  { ;A)  which is the solution of the 
system: 

interface conditions (3.2), 

together with a condition at infinity. It is the condition at infinity which presents certain 
difficulties for the construction of a unique solution to the singular problem. The difficulty 
may be investigated by the following argument. 

Let @(z,  A) and J / ( z ,  A) be two linearly independent solutions of the associated, homo- 
geneous differential equation: 

L ( u ) -  Ap(z)u  = 0, (5.2) 

satisfying the interface conditions (3.2) and the following initial conditions at the point a ;  

(5.3a) 

(5.3b) 

where aI and a? are real and laI I + la2 I + 0. 
Each solution of 5.2 (except the multiples of J / )  can be expressed as a multiple of 

u = @ + m J / ,  (5.4) 

where m is a complex number. 
Further, we impose the following boundary condition at a point b ,  < 00: 

P,u(bo, A) +P2r(bo) u’(bo, X) = 0, (5.5) 

where 0, and pz are arbitrary real numbers and I P I  I + 10, I + 0, and investigate the limit as 
bo+ 00. Following the argument given by Stakgold 1967, Section 4.4), it can be shown that 
u = @ + mJ/ satisfies (5 S), if and only if m satisfies the equation: 

@,) [ W(@, & bo) + mmW($, 5; 6,) + wJ/, & bo) + f i .  w#J, $; MI = 0,  (5.6) 
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The Love wave operator 233 
where bar denotes the complex conjugate and W(@, 5; bo) is the Wronskian evaluated at the 
point bo. As the ratio h = fil/fiz takes up all real values (and provided $(A) # 0, m describes a 
circle in the complex plane with 

As bo increases with h futed, the radius R decreases and each circle is contained in those for 
smaller values of bo. Hence in the limit as bo -+ 00, the circles approach a limit-circle C,(h) 
or a limit-point rn,(h). It can be further shown that if m = m&) or m lies on C,(X), then 
the solution u = mJ/ + @ is square-integrable over the interval (a, m), relative to the weight 
function A ( z )  p ( z ) .  It follows from (5.8) that in the limit-point case there is just one solution 
u = @(z, A) + rn,(h) J / ( z ,  h),  which satisfies the condition: 

and in the limit-circle case the independent solutions J/ and 4 + mJ/ and therefore every 
solution of (5.2) satisfies the condition (5.9). We recall that we assumed 9 ( h )  f 0. It can be 
shown (Stakgold 1967, Section 4.4), that if for some value of h every solution of (5.2) 
satisfies the condition (5.9), then so does every solution for any other value of A .  We 
conclude therefore, that in the limit-circle case all solutions are square-integrable, relative 
to the weight function A(z)  p(z ) ,  over the interval (a, a). This is the extension to singular 
S-L systems with discontinuous coefficients and interface conditions of the following 
fundamental theorem due to Weyl. Defining the s-norm to be 

we have: 

W E Y L ’ S  T H E O K E M  

Let a be a regular point and b a singular point and consider the equation 

(-pu’)’ +qu - Xsu = 0, 

where p ,  q ,  s are continuous for a G z < b.  

a G z < b,  (5.10) 

1. If for some particular value of A, every solution is of finite s-norm over (a, b), then for 

2. For every h with $(A) # 0, there exists at least one solution of finite s-norm over 

The ordinary Love wave operator, when the substratum is a homogeneous half-space, for 
example, is in the limit-point case at infinity, and so the boundary condition at infinity may 

any other value of A ,  every solution is again of finite s-norm over (a ,  b). 

(0, b) .  
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be taken to the requirement that the solution must be of finite p-norm. This confines the 
solution in exactly the same way as a homogeneous boundary condition at a finite point and 
therefore with equations (5 .l) define the solution precisely. 

6 Singular S-L systems with discontinuous coefficients. Spectral representation for the 
layered half-space problem 
The Green function C ( z ,  { ;A)  is characterized as the only solution of the system (5.1) 
which satisfies: 

when .f(A) + 0 and the singularity at infinity is of the limit-point type. For real values of 
A, we apply the principle of analytic continuation and define the Green function as the limit 
of G, regarded as a function of complex A, as A approaches the real axis. As h may approach 
the real axis from either side, we may ensure uniqueness by supposing, for example, that 
f(&) > 0 - see Friedman (1956, pp. 230-231). 

