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Spectral response of fixed photorefractive
grating interference filters
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We report a theoretical investigation of the frequency response of optical interference filters written in
photorefractive materials. Counterpropagating coherent beams interact in the volume of a photorefractive
crystal through two-beam coupling. The resulting hologram is fixed. The reflectivity of the hologram is
calculated as a function of frequency. An analytic solution is obtained for arbitrary grating phase 0 in the
lossless case, a = 0. Numerical solutions are performed for a > 0. Experimental results are compared
favorably with the theory.

INTRODUCTION
Fixed photorefractive gratings have received interest re-
cently for application as narrow-band optical interference
filters and wavelength multiplexed optical memories.'- 4

The advantages of photorefractive filters over conven-
tional methods are ease of fabrication and extremely
narrow spectral response. We consider Bragg gratings
that are written in a photorefractive material in exactly
counterpropagating geometry. This method allows one
to tune the bandpass of the filter by adjusting the fre-
quency of the laser writing beams. The index gratings
written by the beams are then considered to be fixed
by either thermal fixing or other methods. We calculate
the spectral response of these filters to broadband or
tunable incident radiation. These results are also valid
for dynamic gratings if the gratings are illuminated for
a period of time that is much shorter than the grating
rewrite time.

SPECTRAL RESPONSE, LOSSLESS CASE

Calculation of the Dynamic Index Grating

We start by calculating the two-beam coupling of two
incident counterpropagating beams A(z) and B(z) in a
photorefractive material. The well-known coupled-mode
equations in the absence of optical absorption are'

illuminating beams. If the photorefractive response in
the material is given purely by the diffusion field, i.e.,
there is no photovoltaic effect or applied electric field, then
the phase obeys = vr/2.Y'7 We require, without loss of
generality, that B(z) be the amplified beam. That is, the
propagation direction of B(z) is nearer the z axis (c axis)
is than that of A(z). In exactly counterpropagating ge-
ometry as in Eqs. (1) and (2), B(z) propagates parallel
to the optic axis and A(z) propagates antiparallel to the
same. This is equivalent to restricting to the range
[0, ]. Since the index grating is formed dynamically by
the writing beams, we have

An(z) = niA(z)B*(z)/I(z), (3)

where I(z) is the total intensity, I(z) = A2(z) + B2(z)I,
and n is the peak-to-peak amplitude of the index grating
when A(z) = B(z). Thus in the case of dynamic hologra-
phy the coupled-mode equations are rewritten as

A'(z) = iglB(z)12/I(z)e'OA(z),

B'(z) = -igJA(z)J21I(z)e-'0B(z),

(4a)

(4b)

with g = rni/A. We postulate solutions of the form

A(z) = aeik, B(z) = b(z)e'2,

A'(z) = A e"B(z), (la)

B'(z) = iirAn*(z) e-"A(z), (lb)
A

where A is the wavelength of the interfering beams and
the index of refraction is

n(z) = no + 1/2[An(z)ei0 exp (i2kz) + c.c.]. (2)

Here f is the phase between the optical intensity grating
and the induced index grating. This grating phase is
an invariant property of the material; it can be altered
with applied electric fields but is independent of the

(5)

where a(z) and b(z) are real. Equations (4a) and (4b)
can be separated into two equations each, describing the
evolution of the amplitude and the phase, respectively, of
the two beams:

a'(z) = -g sin(0)b(z)2/I(z)a(z), (6a)

b'(z) = -g sin(0)a(z)2/I(z)b(z), (6b)

)'(z) = g cos(0)b(z)2/I(z), (7a)
02'(Z) = -g cos(0)a(z)2/I(z). (7b)

Inspection of Eqs. (6) reveals that the intensity coupling,
commonly referred to as beam coupling, increases from
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(z) = 1/2 (g cos(,O)z - cot(0O) coth-"{[1 + (VIC)2e-"z]121),

(1Oa)

qi2(z) = -1 /2(g cos(kO)z + cot(k) coth-1
X {[1 + (C)

2
e-Iz1I/

2
}), (lOb)

respectively. Thus from Eqs. (5), (8), and (10) we have
solved the beam coupling in the counterpropagating ge-
ometry for arbitrary input beams and arbitrary material
grating phase q$. The index grating in the material
follows from Eqs. (2) and (3) and is given by

0 0.04 0.08 0.12 0.16 0.2

Position z

Fig. 1. Effect of the photorefractive grating phase 0 on the in-
tensity coupling of two equal-intensity input beams. For sb = 0
the intensity coupling is zero and the beams are purely phase cou-
pled. As ' deviates from zero, the beams are coupled more and
more strongly near the entrance face of the crystal. The cou-
pling constant is g = 20/cm, and the crystal length is L = 0.2 cm.

zero to a maximum value as the photorefractive phase
deviates from 0 to v/2. Meantime, Eqs. (7) show that
the phase coupling of the, two beams decreases from a
maximum, when 0 = 0, to zero, when q = ir/2. Thus
in the diffusion-limited case mentioned above (6/ = r/2),
the beam coupling in the material achieves its maximum
value, while the phase coupling is zero.

