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Abstract. The paper concerns the spectral theory for a class of non-self-adjoint
block convolution operators. We mainly discuss the spectral representations of such
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1. INTRODUCTION

In this work we deal with the spectral theory of a certain class of non-self-adjoint
convolution operators in Banach spaces. One of the most significant approaches
to spectral analysis of non-self-adjoint operators was introduced by N. Dunford,
who defined a spectral operator and studied its spectral properties ([8], see also
[6, 7]). The generalization of spectral resolutions in the sense of N. Dunford was
the concept of chains of projections, which was transferred from the finite dimen-
sional case to infinitely dimensional spaces. The first triangular representations for
a class of non-self-adjoint bounded operators were introduced and developed by
M.S. Livshits [14]. In turn, M.S. Brodskǐi ([2] see also [3]) dealt with triangular
representations for non-self-adjoint operators with respect to spectral chains. In mono-
graphs I. Gohberg and M. Krein [12] and I. Gohberg, S. Goldberg and M.A. Kaashoek
[11] described, among others, resolutions with respect to spectral chains for Volterra
operators.

In this paper we give a spectral decomposition of block non-self-adjoint convolution
operators, generalizing the classical Schur theory on triangular decomposition of
matrices. We also present a construction of invariant chains under the convolution
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non-self-adjoint operator A acting in the Banach space, generated by the block matrix
of the form 



. . . ...
...

...
. . . A0 A−1 A−2 . . .
. . . A1 A0 A−1 . . .
. . . A2 A1 A0 . . .

...
...

... . . .




,

where Aj (j = 0, ±1, ±2, . . .) are finite matrices of the same dimensions.
In this way we shall generalize the results presented in the paper [18] contain-
ing spectral resolutions of non-self-adjoint tridiagonal periodic Jacobi matrices
(see also [16,17] or [10, Chapter 14]) and in the paper [21]. A motivation for our con-
siderations comes from [4] as well as [5]. We also show the applications of our
results to Jacobi type matrices, which appear in many problems in mathematics,
physics, mathematical physics, etc. As a particular case it can be mentioned the Born
–von Karman model of the crystal lattice. It is also worth mentioning that periodic
Jacobi matrices can be treated as a finite-difference analog of the one-dimensional
Hill’s differential operator ([15], see also [10], whose study is based on Floquet’s theory).
Jacobi-type matrices and their associated continuous fractions were for a long time
object of the study for various authors (see [1, 9] and the bibliography given there).

The paper is organized as follows. In Section 2 we recall some key definitions and
properties of chains in Banach spaces from [11] and [12]. Our main results are found
in Section 3, where we shall give a spectral decomposition of block non-self-adjoint
convolution operator with respect to a chain in Banach space. Then we give an
alternative method of constructing an invariant chain under the operator A acting
in a Hilbert space. In Section 4, certain applications of the main results to Jacobi
type matrices are given. Some concrete examples important by themselves are also
presented.

Spectral resolutions with respect to spectral measures and conditions under which
the block non-self-adjoint convolution operator is a spectral or scalar operator will be
described in the next paper.

2. PRELIMINARIES. CHAINS AND TRIANGULAR DECOMPOSITIONS

In this section we outline those aspects and results of general theory of
chains in Banach spaces which will be used later on in basic text of our work.
The material presented is taken mainly from [11] and [12].

Throughout this section X is a Banach space. B(X ) denotes the algebra of all
bounded operators on X to itself. By a projection of X we mean an idempotent
operator P in B(X ), i.e., an operator P ∈ B(X ) for which P 2 = P . In the set P(X )
of all projections on X it can be entered a partial ordering by setting P1 ≤ P2 if and
only if P1P2 = P2P1 = P1. We write P1 < P2 in case P1 ≤ P2 and P1 ̸= P2. For any
projection P ∈ P(X ) there holds O ≤ P ≤ I, where O and I denote the zero and
identity projections on X , respectively.
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A set P of projections P ∈ P(X ) is called a chain on X if O, I ∈ P and P is linearly
ordered with respect to the ordering ≤ inherited from P(X ). If P is a chain on X , then
the set Pc of all P such that I − P ∈ P is also a chain on X . Pc is called complement
chain of P.

A chain P is said to be maximal if P is not properly included in any other chain
(on X ). As follows from Zorn’s Lemma, every chain is contained in some maximal
chain. A pair (P1, P2), where P1, P2 ∈ P, is said to be a jump (or discontinuity) of P
if P1 < P2 and for any P ∈ P either P ≤ P1 or P ≥ P2. The rank of the projection
P2 − P1 is called the dimension of the jump (P1, P2). Chains without any jumps are
said to be continuous. The jumps of a maximal chain can be only one-dimensional.

A chain P on X is said to be invariant under an operator A on B(X ) if PAP = AP
for each P ∈ P. It is said that A is reduced by P, or P is reducing for A, if both P and
Pc are invariant under A, in other words, if AP = PA for P ∈ P.

The approaches undertaken in achieving our main goals essentially involve triangular
representations similar to those due to Schur, well known for the finite dimensional
case. In this context, given a (bounded) operator defined on a Banach space X , we have
in mind the possibility of additive lower-upper triangular decomposition

A = A− + A0 + A+, (2.1)
with respect to an appropriate chain P. In (2.1), A0 is the diagonal of the operator A
(under the assumption that it exists) and is expressed by the following integral

A0 =
∫

P

(dP )A(dP ) (2.2)

along the chain P, whereas A− and A+ are lower and upper block triangular represen-
tations with respect to P, respectively. Moreover, A− and A+ are expressed by

A− =
∫

P

(dP )AP, A+ =
∫

P

PA(dP ). (2.3)

For more information on integration along chains see [3] and [12] (see also [11]).
In particular if the chain P is invariant under the operator A, then

A = A0 + A+,

and A = A0, i.e.,
A =

∫

P

(dP )A(dP )

in case that P is reducing for A.

3. SPECTRAL RESOLUTIONS

In this section, we present the main result of the paper. It concerns spectral decompo-
sition of the considered convolution operators, summing up the extension to them of
the classical Schur theory on triangular decomposition of matrices.
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3.1. BLOCK LAURENT OPERATORS. MATRIX SYMBOLS

Throughout this section Md(C) stands for the set of all d×d complex matrices (d ∈ N).
The usual norms in all spaces Cd and Md(C) are denoted by the same symbol | · |.
By lp(Z;Cd) (1 ≤ p ≤ ∞) we mean the Banach space of all Cd-valued sequences
u = (un), un ∈ Cd (n ∈ Z), such that

∥u∥lp(Z;Cd) :=
(∑

n∈Z
|un|p

) 1
p

< ∞, 1 ≤ p < ∞,

and
∥u∥∞ := sup

n∈Z
|un| < ∞, p = ∞.