We follow Stakgold (Section 4.4 loc. cit.) in assuming the validity of the formula 

(4.14) 

in the singular as well as the Iegular case. 
Unlike the Green function in regular case. this Green function G(z ,  {; A), regarded as a 

function of A in the complex A-plane has, in addition to poles, branch-point singularities 
described by Friedman (pp. 214 loc. cit.) and Stakgold (Section 4.4 loc. cit.) the integral 
reduces to a sum of residues at the poles plus the integral along the branch-cut. The 
spectrum (of eigenvalues) is the disjoint union of the discrete spectium and the continuous 
spectrum. The points belonging to the discrete spectrum are real and arise from the poles of 
the Green function. The continuous spectrum is the set of points on the branchcut along a 
portion of the real axis. We obtain the following representation of the delta function: 

where @n ( z )  are the eigenfunctions and $ ( z ,  A) are the improper eigenfunctions. 
The normalization of eigenfunctions {@,, ( z ) }  may be achieved by the condition 

- 
(h, ( z ) ,  Al ( z ) )  = A ( z )  P ( Z )  &?I ( z )  @n ( z )  dz = 6,n. 

In order to obtain the normalization conditions for the improper eigenfunctions 
( $ ( z ,  A)), we multiply (6.2) by $({, A’) and integrate froma to m t o  get 

$ ( z ,  A’) = C@,(Z )  ($({, A’), @ n ( W  + $ ( z ,  A) ($(C? A’)? $(C, W d A .  (6.4) s 
For (6.4) to be valid, we must have 
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The Love wave operator 235 

and 
- 

( $ ( z ,  A’), $ ( z ,  A)) = A ( z ) p ( z )  $ ( z ,  A’) $ ( z ,  A)dz = 6(X - A’). (6.6) L- 
Hence the improper eigenfunctions must be normalized according to (6.5) and (6.6). 

For other methods of obtaining improper eigenfunctions along with their proper normaliza- 
tions, reference may be made to Kato (1966) and Friedman (1956). 

The spectral representation of the Love wave operator for a layered half-space can be 
found by the procedure given above. For the system (2.4)-(2.6), (2.9), the formulae (6.2), 
(6.3), (6.5), (6.6) become: 

(6.9) 

( $ ( z ,  A’), $(z ,  A)) = p ( z )  $ ( z ,  A’) $ ( z ,  A)dz = 6(h  -A‘) .  (6.10) L- 
Any function V(z),  which is square-integrable, relative to the weight function u(z), can 

be expressed as 

(6.1 1) 

We shall find the spectral representation of the Love wave operator for a homogeneous 
surface layer, overlying a homogeneous half-space, in Section 8. 

7 Example I: Spectral representation of the Love wave operator for an infinite layered strip 

As an illustration of the method, outlined in Section 4 ,  for finding the spectral representa- 
tion of the Love wave operator associated with layered strips, we consider an infinite strip 
consisting of a layer of depth H ~ h,  rigidity p 2 ,  shear velocity Bz and density pz ,  overlaid 
by another infinite strip, consisting of a layer of depth h(<H), density p I ,  rigidity pl  (<p2)  
and shear velocity 0, (<Pz) (see Fig. 2). We suppose the density and the rigidity of each layer 
to be constant and the top and the bottom plane-surfaces to be stress-free. 

Let 

u(x,  z ,  t) = V(z) exp [i(wt - kx)]  

where 

V ( z )  = F(z), 0 < z < h 

V ~ ( Z ) ,  h < z < H .  
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- 0  
a vz -- 
d z  

Figure 2. 

Then V, ( z )  and V2(z) satisfy the following equations: 

K(h) = U h ) ,  (7.3a) 

PI V,’(h) = PZG’(h), (7.3b) 

K’(0) = 0, (7.4a) 

&’(H) = 0. (7.4b) 

First we find the Green function C ( z ,  {; A) belonging to the system (7.1)-(7.4). 

(a) G R E E N ’ S  F U N C T I O N  

Let 
C(Z, {; A) = cij (7.5) 

where i, j =  1 , 2 ;  the subscript i refers to the z-interval and the subscript j refers to the 
{-interval, and ‘l’, ‘2’ refer to the intervals (0, h) and (h, H), respectively (see Fig. 3). Then 
Cii determine the Green function completely. 

I 
f 

Figure 3. The Character of Green’s 1:unction. 
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The Love wave operator 

(i) If 0 < { Q h then GI1 and G2, satisfy the differential equations: 

and 

together with the following conditions: 

GII = GZI at z = h, 

pI - = p2 - at z = h, 
ac11 ac21 

az az 

237 

(7.6) 

(7.8a) 

(7.8b) 

(7 .8~)  

(7.8d) 

(7.8e) 

We find 

Y I  1 
Gll(z, c; h)  = - cos u l c  cos ulz + - [sin ul ( -  cos uIz .e({ - z) + cos ulc sin u,z . e(z - {)I, 

and 

PI 01 P1 01 
(7.9) 

cos 01 { 
= - {y, cos ulh + sin u,h } . 