One solves Eqs. (6a) and (6b) by converting them to
equations for intensities, using I,' = (a2)' = 2aa', and
similarly for I2, respectively. Simple Bernoulli equations
are obtained with solutions8'9

I(z) = 1/2[(c2 + v2e-rz)l/2 + C], (8a)

I 2(Z) = /2[(c2 + v2 e-rz)I/2 - C]. (8b)

Here we have used the constants r = 2g sin q,
c = I,(z) - I2(z), and v2 = 4I1(0)I2(0) = 4I(z)1 2(z)erZ

4Ii(0)[Ii(O) - c]. Also, I 1(z) = IA(z) 12 and
12(z) = IB(z)12. In terms of the input intensities to
the crystals, I1(O) and I2(L), the constants are given by

e-rLI2(0) - I22(L)
2 = LI (O) + (L) (L

v2 = 4I(O)I 2 (L) I,() + I2(L)

(9a)

(9b)

in = n e+i' exp[+ig cos(k)z]
Ane 2 (1 + 2 erz/v 2 )v/2

(11)

The functional form of the index grating is simplified
by the partial cancellation of the beam phases in Eqs. (10).
The spatial variation of the magnitude of the index grat-
ing is plotted in Fig. 2 for the case of equal-intensity
inputs and for several values of '. It is illuminating
to note that the maximum value of the index grating
amplitude always occurs at the entrance facet of the
crystal in the direction of the c axis, i.e., in the plane z = 0.
(Experimentally, one can distinguish the plane z = 0 from
the plane z = L by inputting two equal-intensity beams
into the crystal in the counterpropagating geometry. The
amplified beam is the one that exits from the z = 0 facet.)
This is true regardless of the incident-beam intensity
ratios. This peculiar result originates in the nature of
the intensity coupling shown in Fig. 1: both the incident
and the reflected beam achieve their maximum intensities
at the z = 0 entrance facet, and the difference between
the two beam intensities is always a constant (= c). The
combination of these two facts ensures, by Eq. (3), that
the index grating amplitude is maximum at z = 0.

Calculation of Reflectivity

We calculate the frequency reflectivity of an incident
beam A(O) off the dynamically written index grating. In

bo

U

.
4)

bo

CZ

In the case of equal-intensity inputs [Ij(0) = I2(L)], these
constants reduce to v2 = 412(0) exp(IL/2)/cosh(OL/2)
and c = -I(0)tanh(FL/2). We note that c as it is defined
is a constant by conservation of energy. This follows
immediately from the coupled equations, whereby any
decrease in the intensity of one beam is added to the
intensity of the other beam, which is propagating in the
opposite direction.5 8 The intensities are plotted in Fig. 1
for the case of equal-intensity inputs, for coupling con-
stant g = 20/cm, crystal length L = 0.2 cm, and several
values of 0. The intensity coupling increases as the
photorefractive phase 0 deviates from zero.

From the solutions given in Eq. (8) we readily solve
Eqs. 7(a) and 7(b) to give
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Fig. 2. Magnitude of the index grating formed by the intensity
coupled beams of Fig. 1. For q = 0 the index grating is constant,
and as q0 increases, the index grating is more strongly apodized,
with its maximum at the entrance face of the crystal.
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analogy to Eqs. (la) and (lb), we write the coupled-mode
equations, 0

with = 0, and can be transformed with the corotating
transform developed there. We define

X(z) i g exp[ig cos(G/)z + i,] exp(-2iA8z)B(z),
2 (1 + c

2
eTz/V

2
)
1 2

(12a)
g exp[-ig cos(O)z - i]

'() 2 (1 + c2 eFz/v2jv2 exp(+2iA,z)A(z),

(12b)

respectively, where A3 = (co - w)no/c is the frequency
mismatch between the beams that wrote the grating
and the one undergoing Bragg reflection. We have ig-
nored the new dynamic grating that is written by the
interference of the incident and the reflected beams,"",12

since we are calculating the filter response to broad-
band illumination. Any such secondary grating would
be bleached by the majority of the light that is not
reflected. In Eqs. (12), B(z) is the new reflected beam,
so that we take B(L) = 0, where L is the length of
the crystal. The analytic solution of Eqs. (12) subject to
this boundary condition follows. The interested reader
will observe similarities in the approach presented here
to a recent treatment of diffraction in the transmission
geometry.13

We first note that Eqs. (12a) and (12b) can be written
in the form

a(f) = T(6)exp[iF(6)],

where

b(6) = V(6)exp[-iF()],
(17)

F(e) = 1/(2i)ln[f(e)] = A,3'/(g sin /))ln[sinh(e)]. (18)

Second-order equations in T(e), T"(e) and V(e), V"(f) are
obtained as they are given by Eqs. (A8). As is described
in Appendix A, we chose F(e) to eliminate the first deriva-
tive terms T'(e) and V'(f) in Eqs. (A8). From Eq. (18)
we can write F'(e) = Af3'/(g sin ) coth(e) and F"(6) =