Similarly to the above spaces, we define spaces lp(Z; Md(C)) (1 ≤ p ≤ ∞),
in which instead of Cd we consider Md(C).

Lp(T) is a Banach space of all measurable functions u such that

∥u∥p
p :=

∫

T

|u(z)|pdτ < ∞, 1 ≤ p < ∞,

and
∥u∥∞ := ess sup z∈T|u(z)| < ∞, p = ∞,

where T is a unit circle in C

T := {z ∈ C : |z| = 1},

and τ is a normalized Lebesgue measure

dτ := 1
2πi

dz

z
.

Lp(T; Md(C)) is a space of all d × d measurable matrix-valued functions with entries
belonging to the space Lp(T).

Let X be one of the sequence spaces: lp(Z;Cd) (1 ≤ p < ∞), c0(Z;Cd), c(Z;Cd),
l∞(Z;Cd), and let A = (An) be a sequence belonging to l1(Z; Md(C)), i.e.,

∥A∥ =
∞∑

n=−∞
|An| < ∞. (3.1)

We define the operator A : X → X as follows

Au = A ∗ u =
( ∞∑

k=−∞
An−kuk

)∞

n=−∞
, u = (uk) ∈ X , (3.2)

where “∗” denotes a convolution operation.
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A is called a convolution operator, and it is represented by the matrix



. . . ...
...

...
. . . A0 A−1 A−2 . . .
. . . A1 A0 A−1 . . .
. . . A2 A1 A0 . . .

...
...

... . . .




, (3.3)

which entries are matrices given by Ajk = Aj−k (j, k = 0, ±1, ±2, . . .). The matrix
given by (3.3) is also called the block Laurent operator. As is easily seen, the operator
A can be formally expanded into the series

A =
∞∑

n=−∞
AnSn, (3.4)

where S is the (block) shift operator

Su = (un−1), u = (un) ∈ X .

The series in (3.4), due to (3.1), is convergent in the operator norm.
In this way the operator A can be regarded as the value of the matrix-valued

function
A(z) =

∞∑

n=−∞
Anzn, z ∈ T, (3.5)

of the operator S, i.e.,
A = A(S).

The matrix-valued function A(z) is called the symbol of the operator A. Note that
if the convergent condition (3.1) is fulfilled then A(z), z ∈ T, defined by (3.5) is the
sum of an absolutely convergent Fourier series, the coefficients of which are expressed
by the formulas

An =
∫

T

A(z)z−ndτ, n ∈ Z. (3.6)

Letting z = eiφ, 0 ≤ φ < 2π, the expansions (3.5) is writing

A(eiφ) =
∞∑

n=−∞
Aneinφ, 0 ≤ φ < 2π,

where

An = 1
2π

2π∫

0

A(eiφ)e−inφdφ, n ∈ Z.

Note that each convolution operator A satisfying the condition (3.1) corresponds
to the A(z) defined by (3.5) with norm (3.1) and vice versa. The paper also includes
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bounded convolution operators with the symbol that does not satisfy the condition
(3.1). So we define a class of all matrix-valued functions A(·), which are connected
with bounded operators. Let X be one of the spaces lp(Z;Cd) (1 ≤ p ≤ ∞).

Let us define the following class of matrix-valued functions

Sd
p (T) := {A(·) ∈ L1(T; Md(C)) : A ∈ B(X )}.

We are in a position to prove one of our main results.
Theorem 3.1. The class of matrix-valued functions Sd

p (T) (1 ≤ p ≤ ∞) is contained
in space L2(T; Md(C)).

Proof. Let A(·) ∈ Sd
p (T). Then the convolution operator A defined by (3.2), where

An are expressed by (3.6), is bounded, i.e., A ∈ B(lp(Z;Cd)). It follows that for each
u = (un) ∈ lp(Z;Cd) (1 ≤ p < ∞)

Au ∈ lp(Z;Cd).

Let
ũ = (δ0nu0) = (. . . , 0, u0, 0, . . .).

Therefore

Aũ = A ∗ ũ =
( ∞∑

k=−∞
An−k δ0ku0

)
= (Anu0).

This implies that
(Anu0) ∈ lp(Z;Cd)

for each u0 ∈ Cd.
Assume that 1 ≤ p ≤ 2. Then lp(Z;Cd) ⊂ l2(Z;Cd), which entails that

(Anu0) ∈ l2(Z;Cd), u0 ∈ Cd.

As a consequence,
∞∑

n=−∞
|Anu0|2 < ∞, u0 ∈ Cd. (3.7)

Since u0 was chosen arbitrarily, the estimation (3.7) holds for canonical vectors ej

(j = 1, . . . , d) from the space Cd. Thus we can deduce that
∞∑

n=−∞
|An|2 =

∞∑

n=−∞
tr (AnA∗

n) < ∞,

so
A(·) ∈ L2(T; Md(C)).

Now let p ≥ 2. Since A ∈ B(lp(Z;Cd)), then

A∗ ∈ B(lp′(Z;Cd)), 1
p

+ 1
p′ = 1,
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and
(A∗

nu0) ∈ lp′(Z;Cd), u0 ∈ Cd.

From the assumption p ≥ 2 it follows that 1 < p′ ≤ 2. As a result, we get
∞∑

n=−∞
|An|2 =

∞∑

n=−∞
tr (AnA∗

n) =
∞∑

n=−∞
tr (A∗

nAn) =
∞∑

n=−∞
|A∗

n|2 < ∞.

Then
A(·) ∈ L2(T; Md(C)),

which finishes the proof.

3.2. SCHUR RESOLUTION

Let X be one of the following spaces: lp(Z;Cd) (1 ≤ p ≤ ∞), c0(Z;Cd), c(Z;Cd), and
consider Laurent operator A : X → X defined by (3.2) for which the convergence
condition (3.1) is satisfied. Recall that the matrix-valued function A(z), z ∈ T, defined
by (3.5) is called the symbol of the operator A. We shall describe a construction
of an invariant chain under A with respect to which A admits a block triangular
representation. First we shall obtain a Schur triangular representation for the matrix
A(z) in each point z ∈ T and then apply the obtained result to the convolution
operator A.

Let z ∈ T. By Schur’s theorem ([13, p. 79]) the operator A(z) in Cd is unitarily
equivalent to an upper triangular matrix, which we denote by T (z). Namely, there
exists a unitary matrix U(z) such that

A(z) = U(z)T (z)(U(z))∗, (3.8)

where

T (z) =




λ1(z) µ21(z) · · · µd1(z)
0 λ2(z) · · · µd2(z)
...

... . . . ...
0 0 · · · λd(z)


 ,

and

U(z) =
[

φ(1)(z), φ(2)(z), . . . , φ(d)(z)
]

=




φ
(1)
1 (z) · · · φ

(d)
1 (z)

φ
(1)
2 (z) · · · φ

(d)
2 (z)

... · · ·
...