PI 01 

cosh u2(z - H )  

cosh u2(H - h)’ 
G21k 

where 

plul + p2u2 tan ulh tanh u2(H - h )  

plul tan u,h - p2u2 tanh u2(H - h$ 
Y1 = 

and 

1 
= o ,  { < z j  

e ( c - Z ) = i ,  c > z  

is the Heaviside unit function. 

(ii) If h 4 Q H, then GZ2 and G12 satisfy the differential equations: 

(7.10) 

(7.1 1) 

- +u:G12 = 0 
az GI2 

azz 
(7.12) 
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and 

(7.13) 

together with conditions (7.8a)-(7.8d), given above, and the conditions: 

G22(z, f + 0; h) = Gzzk f - 0; A), (7.8e') 

and 

(7.8f) 

1 cos U I Z  
GI&, f ;  A) = - - cosh uZ(H - f)  . {yz cosh u2(H - h) - sinh u2(H - h) )  - 

1-1202 cos u, h ' 
(7.14) 

and 
Y2 1 

GZZ(Z, f ;  A) = - - COSh U ~ ( Z  - H )  . cash ~ z ( f  - H) - __ 
1-1202 1-1202 

x [ { sinh (z - H) 0,. cosh (H - f )  0,. O (f - z )  + sinh (f - H) uz 

x cosh(z - H)q.O(z  -{)}I, (7.15) 
where 

plol tan q h  tanh (H - h )  9 - pzuz 

p1 uI tan ulh - pZuz tanh 9 (H - h)  
Y2 = 

It may be noted that 

(7.16) 

1 cos u1 f cosh uz(z - H) 

1-11 01 tan alh - pzuz tanh uz(H - h) cos alh cosh uz(H - h)' 
Gz(f, 2; 1) = GZl(Z, f ;  h)  = 

(7.17) 
and that the Green function is symmetric, as shown in Fig. 3. 

(b) S P E C T R A L  R E P R E S E N T A T I O N  

We use formula (4.1 5): 

(4.15) 

to find the spectrum and the corresponding orthonormal and complete set of eigenfunctions 
{ 9" (z)}. 

(i) Consider 

f I 1  = lim f Gll(z, f ; h ) d h  
R + -  2ni 1 ~ 1 ~ ~  

1 
= lim Z! f [TI  c o s u I ~ c o s u l z + - { s i n u l ~ . c o s a l z - e ( f - z )  

R + -  2ni I A ~ = R  pl01 1-11 01 

+coso,f~sino,z-O(z - f)} 

where yI is given by (7.1 1). 

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/47/1/225/698901 by guest on 21 August 2022



The Love wave operator 239 

We note that the integrand is an even function of ul and 9 and therefore the points 
h = wz/p: and X = w2/B; are not branch-points of the integrand. The only singularities of GI1 
are poles, which are the roots of the equation 

p1 u1 tan u,h - p2u2 tanh u2(H - h) = 0 (7.19) 

the LHS being the denominator of 7,. All the poles are simple and are located on the real 
axis. 

On evaluating (7.18) as the sum of the residues at the poles: 

p, u,@) + p2uz(n) tan u,@)h . tanh uz(n) (~  - h )  m 

111 = - 1 . sos u p {  * cos u p z  
n = l  plo,@)(a/ah) [plu, t a n q h  - p2o2 t a d  O ~ ( H  - h)]A=h, 

(7.20) 
where 

{A,} (n = 1 ,  2 . . .) being the infinite set of roots of equation (7.19). 
Since 

1 1 

we have 

- [plu, tan ulh - p2u2 tanh u2(H - h)],,, 
ah 

a 

+ p 2 ( H  - h) sech' u,(")(H - h)] . (7.21) 

It is convenient to express (7.21) in terms of the surface phase and group velocities. If 
we regard equation (7.19), which is also the dispersion equation between h and w, we have: 

phase velocity C, = T2 (7.22) 

and 

w 

An 

dw 
group velocity r / ,  = 2X:' - . (7.23) 

d An 

We obtain 

- tanh u,(")(H - h) + p2(H - h) - [plul tan ulh - p 2 4  tanh u2(H - h ) ] h ,  = - - 
ah 2 

a 1 PZ 

x sech'u,(")(H - ( ~ ~ z - p ~ z ) ( ~ ~ z - ~ ' C ~ l ) - l .  