- ,'/ [g sin q sinh2(e)] so that Eqs. (A8) become

+ ~2 -i77(i77 + 1)]
T"1(e) + ~ T(6) = 0, (19a)

[4 sil 7 sinh2 t]()0 1a

+ ,2 - 77 (i 1)]

V"I(e) [ 4 nSn2 0 + X sinh2 V(6) = 0, (19b)

where we define 77 = 2A,8/F. Comparison with Eq. (A9)
confirms that Eqs. (19a) and (19b) are examples of the
second Poschl-Teller equation, where A = 0, a = 1, and
the quantum parameters are

A'(z) = ig(z)f (z)B(z),

B'(z) = -i[g(z)/f (z)]A(z),

(20)1 ( Sin2 - 7 + 

KT = 1 + i77 

K = 77).

respectively, where f (z) = exp[-2iABz + ig cos(O)z +
iq] and g(z) = gv exp(-rz/2)/{2[C 2 + v2 exp(-Fz)]V 2}.
We can eliminate g(z) by performing the independent
variable transformation of z to , where /sin =
f g(z)dz:

= - rv exp(-rz/2) dz
2c J [1 + (v/c)2 exp(-rz)]" 2

= sinh- [ exp(-rz/2)]. (13)

Inverting, we obtain exp(-rz/2) = (c/v)sinh(e). Apply-
ing this transform to Eqs. (12a) and (12b) yields a set of
coupled equations in e,

(14a)

(14b)

respectively, where

f(5e) = [ inh(f)]4,i(15= [c ] ~~~~ ~~(15)

K = -ei/(2 sin /), (16)

and A,3 = A,8 - (g/2) cos 0/). In Eqs. (14), the lowercase
of a and b is used only to remind the reader of the change
in independent variable; thus A(z), B(z) - a(e), b(6).

Reference to Appendix A reveals that Eqs. (14a) and
(14b) are of the form of Eqs. (Ala) and (Alb), respectively,

(21)

(22)

The parameters KT and Kv are those required for
Eqs. (19a) and (19b), respectively, to match the notation
of Eq. (A9). The quantity I is the angular-momentum
quantum number in the diatomic system. Here it
assumes not only noninteger values but, for A' >
g sin /2, becomes complex. Thus little intuition
can be drawn from the quantum system to help us
in this application. Fortunately, the solution of the
P6schl-Teller equation works with complex parameters
and can be utilized as is.

Using Refs. 14 and 15, we obtain solutions for T(e) and
VW6:

T()= t1 sinh-"I cosh(6) 2F 2 i 7 2 i 
2 2 2-

- i77; -sinh2 {)

+ t2sinhl'i'" e cosh() 2F(i 27 + 1,+i 
1 2 2 7

V(W) = v sinhl-j7 e cosh(e) 2F1( 2 2,1i 2

+ ;23 sinh ch( -2 

§ + ~~V2 sinhit? e cosh(5e) AF( 2- + 2 , 

L ~~+, + 2 ;2 + i ; -sinh 2 e) (23b)

(23a)

(12c)

(12d)
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where t1 , t2, v, and 2 are arbitrary constants, and we
define

=1 ( 12 - 72)1' = I - 1 ___=_2_4 Si _ 1 (24)

,lG is distinct from the frequency mismatch A\,l. Using
Eqs. (13), (14), and (17), we get

A(z) = I+ ( e rz] 2C12F1[ 2 - i 7 -

- i 7 + ; 2- i17; _(v e-r-]

+ C2 exp[-(1 + 2i77)z/2]2F[i - l

+ + 1;-2 + i7; - - e-] X (25a)

B(z)= [1 + (-) e-rz]2{C3 exp[-(1 - 2i77)rz/2]

X 2 Fl[-i 2 - + 1,-i 77 + 8 + 1; 3

- it7;_( U ) e-] + C42F1[i -

2 '2 2; 2 ';(c ) ]
(25b)

where C1, C 2, C 3, and C4 are constants. We determine
the constants from the boundary condition B(L) = 0 and
Eqs. (12). The result is

C A(0)4 sin 2() (1 + 4772) exp[(1 - 2i 77)rL/2]

[1+ . T 'h21/X 2F1[ i7 _ -}3 + 77 Xi 2

+ 2;'2 +i77,;--) e-J /L D, (26a)

C2 = -A(0) v)2_F_[ i 7 - + 1, -i 77
[l+ (V/C)2]12 U 2Fi -- /+~r2

+ /8 + 1; - ,

where the common denominator D is given by

D = 4 sin2(4/) (1 + 4772 )exp[(1 - 2iq7)rL/2]

X 2F1[ i 77 _, + 2 >i 7 + + ; 2

+ i77; -( -)2e-FL] 2F1[ -i -

+ 2 -i 7 + +- - 77;--)]2' 2 2'2 c'
- (C) 2Fl[ - p + 1,-i + p8

3 V )2 -rL]+ 1;2- if;-- e
2 

X 2F i 27 _ 8 + 1, i 

+ + 1; + i77;-( )]- (27)

Equations (25) with constant coefficients defined in
Eqs. (26) and (27) determine exactly the amplitude
and phase of the incident beam A(z) and the reflected
beam B(z).