φ
(1)
d (z) · · · φ

(d)
d (z)




.

(U(z))∗ is the Hermitian adjoint of the matrix U(z), so

(U(z))∗ = (U(z))−1.
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The diagonal entries λ1(z), . . . , λd(z) of T (z) are the eigenvalues in any prescribed order
of the matrix A(z) viewed as an operator in Cd. The orthogonal vectors φ(1)(z), . . . ,
φ(d)(z) ∈ Cd form the Schur orthonormal basis in Cd, so that

A(z)φ(1)(z) = λ1(z)φ(1)(z),

A(z)φ(k)(z) = λk(z)φ(k)(z) +
k−1∑

l=1
µkl(z)φ(l)(z), k = 2, . . . , d,

where φ(1)(z) is the eigenvector corresponding to λ1(z) and µkl(z) ∈ C
(k = 2, . . . , d, l = 1, . . . , d − 1). Note that all the elements λl, φ(l) and µkl can
be selected to be continuous functions of a variable z ∈ T (see [19] and [20]).

Denote by
∆Pk(z) := ⟨·, φ(k)(z)⟩φ(k)(z), k = 1, . . . , d, (3.9)

projections on the one-dimensional subspaces of Cd generated by the Schur vectors
φ(k)(z) (k = 1, . . . , d), respectively. ∆Pk(z) (k = 1, . . . , d) are orthogonal projections,
i.e.,

∆Pk(z) = (∆Pk(z))2 = (∆Pk(z))∗, k = 1, . . . , d,

and
∆Pk(z)∆Pj(z) = 0, k ̸= j; k, j = 1, . . . , d.

Moreover,
d∑

k=1
∆Pl(z) = I,

and each of the operators

Pk(z) =
k∑

l=1
∆Pl(z), k = 1, . . . , d, (3.10)

is an orthogonal projection on Cd. Projections Pk(z) (k = 1, . . . , d) satisfy the mono-
tonicity condition

Pk(z)Pn(z) =
k∑

l=1

n∑

j=1
∆Pl(z)∆Pj(z) =

k∑

l=1
∆Pl(z) = Pk(z), (3.11)

for k < n (k, n = 1, . . . , d). In view of (3.9), (3.10) and (3.11) we see that the set

π(z) : O = P0(z) < P1(z) < . . . < Pk(z) < . . . < Pd(z) = I (3.12)

is a finite chain on Cd of orthogonal projections Pk(z) (k = 0, . . . , d). π(z) is a maximal
chain on Cd, and the pairs (Pk−1(z), Pk(z)) are one-dimensional jumps of it.

It is easy to show that the chain π(z) is invariant under A(z) for each z in T, i.e.,

Pk(z)A(z)Pk(z) = A(z)Pk(z), z ∈ T. (3.13)
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Since the chain π(z) is invariant under A(z), then A(z) has the following decompo-
sition

A(z) = A0(z) + A+(z), (3.14)

where A0(z) is the diagonal of A(z) with respect to the chain π(z). Since

A0(z) =
d∑

l=1
∆Pl(z)A(z)∆Pl(z) =

d∑

l=1
∆Pl(z)⟨·, φ(l)(z)⟩A(z)φ(l)(z)

= λl(z)(∆P1(z))2 +
d∑

l=2
∆Pl(z)⟨·, φ(l)(z)⟩

(
λl(z)φ(l)(z)

+
l−1∑

j=1
µlj(z)φ(j)(z)

)

=
d∑

l=1
λl(z)∆Pl(z) +

d∑

l=2

l−1∑

j=1
⟨·, φ(l)(z)⟩µlj(z)⟨φ(j)(z), φ(l)(z)⟩φ(l)(z),

it follows that

A0(z) =
d∑

l=1
λl(z)∆Pl(z). (3.15)

In turn, the upper triangular matrix A+(z) is expressed as follows:

A+(z) =
d∑

l=1
Pl−1(z)A(z)∆Pl(z)

=
d∑

l=2

l−1∑

s=1
∆Ps(z)⟨·, φ(l)(z)⟩

(
λl(z)φ(l)(z) +

l−1∑

j=1
µlj(z)φ(j)(z)

)

=
d∑

l=2

l−1∑

s=1
λl(z)∆Ps(z)∆Pl(z)

+
d∑

l=2

l−1∑

s=1

l−1∑

j=1
µlj(z)⟨·, φ(l)(z)⟩⟨φ(j)(z), φ(s)(z)⟩φ(s)(z),

i.e.,

A+(z) =
d∑

l=2

l−1∑

s=1
µls(z)⟨·, φ(l)(z)⟩φ(s)(z). (3.16)

As is seen, µls(z) (s = 1, . . . , l − 1; l = 2, . . . , d) are elements of the matrix A+(z)
arranged at the intersection of the l-th column and s-th row, respectively. A+(z) is
a nilpotent matrix for each z ∈ T with an index l(z) (≤ d).
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Thus we have shown the following auxiliary result.
Lemma 3.2. Let A be the block convolution operator defined by (3.2) for which
condition (3.1) is fulfilled. Then its symbol A(z) admits a triangular decomposition

A(z) = A0(z) + A+(z), z ∈ T,

where A0(z) is the diagonal of A(z) with respect to the chain π(z) defined by (3.12),
and A+(z) is an upper triangular matrix representing an nilpotent operator on Cd.

Due to the fact that the eigenvalues and vectors of the orthonormal Schur basis
of the symbol A(z), z ∈ T , were chosen to be continuous functions of z, T (z),
U(z), (U(z))∗ = (U(z))−1 (z ∈ T ) represent also continuous matrix-valued functions.
The corresponding convolution operators be denoted by T , U and U−1, respectively.
In accordance with (3.8), we have

A = U T U−1.

Clearly,

U =
∞∑

n=−∞
Un Sn, U−1 =

∞∑

n=−∞
(U−1)n Sn, T =

∞∑

n=−∞
Tn Sn

where

Un =
∫

T

U(z)z−ndτ, (U−1)n =
∫

T

(U(z))−1z−ndτ, Tn =
∫

T

T (z)z−ndτ,

n ∈ Z. Likewise, ∆Pk(z) represents the corresponding symbols for the operators

∆Pk =
∞∑

n=−∞
(∆Pk)n Sn, k = 1, . . . , d,

where
(∆Pk)n =

∫

T

∆Pk(z)z−ndτ, n ∈ Z, k = 1, . . . , d.

The correspondence between the convolution operators and their symbols allows
us to conclude that ∆Pk (k = 1, . . . , d) are projections on the space X and, moreover,

∆Pk ∆Pj = 0, k ̸= j, k, j = 1, . . . , d,

d∑

k=1
∆Pk = I.