(7.24) 
Substituting (7.24) in (7.20) and simplifying, we get 

(7.25) 
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240 M. H. Kazi 
where 

cos u p z  
@(:'(z) = 0, -- 

cos u y  ' h ' 
(7.26) 

(7.27) 

(ii) Next, we consider 

Iz2 = lim - 

1 1 
= liin - f - [y2 cosh u2(z - H )  . cosh 4(f - H )  + sinh (z - H )  u2 

R + m  2ni I A ~ = R  p2U2 

x cash u Z ( ~  - H )  . O  (f - Z) + sinh(f - H )  02 

x cosh(z - H )  4 . 6  (Z - f)] dh, (7.28) 

where y2 is given by (7.16). 
Again the integrand is an even function of u, and %, and so the points h = 0 2 / p :  and 

h = u2//3: are not branch-points of the integrand. The poles of the integrand of I,, are the 
same as those of f I l .  Calculatifig the sum of the residues at the poles, we get 

I22  = c cosh up'(. - H )  

x cosh u p )  (f - H ) ,  

m &')u(:) tan u(:)h.tanh $)(H ~ h )  - p2@) 

n =  I p2@) (a/ah) [plul tan a l h  - p2u2 tanh u ~ ( H  - h ) J h = ~ ,  

m p;2 - (J-1c-I ,I 2 cosh # ) ( H  - Z) . cosh #'(H - f)  = c -  
,, = I p2 fiz - 0;' [sinh 2up)(H - h) + 2@)(H - h) ]  ' 

(using (7.24) and simplifying) 

where 

cost1 up' (z - H) 
&'(z) = 0, 

cosh u p )  (H - h )  ' 

(7.29) 

(7.30) 

and Dn is given by (7.27). 
(iii) We now consider: 

cos ol{.cosh U ~ ( Z  - H )  dh  
= lim I!-$ (7.31) 

R-- 2ni I A ~ : ~  c o s q h  cosh u2(H - h ) { p l u ,  t a n q h  - p2u2 tanh u2(H - h)j 
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The Love wave operator 24 1 

Again, the poles of the integrand are the same as those of the integrands in fI1, fzz, and 

On evaluating (7.31) as the sum of the residues at the poles - using (8.24) - we get 

(7.32) 

X = wz//3:, oz//3: are not branch-points of the integrand. 

121 = f @%). @Y’(z>, 

where @?) and @$”) are given by (7.26) and (7.30). 
Since G2,(z, {; A) = GI,({, z; A), we also have: 

n = l  

(7.33) 

From (4.15), (7.25), (7.29), (7.32)-(7.33), we obtain the following representation of 
the delta function: 

where 

(7.33) 

(7.35) 

(7.36) 

and @p’(z) and @p’(z) are given by (7.26) and (7.30). 
I f  f ( z )  is any function of finite p-norm, then on multiplying (7.34) byf’({) and integrat- 

ing with respect to { over the interval ( O , H ) ,  we obtain the following representation for 
f ’ ( z ) :  

where 

In particular, whenf(z) = @‘“’(z) we get the following orthonormality relations: 

(@(flj’, @ ( f l ’ )  = p z )  @(“j)(Z) @‘“’(z) dz = 6,,,, 

which may be verified by direct integration. 

(7.37) 

(7.38) 

(7.39) 

8 Example 11: Spectral representation of the Love wave operator for a half-space 
We shall now find the spectral representation of the Love wave operator, associated with a 
homogeneous layer of thickness h ,  density p I ,  rigidity p,, shear velocity BI, overlying a 
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homogeneous half-space of density pz,  rigidity kz > p ,  and shear velocity p2 > 0, (see Fig. 
4). The method we shall follow is described in Section 6. The system of equations is given 
by (7.1)-(7.4a) with (7.4b) replaced by the following condition: 

(a) G R E E N ’ S  F U N C T I O N  

Let 

G ( z ,  {; h) = cq 

where Gij have the same meaning as before - see explanation after (7.5) - with the interval 
(h, H) replaced by (h, -). 