To recap, the reflected wave is generated by interaction
of A(z) with the previously dynamically written hologram
defined by the index grating of Eq. (11). Since B(z) is a
reflected wave, the solutions obey the boundary conditions
B(L) = 0. Both A(z) and B(z) are expressed in terms of,
and are proportional to, the input beam A(0).

The reflectivity is given by R = IB(0)/A(0)12 . It is plot-
ted in Fig. 3 for the case of equal-intensity input beams
(during the writing phase) for several values of the grating
phase 0. In general, the reflectivity maximum occurs at
a different frequency than that of the writing beams; it
occurs at a frequency mismatch of A,/ = g/2 cos 0; i.e., it
occurs at A/,3' = 0. This mismatch arises, again, because
the two writing beams influence each other's phase (as
well as intensity) by a total amount A4/(z) = g cos(/))z.
This increases (or decreases) the spatial frequency of the
index grating, altering the frequency at which maximum
reflectivity is achieved. The reflectivity plotted in Fig. 3
is symmetric about the line A/3 = 0 when 0 is reflected

1

(26b)

C3 = - A(0){ v(2 + 4i77)sin 'k }exp[( - 2i77 )rL/2]
iceio[1 + (/C)

2
]1/

2

X 2F i 2 - + i 27 + 

11 )2 -rL]
2'2 +

(26c)

C4 = A(0)J v(2 + 4i77)sin 0 iF F -i 77 _ 
icekl[l + (V/C)2]"

2 2 l 2

3+ + ; -i; (- e rL]/D
2 2 -(

(26d)
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Fig. 3. Reflectivity from the fixed index gratings of Fig. 2. The
reflectivity maximum occurs at a frequency mismatch given
by A/,8 = g/2 cos 0. The overall reflectivity, as well as the
sidelobes, is reduced by the grating apodization for 0 > 0.
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Frequency Mismatch A (cm l1)
Fig. 4. Reflectivity from the fix ed index gratings for 0 = and
.0 = 7r/2 at large values of frequency mismatch. The = 7r/2
grating reflectivity has reduced sidelobes whose peaks are ap-
proximately 6 dB lower than in the ( = case (however, the
maximum reflectivity is also 3 dB lower).

about vr/2. For example, the reflectivity curves for two
identical materials, one with 0 = vr/2 - x and one with
S = 7r/2 + x, are identical except that the position of
maximum reflectivity is shifted to a longer wavelength
from the writing wavelength in the first case [A2 =
g cos(vr/2 - x)/2 > ] and to a shorter wavelength in the
second case [A, = g cos(ir/2 + x)/2 < ]. For this rea-
son we have illustrated the reflectivity-versus-frequency
mismatch only for O c Os v/2. We note that the grating
apodization caused by intensity coupling for 0 or
7r leads to slightly reduced sidelobes in the reflectivity
and lower overall reflectivity at large values of frequency
mismatch. This effect is illustrated in Fig. 4, where the
reflectivities of the 0 = and v 7/2 cases are compared
at large values of mismatch.

Special Case: 7r/2
We now consider how the foregoing analysis is simplified
under special conditions. For 0 = r/2 we note that the
beam coupling consists purely of intensity coupling rather
than phase coupling. This leads to a simpler form of
the index grating [Eq. (11) ; however, little simplification
of the final solutions occurs. Since the phase coupling
is absent in this case, the reflectivity maximum of the
grating occurs at the same frequency as that of the writing
beams (see Fig. 3).

Special Case: 0 = 
The case 0 = (or 0 = ir) is completely different. Here
there exists no intensity coupling, whereas the phase
coupling is maximum. Hence the magnitude of the index
grating is a constant throughout the volume of the crystal.
Starting from Eqs. (3), (9), and (10), we obtain, in analogy
to Eq. (11),

An = n,[I,(0)12(0)]"2/I e'gz.

The reflectivity in this case is easily shown to be

K2 sinh2 sL

K = 2 Sinh2 sL + 2

where

K = g[Ij(O)I2(0)]121I,

S = (K 
2

- 82/4)12

6 = g - 2A/,.

(30a)

(30b)

(30c)

Equation (29) has the simple form characteristic of Bragg
reflection from a constant amplitude grating,6 except for
the frequency shift in maximum reflectivity, which occurs
here at A/3 = g/2 (A,8 = -g/2 when = r) rather
than at A,8 = 0. The expression for the reflectivity,
Eq. (29), reduces to a familiar result at this point: when
A,8 = g/2, we have R = tanh 2 (KL). In Fig. 3, where
KL = 2, we obtain R = 0.92. Another special case occurs
at zero frequency shift: when A,8 = 0, Eq. (29) reduces
to R = (KL)2 /[1 + (KL)2 ] = 0.8. Thus for this case the
phase coupling invokes a penalty of approximately 15%
in the reflectivity when the reading-beam frequency is
not shifted.