The projections ∆Pk (k = 1, . . . , d) decompose the space X into a direct sum of
subspaces

X = X1 ⊕ . . . ⊕ Xd,

where
Xk := ∆PkX , k = 1, . . . , d.
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Denoting

Pk =
k∑

l=1
∆Pl, k = 1, . . . , d,

we obtain the finite chain

π : O = P0 < P1 < . . . < Pk < . . . < Pd = I

on X . The chain π is invariant under the operator A, and the diagonal A0 of A with
respect to π is a convolution operator with the symbol A0(z), z ∈ T.

Next, we consider the family of curves Γk obtained, respectively, as images of the
functions λk = λk(z) (z ∈ T; k = 1, . . . , d), that is

Γk = λk(T), k = 1, . . . , d,

and consider the set

Γ =
d⋃

k=1
Γk.

Notice that the closed set Γ coincides with the spectrum of the operator A.
Having the numbering of the curves Γk and choosing an appropriate direction of

motion on each of them, we transform the set Γ into an ordered set of points on the
complex plane. Herewith, for any points ν and µ in Γ, relation ν ≺ µ will mean that
ν belongs to a curve with a lower number than µ, or ν and µ lie on the same curve,
but ν precedes µ in the course of the selected (positive) direction. Representing a point
ν ∈ Γk as ν = λk(eitν ), where 0 ≤ tν < 2π, we shall take the ordered for the points ν
on Γk being corresponding to the increment of the argument tν on the interval [0, 2π) .

In accordance with above arguments, we shall write ν ≺ µ if ν ∈ Γk and µ ∈ Γl

with k < l or ν, µ ∈ Γk for which 0 ≤ tν < tµ < 2π. We let αk

(
= λk(ei0)

)
for the

beginning point of the curve Γk and βk

(
= λk(e2πi)

)
.

Next, we give a construction of a maximal chain on the space X that is
invariant under the block convolution operator A given by (3.2). Let ν ∈ Γ,
i.e., ν ∈ Γk for a k ∈ {1, . . . , d}, and consider the matrix-valued function

Pν(z) := Pk−1(z) + χ[αk,ν)(λk(z))∆Pk(z), (3.17)

where Pk(z), ∆Pk(z) (k = 1, . . . , d) are defined by (3.10), (3.9), respectively. Note that

Pα1(z) = O,

and

Pβd
(z) = Pd−1(z) + χ[αd,βd)(λd(z))∆Pd(z)

=
d−1∑

l=1
∆Pl(z) + ∆Pd(z) =

d∑

l=1
∆Pl(z) = I,

i.e.,
Pβd

(z) = I.
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Pν(z) are orthogonal projections on Cd and, as can be easily seen,

Pν(z)A(z)Pν(z) = A(z)Pν(z).

Moreover, by using (3.15) and (3.17), we get

A0(z)Pν(z) =
k−1∑

l=1
λl(z)∆Pl(z) + χ[αk,ν)(λk(z))λk(z)∆Pk(z), z ∈ T,

and moreover
A0(z)Pν(z) = Pν(z)A0(z), z ∈ T.

As a result, we obtain the following chain

O = Pα1(z) < Pν(z) < Pµ(z) < Pβd
(z) = I, ν ≺ µ, ν, µ ∈ Γ, z ∈ T,

which, for each z ∈ T, is invariant under A(z) and is reducing for A0(z).
Each of the matrix-valued functions Pν(z), z ∈ T, is the symbol of the convolution

operator
Pν =

∑

n∈Z
Pν,n Sn, ν ∈ Γ,

where Pν,n are the Fourier coefficients

Pν,n =
∫

T

Pν(z)z−ndτ, n ∈ Z.

From the properties of the projections Pν(z) it immediately follows that Pν repre-
sents projections on the space X , i.e.,

P 2
ν = Pν , ν ∈ Γ,

and, in addition,
Pν Pµ = Pν , ν ≺ µ, ν, µ ∈ Γ,

and
Pα1 = O, Pβd

= I,

as well.
Therefore, we obtain a chain

P : O = Pα1 < Pν < Pµ < Pβd
= I, ν ≺ µ, ν, µ ∈ Γ,

defined on the space X . The chain P, thus obtained, is maximal, and invariant under
the block convolution operator A given by formula (3.2).

Based on Lemma 3.2 we conclude that the operator A admits the decomposition

A = A0 + A+, (3.18)



Spectral resolutions for non-self-adjoint block convolution operators 471

where A0 and A+ represent convolution operators corresponding to the symbols A0(z)
and A+(z), respectively. The operators A0 and A+ are respectively determined by

A0 =
∑

n∈Z
A0,n Sn,

where
A0,n =

∫

T

A0(z)z−ndτ, n ∈ Z,

and
A+ =

∑

n∈Z
A+,n Sn,

where
A+,n =

∫

T

A+(z)z−ndτ, n ∈ Z.

The chain P is invariant under the operator A+, and is reducing for A0. The
representation (3.18) is nothing than the upper triangular decomposition of A with
respect to the chain P. A0 is the corresponding diagonal operator of A and it can be
expressed by the integral (cf. (2.2))

A0 =
∫

P

(dP )A(dP ) (3.19)

along the chain P. Accordingly (cf. (2.3))

A+ =
∫

P

PA(dP ). (3.20)

The validity of the integral representations (3.19) and (3.20) are established by applying
direct arguments.

Since A+(z) is a nilpotent matrix with index l(z) for each z ∈ T, it follows that
the operator A+ is respectively a nilpotent operator of index

l = max
z∈T

l(z). (3.21)

Theorem 3.3. Let A be the block convolution operator on X given by (3.2) whose
elements satisfy (3.1). Then the operator A admits the triangular decomposition
(3.18), i.e.,

A = A0 + A+,

where A0 is the diagonal of A with respect to the chain P, and A+ is a triangular with
respect to P nilpotent operator of index (3.21). The operator A0 is expressed by the
integral (3.19) and A+ by (3.20).

Although the additive triangular representation (3.18) seems rather general, useful
information regarding spectral properties of the operator A can be described directly.
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Theorem 3.4. The following statements hold true.

(i) σ(A) = σ(A0) =
⋃d

j=1 λj(T).
(ii) Spectrum of the restriction APν of the operator A to the subspace PνX consists

of the closure of the set of all points µ ∈ Γ proceeding ν, and the spectrum of the
operator (I − Pν)A on (I − Pν)X consists of the closure of all µ ∈ Γ following ν.

Proof. (i) Note that λ is a regular point of the operator A if and only if

det(A(z) − λI) ̸= 0, for all z ∈ T.

Since

det(A(z) − λI) = det(A0(z) − λI) =
d∏

j=1
(λj(z) − λ),

where λj(z) denote the eigenvalues of A(z) for z ∈ T, the assertion follows.
(ii) Similar arguments can be applied to the operators APν , (I − Pν)A which

in turn represent convolution operators corresponding to the symbols A(z)Pν(z),
(I − Pν(z))A(z), respectively.