(i) If 0 Q [ Q h then GI, and Cz, satisfy the differential equations (7.6) and (7.7) together 
with conditions (7.8a)-(7.8~), (7.8e)-(7.8f) and the condition 

(7.8d’) 

First of all, we observe that, since Vz= exp (-uzz) and V z =  exp (azz) are two linearly 
independent solutions of the differential equation in z > h,  it follows that one of the 
solutions u(z) is not of finite p-norm. Hence the Love wave operator is in the limit-point 
case at infinity, as noted earlier in Section 6. 

z 

Figure 4. 

We find 

Yl 1 

x [sino,{cosu,z.e({-z) + c o s o , { s i n u , z - ~ ( z  -- {)I 

Gll(Z, c ;  A) = - cosa,{. c o s q z  t - 
PI 01 1-11 (JI 

and 

where 

(8.5j 
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The Love wave operator 243 

and choosing 

Re U, > 0 for .$(A) # 0. 

(ii) If h G f then GI, and C,, satisfy the differential equations (7.12), (7.13) together with 

We obtain 
the conditions (7.8a)-(7.8c), (7.8df)-(7.8f). 

1 1 
C O S O , ~  2 ~ 2 ~ 2  

C12(z, {;A) = - - . exp [-oz(f - h)]. [r; - 11 cos qz, 

and 

and that the Green function G is symmetric. 

(b) SPECT R A L R E P R E S E N T A T I O N  

In order to find the discrete and the continuous spectrum along with the corresponding 
eigenfunctions {&(z)} and improper eigenfunctions {J/(z, A)} we use formulae (4.14) and 
(6.2): 

x {sin olt  . cos ulz s o  ({ - z) + cos alf - sin ulz - 8  (z - {)} dh. 1 (8.10) 

We note that h = w’/p,’ is the only branch-point singularity of the integrand and the 
poles of the integrand are the roots of the equation 

1 . ~ ~ 0 1  tan 0 4  = P Z ~ Z ,  (8.1 1) 

which is the period equation for the Love waves and appears in the denominator of 7;. 
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244 M. H. Kazi 

The poles are all simple, finite in number, and are located in the open interval [o’/fl;, 
w’/fl;]. The set of these poles constitutes the discrete spectrum. The continuous spectrum 
is related to the integral over the branch-lines P’, P-’ and the path of integration is shown 
in Fig. 5. 

, I 
I Love poles - 

Figure 5. The Contour of Integration. 

The condition Re(oz)>O means that on the branch-line P’, a,=& and on P-, 

The contribution to dl from P’ and P- is 
02 = - isz, where sz = (oz/fl$ - A)”’ is real and positive for A < o’/fl$. 

(8.12) 

where the superscripts + and - refer to the values at  the branches P’ and P- respectively. 
But 

2iPl P’ol sz 7;’ - 7;- = 
y ~ o ~ s i n ’ o l h  +&s; cos’o,h’ 

and so the branch-line contribution to the integral (8.10) is given by 

= - 1 w2’P: $ ] ( z ,  A) A) dh 

where 

(8.13) 

(8.14) 

(8.15) 

and 

(8.16) 
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The Love wave operator 

~ ( 2  ~2 cot 01 h 

( PI01 
e = tan-' 

The sum of the residues at the finite number of the poles, which lie in the interval 
[w2/D:, w2/D:] is given by: 

pl u p )  + p2 u p )  tan o,(")h f cos a,("){ . cos a,(")z, 
n = 1 ccl of") (wax) [pl 01 tan olh - 1 4 0 2  I A =  A, 

where 

and 

Now 

a 1 v2 
- blul tan olh - p2u2]An = - - 
ah 2 0 2  

where C' and U, denote the surface phase and group velocities respectively. 
From (8.18) and (8.19), we obtain the contributions from the poles as 

Ccr;' - G2) a2 - u;'G')-', 

where 

and 

From (8.10), (8.14) and (8.20) we obtain 

N 

n = 1  
G I  = 1 @!")(z)@!"k) - $l(Z, A) $I({, A) dA, 

where $1 is given by (8.15) and @?) is given by (8.21). 
(ii) Next, we consider 

245 

(8.17) 

(8.18) 

(8.19) 

(8.20) 

(8.21) 

(8.22) 

(8.23) 

Again the point A = 02//3$ is the only branch-point of the integrand and the poles, being 
the zeros of the denominators of the factor 7; are the same as for Iil. 
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On !2+ and Q-, we have 

G& = Gz;*, 

where * denotes the complex conjugate, and so 

C;, - Gz; = 2i.Yi(G;2). 