Special Case: c = 0
A case similar to that of 0 = 0 occurs for arbitrary phase
q0 when c = 0, that is, when the coupled beams are
everywhere of equal intensity, although they may vary
with z. Starting again from Eqs. (4a) and (4b), we derive,
in analogy to Eqs. (8) and (10), intensities and phases of
the coupled beams,

I,(z) = 12(z) = v/2 exp(-rz/2) = I(0)e(-rz/2), (31)

01(z) = -2() = cos(q5)gz/2, (32)

where v is defined in Eq. (9b). From Eqs. (31) and (32)
we derive the index grating to be a constant magnitude,

An(z) = n,/2 exp[ig cos(4/)z]. (33)

In comparing Eq. (33) with Eq. (28), note the important
difference between the two cases c = 0 and 0 = 0. Here
the beams are intensity coupled with a gain coefficient of
g sin ; this reduces the phase-coupling coefficient from
g to g cos . Also note that since here the beams are ev-
erywhere of equal intensity, the term [I1(0)2(0)]112/I from
Eq. (28) reduces to 1/2 in Eq. (33). Since the formation
of the index grating is intensity independent [Eq. (3)], the
index grating is constant, although the intensities of the
beams are not. In the case = 0 the beams need not be
of equal intensity, because their intensities are constant
throughout the volume of the photorefractive medium.

The index grating [Eq. (33)] is fixed in the material.
The coupled-mode equations describing reflection become

(28) (34a)A'(z) i g e exp[i(g cos 0-2Aj8)z]B(z),

B'(z) = -i g e-i exp[-i(g cos - 2A,3)z]A(z). (34b)
2

These equations are readily solved to yield a reflectivity
(29) identical in form to that in the case = 0 [Eq. (29)], with

the modified definitions K = g/2 and = g cos - 2A,/.
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Special Case: gwrite gread
Since the index gratings are assumed to be fixed
(possibly by thermal fixing), it is possible that the
coupling constants during reading and writing of the
holographic grating are not equal (g, g,). This
possibility can be treated with a slight modification of
the previous solution. Referring to Eqs. (14) and (16),
the dissimilar coupling constants lead to a modification
of K to K = -eidg,/(2g. sin /); otherwise, Eqs. (14)
are unaltered. The solutions obtained in this case
are identical to those of Eqs. (25), with the change
/3 _ /3' = [gr 2/(4gw 2 sin2 0) - 772]112/2. The coefficients
in Eqs. (26) and (27) are also altered. Coefficients C,
and D each contain a term 4 sin2 /), which must be
replaced by (4gW2 sin2 )/g, 2, and coefficients C3 and C4

each must be multiplied by gw/gr. With these changes
the original solution holds.

SPECTRAL RESPONSE, LOSSY CASE

When the loss in the material is considered, the equa-
tions become substantially more complicated. Analytic
expressions are obtained only for dynamic holography
and only for 0 = 0. Reflectivities of the fixed holograms
are calculated numerically. We start with the dynamic
coupled-mode equations, as in Eqs. (4a) and (4b):

A'(z) = igIB(z)j2/I(z)e1'A(z) - (a/2)A(z), (35a)

B'(z) = -igIA(z)J2/I(z)e-i"B(z) + (a/2)B(z). (35b)

Performing the same transformation as in Eqs. (5), we
are led to the following equations for the phases and
magnitudes of the coupled beams:

a'(z) = - sin(0)gb(z)1 2 /I(z)[a(z)] - (a/2)a(z), (36a)

b'(z) = - sin(4/)gla(z)12/I(z)[b(z)] + (a/2)b(z), (36b)
(1) = cos(0/)glb(z)12 /I(z), (37a)

02'(Z) = - cos(/))gla(z)12 /I(z).

the P6schl-Teller equation [Eq. (A9) below], the second-
order equation obtained is a symmetric top equation.' 5"6

We do not present its solution here, since it is useful only
for / = 0.

Alternatively, we solved Eqs. (35) numerically for arbi-
trary photorefractive phase 0 in order to obtain the index
grating that is fixed in the material. This calculated
index grating is then fitted to a high-order polynomial
(usually twelfth order), and that polynomial approxima-
tion is then used to calculate the reflectivity numerically
from the reflectivity equations. In solving the dynamic
equations, we specify boundary conditions at z = 0; i.e.,
A(O) and B(O). The B(O) is iteratively modified to yield
the desired value for B(L), which is the physical input
to the crystal. When the reflectivity was calculated, we
used the standard procedure of fixing B(L) = 0 and A(L) =
1 and working backward toward z = 0.11 Finally, the
reflectivity is normalized relative to the numerically com-
puted A(O) [where IA(0)I > 1]. The addition of a nonzero
loss has two dramatic effects on the results: first, the
reflectivity of the filter is now strongly nonreciprocal;
second, since energy is no longer conserved, the quantity
IA(z)12 - IB(z)12 is no longer constant. In fact, the inten-
sities can become equal at any arbitrary point within the