The statement in (ii) expresses the separation property of the spectrum with
respect to the chain P for the operator A.

4. HILBERT SPACE CASE

In this section, the described spectral representation will be adapted and specified for
the special case of Hilbert space.

The block convolution operator A defined by (3.2) under the condition (3.1) is
assumed to be acting on the Hilbert space of (block) sequences l2(Z;Cd). The symbol
A(z), z ∈ T, of the operator A is a matrix-valued function that belongs to the Hilbert
space L2(T; Md(C)) whose Fourier coefficients are An, n ∈ Z, that is, those given by
(3.6). The relationship between operator A and its symbol A(z), z ∈ T, is given
by the Fourier transformation F on L2(T;Cd), namely,

(F ∗AFu)(z) = A(z)u(z), z ∈ T,

where u ∈ L2(T;Cd). Note that Fu represents the sequence (un) of ele-
ments un, where un are the Fourier coefficients of the expansion of the function
u ∈ L2(T;Cd) in the Fourier series, i.e., whenever

u(z) =
∑

n∈Z
unzn

with
un =

∫

T

u(z)z−ndz, n ∈ Z.
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In the framework of taken approaches, following arguments applied in the previous
section, on the space L2(T;Cd) one can define the multiplication operators

(Au)(z) = A(z)u(z), (4.1)
(Pku)(z) = Pk(z)u(z), (4.2)

(∆Pku)(z) = ∆Pk(z)u(z),

for z ∈ T a.e.; k = 1, . . . , d, and u ∈ L2(T;Cd), where A(z), ∆Pk(z), Pk(z) are given by
(3.5), (3.9), (3.10), respectively. The operators Pk, ∆Pk (k = 1, . . . , d) are orthogonal
projections on L2(T;Cd). Moreover, owing to (3.9), (3.10) and (3.11), we get the
property of monotonicity for the family of the projections

Pk =
k∑

l=1
∆Pl, k = 1, . . . , d,

i.e.,
PkPl = PlPk = Pk, k < l; k, l = 1, . . . , d,

hence
P : O = P0 < P1 < . . . < Pd = I (4.3)

is a chain of orthogonal projections on L2(T;Cd).
Taking into account (4.1) and (4.2), due to relation (3.13), we have

(PkAPku)(z) = Pk(z)A(z)Pk(z)u(z) = A(z)Pk(z)u(z) = (APku)(z),

for any z ∈ T and any k = 1, . . . , d. So

PkAPk = APk, k = 1, . . . , d, (4.4)

which means that the chain defined by (4.3) is invariant under the operator A.
Further, we define the operators A0 and A+ on the space L2(T;Cd) by

(A0u)(z) = A0(z)u(z), z ∈ T,

and
(A+u)(z) = A+(z)u(z), z ∈ T,

where A0(z) and A+(z) are determined by (3.15) and (3.16), respectively. Due to
(3.14), we obtain the additive decomposition

A = A0 + A+. (4.5)

From the commutative relations of the matrix-valued function A0(z)
and the invariance of A+(z) with respect to the family of projections
Pk(z) (k = 1, . . . , d) it follows that the chain (4.3) is invariant under the operator A+
and, accordingly, is reducing for A0, i.e.,
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PkA+Pk = A+Pk, (4.6)

and
PkA0 = A0Pk, (4.7)

for k = 1, . . . , d.
The projections ∆Pk (k = 1, . . . , d) are mutually disjoint, i.e.,

∆Pk∆Pl = δklI, k, l = 1, . . . , d,

and form a complete system
d∑

k=1
∆Pk = I.

Therefore, the space H = L2(T;Cd) admits the orthogonal decomposition

H =
d∑

k=1

⊕
Hk, (4.8)

where
Hk := ∆PkH, k = 1, . . . , d.

From (4.6) and (4.7) it follows that the decomposition (4.8) of H consists of invariant
subspaces for A, and reducing for A0. Moreover,

A0∆Pk = λk(z)∆Pk, k = 1, . . . , d.

Denoting A0,k = A0|Hk
, where A0|Hk

designate the part of A0 on Hk, one can write

A0 =
d∑

k=1

⊕
A0,k. (4.9)

Next, consider the operators Vk : Hk −→ L2(T) defined by

(Vku)(z) :=
〈

u(z), φ(k)(z)
〉

, z ∈ T a.e.,

for u ∈ Hk (k = 1, . . . , d). It is seen that each of the operators Vk is invertible, and

(V −1
k φ)(z) := φ(z)φ(k)(z), z ∈ T a.e.,

for φ ∈ L2(T) and k = 1, . . . , d. Since

VkA0,k = AkVk, k = 1, . . . , d,

where Ak denotes the multiplication operator by λk(z) in the space L2(T), i.e.,

(Akφ)(z) = λk(z)φ(z), z ∈ T a.e., (4.10)
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for φ ∈ L2(T), due to (4.9), the following decomposition for the operator A0 holds

A0 =
d∑

k=1

⊕
V −1

k AkVk. (4.11)

Now, for every k ∈ 1, . . . , d, we give a construction of a chain defined on
the space L2(T) reducing the operator Ak. To this end, recall that each contour
Γk = λk(T) is oriented according to the increase of the argument z on T.
Accordingly, for some point ν ∈ Γk we define on the space L2(T) the operator

(Pk,νφ)(z) = χ[αk,ν)(λk(z))φ(z), z ∈ T a.e.,

for φ ∈ L2(T). It is clear that Pk,ν represents an orthogonal projection on the space
L2(T). In addition, for any ν, µ ∈ Γk such that ν ≺ µ, the relation Pk,ν < Pk,µ holds
true. Thus, we obtain the following chain

O = Pk,αk
< Pk,ν < Pk,µ < Pk,βk

= I, ν ≺ µ, ν, µ ∈ Γk. (4.12)

Since, in view of (4.10) and (4.11),

(Pk,νAkφ)(z) = λk(z)χ[αk,ν)(λk(z))φ(z) = (AkPk,νφ)(z)

for every φ ∈ L2(T), ν ∈ Γk and z ∈ T a.e., it follows

Pk,νAk = AkPk,ν , ν ∈ Γk,

hence, the chain defined by (4.12) is reducing for Ak for each k = 1, . . . , d.
Next, we let

Pν =
d∑

k=1
V −1

k Pk,νVk, ν ∈ Γ.