Moreover, 

plol tan q h  + ip2sz 
plul tan q h  - ip2s2 

$+ = = exp(2iB), 

where 0 is given by (8.1 7). 
Thus 

i 

P2 s2 
GiZ - ci2 = .- [- cos (s2(z + 5 - 2h) - 28) + COS{ S& - z)}] , 

2i 

P 2 S 2  
= - sin{ 8 - s2(5 - h)} . sin (0 - s2(z - h)}.  

Hence the branch-line contribution is 

- sin { e  - s2(5 - h)}  . sin { e  - s2(z - h)}dA 

$2(z, A) $ 2 ( 5 ,  A) dA, - _ -  

where 

CA . sin (0  - s2(z - h ) }  
sin 0 

$ 2 k  A) = 9 

and GA is given by (8.16). 
Contribution from the poles is given by 

(8.25) 

(8.26) 

(8.27) 

(8.28) 

(8.29) 

and Fn is given by (8.22). 
From (8.24), (8.28) and (8.30), we obtain 

(8.31) 

(8.3 2) 

where @y'(z)  is given by (8.31) and $2(z, A) is given by (8.29). 
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The Love wave operator 
(iii) Finally, we consider 

247 

dh, (8.33) 

and note that h = u2//3; is the only branch-point of the integrand. The poles of the integrand 
are the same as those for I ; ,  and 112. 

exp [-02(z - h)l 
X 
p1 u1 tan u1 h - ~2 0 2  

Now 

C O S O , ~  sin 0 
C;l-Cil = 2 i -  .- . sin(0 - sz(z - h)}, 

C O S U , ~  ~ 2 ~ 2  

and so the branch-line contribution 

where $1 and $2 are given by (8.15) and (8.29), respectively. 
Contribution from the poles 

N cosu?)c exp [-up’(z - h)l 
= -  n = ~  c C O S C $ ) ~  . ( a /ah )b l~ l  t a n q h  - ~ 2 ~ 2 1 ~ ~  

where 41 and 4~~ are given by (8.21) and (8.31),  respectively. Hence, 

(8.34) 

(8.35) 

(8.36) 

Moreover, since G2,(z, f ;  h) = G12(<, z; A), we have 

From (8.9),  (8.23),  (8.32),  (8.36) and (8.37), we obtain the following representation of 
the delta function: 

(8.38) 

where 

dn’(z) = &’(z), 0 G z < h,  

= #p’(z), h G z ,  
(8.39) 
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(with p(z ) ,  $p ' ( z ) ,  $ p ' ( z )  given by (7.36), (8.21) and (8.31), respectively), are the nomal- 
ized proper eigenfunctions, and 

(8.40) 

(with Gl(z ,  A) and $2(z ,  A) given by (8.15) and (8.29), respectively), are normalized 
improper eigenfunctions. -€t can be verified after some effort, that the normalizing factors, 
which have arisen for eigenfunctions and improper eigenfunctions, are indeed correct. 

If f ( z )  is of finite p-norm over the interval ((I,-), then the representation o f f @ )  in 
terms of eigenfunctions {& ( z ) }  and improper eigenfunctions { $ ( z ,  A)} can be obtained on 
multiplying (8.38) by f(f) and integrating with respect to f from 0 to 00. 

We get 

where 

(8.41) 

(8.42) 

(8.43) 

In particular, if f ( z )  = $'"'(z) or $ ( z ,  A'), then (8.41)-(8.43) yield the following ortho- 
normality relations: 

(8.44a) 

l m p ( z )  $ ( z ,  A) $(z ,  A') dz = 6(A - A') = ( $ ( z ,  A), $ ( z ,  A')), -006 A,A' < u2/fl;, (8.44b) 

9 Conclusions 

The spectral representation enables us to tackle a class of problems associated with the 
transmission and reflection of Love waves at a horizontally discontinuous change in 
elevation (vertical step) or in material properties of layered structures. Alsop (1966) has 
given an approximate method for calculating reflection and transmission coefficients for 
Love waves incident on a vertical discontinuity, which is based upon the representation of 
motion in terms of the discrete Love modes only. The continuous part of the spectrum 
neglected by Alsop (1966) is related to body waves and is of considerable significance. 
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The Love wave operator 249 

The method of integral representation and Schwinger-Levine variational principle 
used by Miles (1946, 1967) in the treatment of acoustical and water wave problems, and 
Marcuvitz (195 1) in Electromagnetic problems, presupposes the existence of a complete 
set of proper and improper eigenfunctions, in terms of which the displacements on either 
side of the discontinuity may be expressed. The present paper fulfils the necessary pre- 
requisite for the application of the method which will be described in a subsequent paper. 
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