1

0.8

' 0.6

0.4

0.2

0

(37b)

Again, the special case 0 = 0 yields considerably simpli-
fied formulas. In this special case, analytic solutions of
Eqs. (36) and (37) are obtained easily. They are

[ B(0)2exp(2z) + A(0)2

B(z) = B(O)exp(+caz/2)

X r B(0) 2 + A(0) 2 exp(-2az) (ig)I(2a)

L B(0)2 + A(0)2
j

I (ig)/(2a)

(38a)
>1
in;t:

r.Q�
15

(38b)

Thus the index grating is given by

_n~z) = n A(0)B(0)exp(igz)
An(z) = A(0)2 exp(-az) + B(0)2 exp(az) (39)

When this grating is fixed, we can formulate the coupled
equations describing reflectivity in analogy to Eqs. (12),
using Eqs. (35). One can manipulate these equations
by following steps identical to those in the analy-
sis up to Eqs. (19). In this case, however, instead of

0 0.04 0.08 0.12

Position z (cm)
(a)

0.16 0.2

0 0.04 0.08 0.12 0.16 0.2

Position z (cm)

(b)
Fig. 5. (a) Intensity of beam 1 incident at z = 0 for various val-
ues of q, for a loss constant of a = 6/cm, and for equal-intensity
inputs. The coupling constant is g = 20/cm, and the crystal
length is L = 0.2 cm. (b) Intensity of beam 2 incident at z = L
under conditions identical to those for (a).
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0 0.04 0.08 0.12 0.16 0.2

Position z (cm)
Fig. 6. Index grating formed in the crystal by the coupled beams
of Fig. 5. The effect of the loss is to eliminate the no-crossing
rule for the two beam intensities. Thus when g/2 sin 0 -a,
the intensities can be equal within the volume of the crystal.
This equality leads to a maximum in the magnitude of the index
grating located away from the edge of the crystal.

0.6

0.5

Iod~e/16
.1 0.4 8

0.3

0.2

0.1

0
0 10 20 30 40 50

Frequency Mismatch AP3 (cm-')
Fig. 7. Reflectivity for the case a = 6/cm versus frequency
mismatch for a beam incident at z = 0 upon the index gratings
of Fig. 6. The behavior is complex because the magnitude of the
index grating near z = 0 (the most efficient region of reflection)
first increases and then decreases with increasing photorefrac-
tive grating phase b.

clear that the index grating is maximum in the center of
the crystal.

Next we calculate numerically the reflectivity from the
index gratings of Fig. 6. Figure 7 shows the reflectivity
for a beam incident upon the z = 0 side of the crystal, and
Fig. 8 shows the reflectivity under the same conditions for
a beam incident at z = L. Since the index grating is, in
general, stronger near z = 0, the reflectivity is higher for
a beam incident at z = 0. The difference between the
two cases is most pronounced when the grating phase 0
is near v/2. Also, we point out that the behavior of the
reflectivity as increases is more complex in the case
of reflection from the z = 0 side. This occurs because
the index grating near z = 0 (the most efficient region of
reflection for a beam incident at z = 0) first increases and
then decreases with increasing photorefractive phase S.
We can see how this effect arises, by an inspection of the
shape of B(z) in Fig. 5(b).

COMPARISON OF THEORY WITH
EXPERIMENT

We compare the theory of spectral response of photore-
fractive gratings obtained in the preceding sections with
recently reported results of a solar H-a photorefractive in-
terference filter marketed by Accuwave, Inc.17 Lithium
niobate was used as the photorefractive material; its
thickness is 1.2 cm. The center wavelength of transmis-
sion is 656.46 nm with a peak reflectivity taken equal
to R = 55% and a 3-dB bandpass (full width at half-
maximum) of 0.125 nm. In Fig. 9 two theoretical filter
responses are superimposed upon the experimentally de-
termined response of the Accuwave filter. We chose the
writing-beam wavelengths, the coupling constant g, the
photorefractive phase 0, and the optical absorption a to
match the peak reflectivity wavelength and magnitude,
as well as the full width at half-maximum. Rough val-
ues for the experimental parameters were provided by
George Rakuljic of Accuwave Corporation in a private
communication.' 8 For the upper curve we used g =
3/cm, = 3, and for the lower curve we used g =

0.5

volume of the crystal. Thus the index grating may have
its maximum at any point in the volume of the crystal
rather than only at the entrance or exit facet.