Pν are orthogonal projections on H. For any ν ∈ Γk the projection Pν can be written
in the form

Pν = Pk−1 + χ[αk,ν)(λk(·))∆Pk. (4.13)
It is clear that Pν < Pµ whenever ν ≺ µ, hence

P : O = Pα1 < Pν < Pµ < Pβd
= I, ν ≺ µ ν, µ ∈ Γ, (4.14)

forms a chain on the space H (= L2(T;Cd)).
Since

PνA0 = A0Pν , ν ∈ Γ
the chain P given by (4.14) is reducing for the operator A0. Each of the subspaces
PkH (k = 1, . . . , d) is invariant with respect to the operator A (cf. (4.4)). According to
representation (4.13), we conclude that the chain P is invariant under the operator A.

As a result, we obtain that the multiplication operator A defined on the space
L2(T;Cd) admits the additive upper triangular decomposition (4.5) relative to the
chain P given by (4.14).
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If ν ∈ Γ, that is, ν ∈ Γk for some k = 1, . . . , d, then, as is easily seen, the restriction
of the operator A0 to the subspace PνH (recall that H := L2(T;Cd)) is of the form

A0Pν =
k−1∑

l=1
λl(·)∆Pl + χ[αk,ν)(λk(·))λk(·)∆Pk. (4.15)

From the relation (4.15), taking into account that A0 is the diagonal of the operator
A with respect to the chain P, we conclude that

σ(APν) =
{

µ ∈ Γ : µ ≺ ν
}

,

and, similarly,
σ(A(I − Pν)) =

{
µ ∈ Γ : ν ≺ µ},

which reflects the property of separation of the spectrum of the operator A with
respect to the chain P.

Next, we let
Pν = F Pν F ∗, ν ∈ Γ, (4.16)

where F denotes the Fourier operator acting from L2(T;Cd) onto l2(Z;Cd), which
to the element u in L2(T;Cd) assigns the sequence (un) of its corresponding Fourier
coefficients. Pν are orthogonal projections on the space l2(Z;Cd) for which

PνAPν = APν , ν ∈ Γ.

Moreover,

P : O = Pα1 < Pν < Pµ < Pβd
= I, ν ≺ µ, ν, µ ∈ Γ,

is a chain invariant under the block convolution operator A defined by (3.2).
In turn, the operator A admits an additive upper triangular decomposition

A = A0 + A+, (4.17)

where A0 = F A0 F ∗ and A+ = F A+ F ∗ is the upper triangular part of A relative
to the chain P. Note that A+ is a nilpotent operator of an index l ≤ d. Clearly, the
separation property for the spectrum of the operator A is also fulfilled.

We have proved the following result.
Theorem 4.1. Let A be the block convolution operator defined on the Hilbert space
l2(Z;Cd) by (3.2). Then
(i) the chain P of orthogonal projections Pν (ν ∈ Γ) given by (4.16) is maximal on

l2(Z;Cd), and invariant under the operator A;
(ii) A admits the additive upper triangular decomposition (4.17) with respect to P,

where
A0 =

∫

P

(dP )A(dP ),

is the diagonal of A, and the corresponding upper triangular part A+ of A is
a nilpotent operator of an index l ≤ d;
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(iii) the separation property for the spectrum of A holds true. Moreover

σ(A) = σ(A0) =
d⋃

k=1
λk(T),

where λk(z) denote the eigenvalues of the symbol A(z), z ∈ T.

5. APPLICATIONS. JACOBI MATRICES

In this section we shall deal with the operators generated by the so-called periodic
Jacobi matrices. This kind of matrices appear naturally in the many problems of
mathematics, physics, mathematical physics, etc. As a particular case, but of a special
merit, it can be mentioned the Born–von Karman model of the crystal lattice (cf. [10]).
In the simplest case, this model is nothing more than a one-dimensional infinite chain
of atoms. The equations of motion in the Born–von Karman model do not differ from
those for beads on an elastic string and have the form

d2u

dt2 = Ãu,

where Ã = [ars]r,s∈Z is a complex a d-periodic banded Jacobi matrix of order k, i.e.,
the matrix whose entries satisfy the following conditions:

(i) there exists k ∈ N such that for all r, s ∈ Z we have ars = 0 if |r − s| > k,
(ii) there exists r, s ∈ Z such that ars ̸= 0 if |r − s| = k,
(iii) there exists d ∈ N such that for all r, s ∈ Z we have ar+ds+d = ars.

Finding the eigenfrequencies is reduced to the spectral analysis of the periodic Jacobi
matrix Ã.

Denote by Al (l ∈ Z) a matrix with entries (Al)rs = ars

(r = 0, . . . , d − 1 and s = −dl, . . . , d(1 − l) − 1). Note that Al ∈ Md(C) (l ∈ Z)
and Al = 0 for |l| > m, where m = ⌈ k

d ⌉ (i.e. m is the smallest integer not less than k
d ).

Under the above notation, the matrix Ã has a block form

A =




. . . . . . . . . . . . . . .
Am . . . A1 A0 A−1 . . . A−m

Am . . . A1 A0 A−1 . . . A−m

Am . . . A1 A0 A−1 . . . A−m

. . . . . . . . . . . . . . .




.

Consider the operators

(Ãv)n =
n+k∑

j=n−k

anjvj , n ∈ Z, (5.1)
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where v = (vn) ∈ lp(Z;C), and

(Au)n =
n+m∑

j=n−m

An−juj , n ∈ Z, (5.2)

for u = (un) ∈ lp(Z;Cd), acting on the Banach spaces lp(Z;C) and lp(Z;Cd) (1 ≤
p < ∞) and corresponding to the matrices Ã and A, respectively. Using the matrix
reduction procedure from [4, pp. 139–140] we can show that the operator Ã defined
by (5.1) is similar (and for p = 2 – unitarily equivalent) to the convolution operator A
defined by (5.2). Since

m∑

j=−m

|Aj | < ∞,

it follows that A is bounded, and its symbol A(z), z ∈ T, is a matrix-valued rational
function determined by

A(z) =
m∑

j=−m

Ajzj , z ∈ T.

Since the operator A defined by (5.2) satisfies the assumptions of Theorem 3.3, then
it admits the triangular decomposition (3.18).

Note that, using the matrix reduction procedure described above to the ope-
rator A given by (5.2), we get a convolution operator acting on the space lp(Z;Cmd)
(1 ≤ p < ∞) corresponding to a tridiagonal block matrix, which is similar (and for
p = 2 – unitarily equivalent) to A. Obviously, if we assume that

J1 =




Am Am−1 · · · A1
0 Am · · · A2
...

... . . . · · ·
0 0 · · · Am


 , J−1 =




A−m 0 · · · 0
A−m+1 A−m · · · 0

...
... . . . · · ·

A−1 A−2 · · · A−m


 ,

J0 =




A0 A−1 · · · A−m+1
A1 A0 · · · A−m+2
...

... . . . · · ·
Am−1 Am−2 · · · A0


 ,

then J−1, J0, J1 ∈ Mmd(C), and the matrix A has the following block tridiagonal form

J =




. . . . . .

