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Introduction

Convolutional Neural Nets (CNNs) have been wildly successful for
image classification tasks

However:

They are computationally expensive
Any pooling step reduces the dimensionality by at least 4

Previous work suggests using FFTs to compute the convolutional
mask–even for small filter sizes–to help with computational time

This work suggests using FFTs, and then performing pooling and
learning in the Fourier Transform domain

Introduced spectral pooling can reduce dimensionality by an
user-defined amount (reduces slower than traditional pooling steps)
Spectral parameterization defines the CNN filters in the frequency
domains, which empirically converges 2-5 times faster than the
standard spatial representation with the same result
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Reminder of Fourier Properties

Convolution using DFT: F(x ∗ f ) = F(x)⊙F(f )

Parseval’s Theorem: ||x − x̂ ||22 = ||F(x)−F(x̂)||22
Conjugate symmetry forces R representation–if x ∈ R

M×N , then
y = F(x) ∈ C

M×N has: ymn = y(M−m)mod(M),(N−n)mod(N)

This adds constraints on conjugate symmetry for filters

Differentiation is straightforward because the Fourier transform is an
(orthonormal) linear operator

δR

δx
= F−1

(

δR

δy

)
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(a) DFT basis functions. (b) Examples of input-transform pairs. (c) Conjugate Symm.

Figure 1: Properties of discrete Fourier transforms. (a) All discrete Fourier basis functions of map
size 8× 8. Note the equivalence of some of these due to conjugate symmetry. (b) Examples of input
images and their frequency representations, presented as log-amplitudes. The frequency maps have
been shifted to center the DC component. Rays in the frequency domain correspond to spatial domain
edges aligned perpendicular to these. (c) Conjugate symmetry patterns for inputs with odd (top) and
even (bottom) dimensionalities. Orange: real-valuedness constraint. Blue: no constraint. Gray:
value fixed by conjugate symmetry.
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Spectral Pooling

The first proposed idea is spectral pooling:

Algorithm 1: Spectral pooling

Input: Map x 2 R
M×N , output size H ×W

Output: Pooled map x̂ 2 R
H×W

1: y ← F (x)
2: ŷ ← CROPSPECTRUM(y, H ×W )
3: ŷ ← TREATCORNERCASES(ŷ)
4: x̂ ← F−1(ŷ)

Very simple to understand, not as obvious why this is a good idea
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Figure 2: Approximations for different pooling schemes, for different factors of dimensionality re-
duction. Spectral pooling projects onto the Fourier basis and truncates it as desired. This retains
significantly more information and permits the selection of any arbitrary output map dimensionality.
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Spectral Parameterization of filters

Seek to learn a filter f ∈ C
H×W that is parameterized in the

frequency space

If conjugate symmetry is upheld, then F−1(f ) ∈ R
H×W

Because the Fourier transform is an (invertible) linear operator, the
local minima and gradients are the same–only a change of basis

However, the recent optimization methods (ADAgrad, RMSprop,
ADAM) use diagonal preconditioners, so a different basis can give
vastly different performance

Algorithm 2: Spectral pooling back-propagation

Input: Gradient w.r.t output ∂R

∂x̂

Output: Gradient w.r.t input ∂R

∂x

1: ẑ ← F
(

∂R

∂x̂

)

2: ẑ ← REMOVEREDUNDANCY(ẑ)
3: z ← PADSPECTRUM(ẑ,M ×N)
4: z ← RECOVERMAP(z)
5: ∂R

∂x
← F

−1 (z)
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(a) Filters over time. (b) Sparsity patterns.
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(c) Momenta distributions.

Figure 3: Learning dynamics of CNNs with spectral parametrization. The histograms have been
produced after 10 epochs of training on CIFAR-10 by each method, but are similar throughout. (a)
Progression over several epochs of filters parametrized in the frequency domain. Each pair of columns
corresponds to the spectral parametrization of a filter and its inverse transform to the spatial domain.
Filter representations tend to be more local in the Fourier basis. (b) Sparsity patterns for the different
parametrizations. Spectral representations tend to be considerably sparser. (c) Distributions of mo-
menta across parameters for CNNs trained with and without spectral parametrization. In the spectral
parametrization considerably fewer parameters are updated.
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Experiments

Used CIFAR-10, CIFAR-100, and ImageNet

Used the network:
(

C96+32m
3×3 ! SP#bγHmc×bγHmc

)M

m=1
! C96+32M

1×1 ! C
10/100
1×1 ! GA ! Softmax (5)

Here, by CF we denote a convolutional layer with filters each of size , by SP a spectral pool-

SP is a spectral pooling layer and CF
S
has filters of size S with F filters

Number of layers, penalization, nonlinearity type, and dimensionality
reduction hyperparameters were tuned using

Some other networks were used as well to show comparisons
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(a) Approximation loss for the ImageNet validation set.

Method CIFAR-10 CIFAR-100

Stochastic pooling 15.13% 41.51%

Maxout 11.68% 38.57%

Network-in-network 10.41% 35.68%

Deeply supervised 9.78% 34.57%

Spectral pooling 8.6% 31.6%

(b) Classification rates.

Figure 4: (a) Average information dissipation for the ImageNet validation set as a function of fraction
of parameters kept. This is measured in `2 error normalized by the input norm. The red horizontal
line indicates the best error rate achievable by max pooling. (b) Test errors on CIFAR-10/100 without
data augmentation of the optimal spectral pooling architecture, as compared to current state-of-the-art
approaches: stochastic pooling (Zeiler & Fergus, 2013), Maxout (Goodfellow et al., 2013), network-
in-network (Lin et al., 2013), and deeply-supervised nets (Lee et al., 2014).
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(a) Training curves.

Architecture
Filter
size

Speedup
factor

Deep (7) 3× 3 2.2
Deep (7) 5× 5 4.8
Generic (6) 3× 3 2.2
Generic (6) 5× 5 5.1
Sp. Pooling (5) 3× 3 2.4
Sp. Pooling (5) 5× 5 4.8

(b) Speedup factors.

Figure 5: Optimization of CNNs via spectral parametrization. All experiments include data augmen-
tation. (a) Training curves for the various experiments. The remainder of the optimization past the
matching point is marked in light blue. The red diamonds indicate the relative epochs in which the
asymptotic error rate of the spatial approach is achieved. (b) Speedup factors for different architec-
tures and filter sizes. A non-negligible speedup is observed even for tiny 3× 3 filters.
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