In the following calculations we use, as above, a cou-
pling constant g = 20/cm, and a crystal length of L =
0.2 cm, and we assume equal-intensity inputs A(O) and
B(L). The loss coefficient is taken to be a = 6/cm. First
the equations for the dynamically coupled beams A(z) and
B(z) are computed from Eqs. (35a) and (35b), respectively.
The results for various values of the grating phase 
are shown in Fig. 5. The nonzero loss affects mainly the
shape of B(z), incident from z = L. This occurs because
the beam-coupling and loss mechanisms are opposed.
Thus B(z) has a minimum at the position at which the
material loss is balanced by the beam coupling. Also, the
loss allows the two beams to have equal intensities at one
point in the volume of the crystal. From Eqs. (36) we
determine that this condition is permitted approximately
when g2 sin < a. The index grating formed by the
two beams (Fig. 6) illustrates this effect. For = 0 it is

0.4

.>

t 0.3
C)

C)

0.2

0.1

0
0 10 20 30 40 50

Frequency Mismatch A (crn )
Fig. 8. Reflectivity for the case a = 6/cm versus frequency
mismatch for a beam incident at z = L upon the index gratings
of Fig. 6. Note the strong nonreciprocity in comparison with
Fig. 7. The behavior for this case is simpler than that of Fig. 7,
because the magnitude of the index grating near z = L (the
most efficient region of reflection) decreases monotonically with
increasing photorefractive grating phase 0.
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Fig. 9. Reflectivity of the Accuwave H-a filter (heavy curve)
compared with theoretical plots (light curves). For the upper
curve, g = 3/cm, /, = ir/3, and a = 0; for the lower curve,
g = 5/cm, qs = 7/6, awrite = 4/cm, and aread = 0.5/cm.
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Fig. 10. Magnitude of the index gratings used to calculate the
reflectivities of Fig. 9. The index grating in the case of nonzero
optical absorption is more strongly apodized.

5/cm, 0 = ir/6, aread = 0.5/cm, and awrite = 4/cm. The
reflectivity is calculated for beams incident at z = L (the
weak reflection). Both curves match the Accuwave filter
well near A,/ = 0; however, only the curve a 0 0 fits well
for large values of the frequency mismatch.

The deviation of the upper curve from the experimental
data is significant because the decay of the reflectivity
sidelobes at large values of frequency mismatch deter-
mines the performance of the filter. If the hologram
were used instead to store a page of data, the sidelobes
would determine how closely adjacent pages of data could
be written and thus the information density of the ma-
terial. We conclude that the Accuwave filter performs
substantially better than a lossless theoretical filter.

The second curve is generated with the inclusion of
optical absorption. The values of a during writing and
reading were chosen on the basis of discussions with
Accuwave representatives on the fabrication process of
the filter. Although this curve behaves similarly for
small A,/, it has dramatically reduced sidelobes. As
mentioned above, it is possible for gread and gwrite to be
different, also; however, this complication was determined
not to affect the output substantially.

The improved performance of the lower curve is quite
easy to understand by reference to Figs. 6 and 2 for the
index grating in a photorefractive material with and with-
out optical absorption, respectively, and also to Fig. 10,
which illustrates the index gratings used to generate
Fig. 9. As described above, when optical absorption is
ignored, the maximum amplitude of the index grating
always occurs at the entrance facet. When the loss is
included, it is possible to get the maximum of the index
grating within the volume of the crystal. In the dashed
curve of Fig. 10, the maximum is very near the center of
the crystal. Thus the index grating is truncated more
gently (smaller discontinuity) at the edges of the crystal
when optical absorption is present. The large disconti-
nuity in the index grating at the edges is responsible for
the large reflectivity sidelobes when a = 0.

We can understand this by an inspection of Eq. (1) or
(34) in the limit of large A,3. Here A(z) is approximately
constant and the reflectivity is weak. It is clear that
the output B(0) is given approximately by the Fourier
transform of An(z). Thus, as in Fig. 4, if one index
grating is of uniform amplitude and the other is smoothly
truncated on one facet and discontinuous on the other,
we expect a 3-dB difference between the sidelobe am-
plitudes of the gratings. In the case of Figs. 9 and 10,
when absorption is included, B(0) becomes the Fourier
transform of An exp(-2az) or An exp[-2a(L - z)] for
beams incident at z = 0 or z = L, respectively. Thus the
reflectivity from the z = L side of the strongly apodized
index grating should have much weaker sidelobes than
the zero-loss index grating. This is exactly the behavior
that we observed, and we conclude that the optical ab-
sorption is a key ingredient in the superior performance
of the Accuwave filter.

SUMMARY

In summary, we describe an analytic solution for the
frequency response of interference filters written with
the photorefractive effect. We allow for an arbitrary
photorefractive grating phase qS. In addition we present
numerical solutions of the identical procedure with a
nonzero optical absorption in the material. A number of
aspects of the interplay between the intensity and the
phase coupling that are due to are discussed. Some
of the results are applied to experimental data of fixed
holographic gratings in LiNbO3 for which it is determined
that the optical absorption of the medium improves the
filter response.

APPENDIX A: TRANSFORMATION OF
COUPLED DIFFERENTIAL EQUATIONS

In the study of beam coupling and holography in photore-
fractive materials, one often encounters equations of the
form

A'(z) = iKf1(z)exp(i8z)B(z),

B'(z) = ±iK*f2(z)exp(-iaz)A(z).