. . . J0 J−1
J1 J0 J−1

J1 J0
. . .

. . . . . .




. (5.3)
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It follows that an operator

(Ju)n =
n+1∑

j=n−1
Jn−juj , n ∈ Z (5.4)

where u = (un) ∈ lp(Z;Cmd), is similar to the operator A given by (5.2). Therefore,
the operator Ã defined by (5.1) acting on the Banach space l1(Z;Cd), corresponding
to the d-periodic banded Jacobi matrix of order k, is similar to the block convolution
operator (5.4) acting on the Banach space lp(Z;Cmd), corresponding to the tridiagonal
block matrix (5.3).

Let Ã = [ars]r,s∈Z be a d-periodic banded Jacobi complex matrix of order 1
expressed as follows:

Ã =




. . . . . .
. . . bd ad cd

b1 a1 c1
. . . . . . . . .

bd ad cd

b1 a1
. . .

. . . . . .




. (5.5)

If we use the matrix reduction procedure for Ã, then we get its tridiagonal form

A =




. . . . . .

. . . A0 A−1
A1 A0 A−1

A1 A0
. . .

. . . . . .




, (5.6)

where A1, A−1, A0 ∈ Md(C) are expressed as

A1 =




0 · · · 0 b1
0 · · · 0 0
...

...
...

0 · · · 0 0


 , A−1 =




0 0 · · · 0
...

...
...

0 0 · · · 0
cd 0 · · · 0


 ,

and

A0 =




a1 c1 0 · · · 0
b2 a2 c2 · · · 0
0 b3 a3 · · · 0
... . . . . . . ...
0 · · · bd ad




,

respectively.
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Repeating arguments presented above we can deduce that the operator defined by
(5.1) corresponding to the matrix Ã given by (5.5) is similar to the operator defined
by (5.2) corresponding to the matrix A given by (5.6), so

σ(Ã) = σ(A),

and Ã admits the triangular decomposition (3.18).
Now, on the Banach space lp(Z;Cd) consider the operator A of the form (5.2)

corresponding to the matrix A given by (5.6). Its symbol is a matrix-valued rational
function

A(z) = A−1z−1 + A0 + A1z, z ∈ T.

Since spectral properties of A are related to properties of A(z), z ∈ T, we
show how the eigenvalues of the matrix A(z) depend on the selection of elements
of the matrices A−1, A0 and A1.

Let z ∈ T. The determinant of a matrix A(z) − λI has the following form

det (A(z) − λI) = (−1)d
(
Q(λ) − bz − cz−1),

where Q(λ) is a polynomial of degree d of the variable λ, expressed as

Q(λ) = (−1)d · det




a1 − λ c1 · · · 0
b2 a2 − λ · · · 0
... . . . ...
0 · · · bd ad − λ




+ (−1)d+1b1cd · det




a2 − λ c2 · · · 0
b3 a3 − λ · · · 0
... . . . ...
0 · · · bd−1 ad−1 − λ


 ,

and b = b1 · · · bd, c = c1 · · · cd. Therefore det(A(z) − λI) = 0 if and only if

Q(λ) = bz + cz−1. (5.7)

Let E be a subset of C expressed as follows

E =
{

bz + cz−1 : z ∈ T
}

.

Since the solutions of the equation (5.7) belong to the set

Q−1[E ] = {λ ∈ C : Q(λ) ∈ E} ,

then Q−1[E ] consists of all eigenvalues of A(z), z ∈ T and obviously

σ(Ã) =
d⋃

k=1
λk(T) = Q−1[E ].
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Note that if:
(i) b, c ̸= 0 and |b| ̸= |c|, then the set E is an ellipse and σ(Ã) is a family of closed

curves; moreover, these curves intersect at a maximum of d − 1 points;
(ii) b ̸= 0 and c = 0 (or analogously c ̸= 0 and b = 0), then the set E is a circle; the

spectrum of the operator Ã is a family of closed curves which are intersect at
a maximum of d − 1 points;

(iii) b, c ̸= 0 and |b| = |c|, then the set E is a line segment, so a spectrum of the
operator A is a family of smooth curves; in this case, the curves can intersect at
a maximum of 2

[
d−1

2
]

points;
(iv) b = 0 and c = 0, then the spectrum of A is a set at most d-elements.

Now we give some examples of triangular decompositions and invariant chains
under the convolution operators.
Example 5.1. Let A ∈ lp(Z;C2) be a convolution operator corresponding to a symbol
A(z), z ∈ T, of the following form

A(z) =
[

z 0
1 0

]
, z ∈ T.

Since A(z) has eigenvalues of the form λ1(z) = z and λ2(z) = 0, where z ∈ T, it follows
that σ(A) = T ∪ {0}.

We can apply construction given in Subsection 3.2 to build an invariant chain
under the operator A. Let z ∈ T. Using the Gram–Schmidt orthogonalization to
the eigenvector corresponding to λ1(z) we get a Schur base for A(z), i.e., a vectors
of the following form

φ(1)(z) = 1√
2

[
z
1

]
, φ(2)(z) = 1√

2

[
−z

1

]
.

Then
U(z) = 1√

2

[
z −z
1 1

]

is a unitary matrix and

T (z) = (U(z))∗A(z)U(z) =
[

z −z
0 0

]

is an upper triangular matrix, unitarily equivalent to matrix A(z). Orthogonal pro-
jections on the one-dimensional subspaces of C2 generated by the Schur vectors
φ(1)(z) and φ(2)(z) are expressed as

∆P1(z) = ⟨·, φ(1)(z)⟩φ(1)(z) = 1
2

[
1 z
z−1 1

]
,

∆P2(z) = ⟨·, φ(2)(z)⟩φ(2)(z) = 1
2

[
1 −z

−z−1 1

]
,

respectively.
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Hence the set
π(z) : O = P0(z) < P1(z) < P2(z) = I,

where
P1(z) = ∆P1(z), P2(z) = ∆P1(z) + ∆P2(z),

is a maximal chain on C2, invariant under A(z). Moreover, A(z) has the following
decomposition

A(z) = A0(z) + A+(z),

where

A0(z) = ∆P1(z)A(z)∆P1(z) + ∆P1(z)A(z)∆P1(z) = z · ∆P1(z) + 0 · ∆P2(z),
A+(z) = P0(z)A(z)∆P1(z) + P1(z)A(z)∆P2(z) = −z⟨·, φ(2)(z)⟩φ(1)(z).

The matrices A0(z) and A+(z) are respectively a diagonal of A(z), and a nilpotent
matrix.

Next, we construct a maximal chain on lp(Z;C2) that is invariant under the
operator A. Assume that contour λ1(T) is oriented according to the increase of
the argument z ∈ T, so α1 = 1. Let ν ∈ Γ = λ1(T)∪{0} and consider the matrix-valued
function

Pν(z) = χ[1,ν)(λ1(z))∆P1(z) + χ[1,ν)(λ2(z))∆P2(z), z ∈ T.

Since
Pν(z) = χ[1,ν)(λ1(z))∆P1(z) = χ[1,ν)(z)∆P1(z), z ∈ T,

where ν ∈ λ1(T) = T and

Pν(z) = I, z ∈ T,

where ν ∈ λ2(T) = {0}, then determining the Fourier coefficients to the function Pν(z),
z ∈ T, we get the following convolution operators

Pν = 1
4π

[
−i(ν − 1) −i

2 (ν2 − 1)
arg ν −i(ν − 1)

]
S−1 + 1

4π

[
arg ν −i(ν − 1)

i(ν−1 − 1) arg ν

]
I

= 1
4π

[
i(ν−1 − 1) arg ν

−i
2 (ν−2 − 1) i(ν−1 − 1)

]
S

+ i

4π

∑

n∈Z\{−1,0,1}

[ 1
n (ν−n − 1) 1

n−1 (ν−n+1 − 1)
−1

n+1 (ν−n−1 − 1) 1
n (ν−n − 1)

]
Sn, ν ∈ T,

and
Pν=0 = I.

A set of projections

P : O = Pα1 < Pν < Pµ < Pν=0 = I, ν, µ ∈ λ1(T),
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is a chain on lp(Z;C2), invariant under the operator A, and reducing for A0, where

A0 = 1
2

[
0 0
1 0

]
I + 1

2S + 1
2

[
0 1
0 0

]
S2.

The operator A admits a triangular decomposition

A = A0 + A+,

where A0 is the diagonal of A with respect to the chain P , i.e.,

A0 =
∫

P

(dP )A(dP ),

and

A+ = 1
2

[
0 0
1 0

]
I + 1

2

[
1 0
0 −1

]
S + 1

2

[
0 −1
0 0

]
S2, A2

+ = 0.

Example 5.2. Let a matrix-valued function

A(z) =
[

0 z
z 0

]
, z ∈ T,

be a symbol of the convolution operator A ∈ lp(Z;C2). It is easy to show that
eigenvalues of the matrix A(z) are of the form λ1(z) = z and λ2(z) = −z, so the set
Γ = T ∪ −T coincides with a spectrum of the operator A. By repeating construction
given in Subsection 3.2 we shall build a chain on lp(Z;C2) for the operator A. Assume
that both contours λ1(T) and λ2(T) are oriented according to the increase of the
argument z ∈ T, so α1 = 1 and α2 = −1, respectively. Then the set of projections

P : O = Pα1 < Pν < Pµ < Pβ2 = I, ν ∈ T, µ ∈ −T,

where

Pν = arg ν

4π

[
1 1
1 1

]
I +

∑

n∈Z\{0}

i

4nπ
(ν−n − 1)

[
1 1
1 1

]
Sn, ν ∈ T,

Pµ = 1
4π

[
π + arg µ 3π + arg µ
3π + arg µ π + arg µ

]
I

+
∑

n∈Z\{0}

i

4nπ
((−1)nµ−n − 1)

[
1 −1

−1 1

]
Sn, µ ∈ −T,

and β2 = e3iπ, is a chain on lp(Z;C2), reducing for the operator A. Therefore, the ope-
rator A is diagonal with respect to the chain P , and

A =
∫

P

(dP )A(dP ).
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Example 5.3. Let A denote a Laurent operator on the space lp(Z;C2) corresponding
to the symbol

A(z) =
[

2(1 + i) z
4z−1 2(1 − i)

]
, z ∈ T.

Relying upon our discussion of Subsection 3.2, we see that

T (z) =
[

2 5
0 2

]
, U(z) =

[
iz√

5
2z√

5
2√
5

i√
5

]
, z ∈ T.

Since the symbol of A has in each point z ∈ T only one eigenvalue
λ1(z) = λ2(z) = 2, then σ(A) = {2}. But when constructing a chain for A we assume
that the spectrum contains two superimposed points λ1(T) = {2}, λ2(T) = {2}.
An invariant chain under the operator A is the set of projections

P : O < Pν=2 < I,

on lp(Z;C2), where

Pν=2 = 1
5

[
0 0

−2i 0

]
S−1 + 1

5

[
1 0
0 4

]
I + 1

5

[
0 2i
0 0

]
S.

The operator A admits a triangular decomposition

A = A0 + A+,

where A0 is the diagonal of A with respect to the chain P , i.e.,

A0 =
∫

P

(dP )A(dP ) = 2I,

and

A+ =
[

0 0
4 0

]
S−1 +

[
2i 0
0 −2i

]
I +

[
0 1
0 0

]
S, A2

+ = 0.

Example 5.4. Let A denote a convolution operator on the space lp(Z;C2) corre-
sponding to the symbol

A(z) =
[

z − 1
2

1
2 i

iz − 1
2 i 2z − 1

2

]
, z ∈ T.

It is easy to show that

T (z) =
[

z z
0 2z − 1

]
, U(z) =

[
i√
2 − i√

2
1√
2

1√
2

]
, z ∈ T.

The symbol of A has in each point z ∈ T eigenvalues λ1(z) = z and
λ2(z) = 2z − 1, so the spectrum of A is the set consists points on two contours
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that have one common point: σ(A) = T ∪ {µ ∈ C : µ = 2z − 1}. Note that the symbol
of A is not a diagonalizable matrix in only one point z = 1.

Denote that both contours λ1(T) and λ2(T) are oriented according to the increase
of the argument z ∈ T, so α1 = 1 and α2 = 1, respectively. Then the set of projections

P : O = Pα1 < Pν < Pµ < Pβ2 = I, ν ∈ T, µ ∈ λ2(T),

where
Pν = arg ν

2π
∆P1 I +

∑

n∈Z\{0}

i

2nπ
(ν−n − 1)∆P1 Sn, ν ∈ T,

Pµ =
(

∆P1 + 1
2π

arg
(

µ + 1
2

)
∆P2

)
I

+
∑

n∈Z\{0}

i

2nπ

((
µ + 1

2

)−n

− 1
)

∆P2 Sn, µ ∈ λ2(T),

and
∆P1 = 1

2

[
1 i
−i 1

]
, ∆P2 = 1

2

[
1 −i
i 1

]
, β2 = e2iπ,

is a chain on lp(Z;C2), invariant under for the operator A. The operator A admits
a triangular decomposition

A = A0 + A+,

where A0 is the diagonal of A with respect to the chain P , i.e.,

A0 =
∫

P

(dP )A(dP ) = −∆P2I + (∆P1 + 2∆P2)S,

and

A+ = 1
2

[
−1 i
i 1

]
S, A2

+ = 0,

but there does not exist a spectral measure in the sense of Dunford for the operator A.
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