(Ala)

(Alb)

Here we define both f (z) and f 2 (z) as possessing the same
sign, usually fi(z) > O. For beam-coupling problems, the
plus occurs when the copropagating (transmission) ge-
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ometry is used; the minus occurs in the counterpropagat-
ing (reflection) geometry. The typical method of solving
this type of equation set is to differentiate either equation,
obtaining a second-order equation, and then substitute
the remaining equation into the second-order equation to
obtain a second-order equation that contains terms of only
one dependent variable, i.e., A(z) and A"(z) or B(z) and
B"(z), but no first-derivative terms.

The presence of the term and the f(z) and 2(Z)
terms in Eq. (Al) complicate the use of this method, since
they contribute terms to the derivative. In general, after
following the procedure outlined above, we are left with
second-order equations containing terms A(z), A'(z), and
A"(z). The difficulty in solving the equations is that
the coefficients of these terms are functions of z. In
order to overcome this problem we seek a simplifying
transformation of the dependent variables of Eqs. (Al)
that will permit the equations to be solved.

First we seek a transformation A(z), B(z) - T(z),
V(z), which permits the expression of Eqs. (Al) to be
expressed as two second-order equations without T'(z) or
V'(z) terms. We perform the transformation

A(z) = T(z) exp[iF(z)], (A2a)
B(z) = V(z)exp[-iF(z)], (A2b)

where F(z) is a function to be determined.
Equations (Ala) and (Alb) become, respectively (with
the minus),

T'(z) = iV(z)exp{i[8z - 2F(z)]}f1(z) - iF'(z)T(z),

(A3a)

V'(z) = -iK*T(z)exp{i[2F(z) - z]}f2(z) + iF'(z)V(z).

(A3b)

When Eq. (A3a) is differentiated and Eq. (A3b) is used to
eliminate terms containing V(z) and V'(z), we obtain

T"(z) = [i8 - 2iF'(z) + f,'(z)/f1(z)]T'(z)

+ {IKI2f,(Z)f2(Z) -3F'(z) + [F'(z)]2

+ iF'(z)f1'(z)/f (z) - iF"(z)}T(z).

The T'(z) term vanishes when F'(z) = /2 +
f1'(z)n[2iF)(z)], or

F(z)= - + 1[f.i)] (AS)
2 2i

An analysis of V"(z) similar to that leading up to Eq. (A4)
gives the condition

F(z) = 6z _ ln[f2(z)] (A6)
2 2i

in order that the V'(z) term be zero. Comparison of
Eqs. (AS) and (A6) shows that the two conditions can be
met simultaneously if and only if

f2(z) = 1/fl(Z) (A7)

When f(z) is on the unit circle [as in Eq. (15)], the
stipulation of Eq. (A7) reduces to f2(z) = f*(z). When

condition (A7) is satisfied, Eqs. (A3a) and (A3b) can be
written as

T"(z) = {1K12 - [F'(Z)]2 - iF"(z)}T(z),

V"(z) = {1K12 - [F'(Z)]2 + iF"(z)}V(z),

(A8a)

(A8b)

respectively. If we had taken the plus in Eqs. (A3), then
Eqs. (A8) would be modified by replacement of IK1

2 with
- K 12. The transformation described above will be re-
ferred to as the corotating transform.

The advantages of expressing the coupled equations in
this way are that many second-order equations of the
form of Eqs. (A8) have been solved and their solutions
can be referenced.'6 In the text it is shown that when
the coupled equations describing photorefractive beam
coupling are subjected to the procedure described above,
the two second-order equations that result are of the form

`(r) = a2[ K(K 1) cosh 2 ( r) + (21- 1)2

(A9)

This form is the second P6schl-Teller equation, which
has been solved'4 with a modification of the factorization
method.'5 The equation is used to describe the bound
and scattering states of diatomic molecules, hence the
quantum-mechanical notation.

The method of solution will not be described here
(see Ref. 14); instead, we merely list the solutions. Two
eigenfunctions are solutions of Eq. (A9):

@i(r) = sinhl -K(ar)coshA+1(a r)F[( 2K - I + 1)

A -A K + + 3 K;sinh2(ar)l2 2'2 ! 22 -

(AlOa)

(r) sinhK(ar) coshA+ (ar)

X 2Fi[( K 1 );

- sinh2(ar)] , (AlOb)

where 2 F [ ... ] is the hypergeometric function, defined by

2F,[a, b;c;z] = 2F1[b,a;c;z]

7(c_ ' (a + n)F(b + n) Z* (All)
F(a) (b) n=O F(c + n) n!

The particular solutions of first-order coupled
equations (Al) that led to the second-order Poschl-Teller
equations will consist of linear combinations of the
eigenfunctions 1 and 4l,2, with coefficients determined by
boundary conditions. Calculation of the coefficients
is generally tedious. Use is made of the Gauss
transformations for hypergeometric functions,'9 the
differential relation

d aFb[a,b;c;z]=ac 2Fla + b + ;c + ;z], (A12)

and the linear transformation

2 F,[a, b; c; z] = (1 - z)c-a-b 2F[c -a, c - b; c; z]. (A13)
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