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Abstract
Spectral clustering has been a popular data clustering
algorithm. This category of approaches often resort to
other clustering methods, such as K-Means, to get the
final cluster. The potential flaw of such common prac-
tice is that the obtained relaxed continuous spectral so-
lution could severely deviate from the true discrete solu-
tion. In this paper, we propose to impose an additional
orthonormal constraint to better approximate the opti-
mal continuous solution to the graph cut objective func-
tions. Such a method, called spectral rotation in liter-
ature, optimizes the spectral clustering objective func-
tions better than K-Means, and improves the clustering
accuracy. We would provide efficient algorithm to solve
the new problem rigorously, which is not significantly
more costly than K-Means. We also establish the con-
nection between our method and K-Means to provide
theoretical motivation of our method. Experimental re-
sults show that our algorithm consistently reaches bet-
ter cut and meanwhile outperforms in clustering metrics
than classic spectral clustering methods.

Introduction
Clustering is widely used for exploratory data analysis, with
applications ranging from artificial intelligence, statistics
to social sciences. Among various clustering methods in
the literature, spectral clustering is a popular choice. It is
easy to efficiently implement and often outperforms tradi-
tional clustering methods such as K-Means. There are nu-
merous papers proposed different spectral clustering algo-
rithms, such as Ratio Cut (Hagen and Kahng 1992), K-
way Ratio Cut(Chan, Schlag, and Zien 1994), Normalized
Cut (Shi and Malik 2000; Ng, Jordan, and Weiss 2002)
and Min-Max Cut (Ding et al. 2001; Nie et al. 2010), also
some papers establishing the connection between spectral
clustering and other clustering methods (Zha et al. 2001;
Dhillon, Guan, and Kulis 2004; Ding, He, and Simon 2005;
Nie et al. 2011; Luo et al. 2010). There are also quite a few
tutorials that give an introduction to spectral clustering, such
as (Luxberg 2007).

The goal of clustering is to separate data vectors in dif-
ferent clusters according to their similarities. For the simi-
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larity graph constructed from data, we want to find a parti-
tion of the graph such that the edges between different clus-
ters have low weights and the edges within the same cluster
have high weights. In other words, we want to find a par-
tition such that data vectors within same cluster are similar
to each other and vectors in different clusters are dissimi-
lar from each other. It is NP-hard to solve the multi-cluster
mincut problems with various balancing condition. Spectral
clustering is a way to solve relaxed versions of such prob-
lems. Classical spectral methods such as Ratio Cut (Hagen
and Kahng 1992) and Normalized Cut (Shi and Malik 2000;
Ng, Jordan, and Weiss 2002) then generally use K-Means
to do the clustering on the relaxed continuous spectral vec-
tors, to obtain the final clusters. The subtle disadvantage of
this approach is that the obtained continuous solution from
graph cut could deviate far from the discrete solution, which
would affect the cluster accuracy thereafter.

In this paper, we apply the spectral rotation technique to
get the continuous spectral vector which is closer to the dis-
crete cluster indicator than existing results. As we will show,
this usually leads to a better cut in terms of objective func-
tion value and improvement in clustering accuracy. We in-
troduce the details of the optimization method and reveal its
connection and difference with K-Means.

In the rest of this paper, we first introduce background
material on spectral clustering that serves as our motivation.
Next we provide our objective function and give an opti-
mization algorithm for it. After that, we describe several ex-
periments we have run, comparing our algorithm to alterna-
tives from the literature on 12 benchmark data sets. Finally,
we conclude with additional observations and future work.

Spectral Clustering Background
Given n data vectors {x1, · · · ,xn}, we can construct a
graph using the data with weight matrix W ∈ Rn×n. The
spectral clustering objective function is

J =
∑

1≤p<q≤K

s (Cp, Cq)

σ (Cp)
+

s (Cp, Cq)

σ (Cq)
=

K∑
i=1

s
(
Ci, C̄i

)
σ (Ci)

(1)
where

σ (Ci) =

{
|Ci| for Ratio Cut∑

j∈Ci
dj for Normalized Cut (2)
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and K is the number of clusters, Ci is the i-th cluster, C̄i

is the complement of subset Ci in graph G, s(A,B) =∑
i∈A

∑
j∈B Wij and di =

∑
j Wij .

We now reformulate the objective functions for these dif-
ferent graph cuts. Let q̂i (i=1, . . . ,K) be the cluster indica-
tors where the j-th element of q̂i is 1 if the j-th data vector
xj belongs to cluster i, and 0 otherwise. For instance, if we
assume those 1s are adjacent and the size of i-th cluster is
ni, then

q̂i = (0, . . . , 0, 1, . . . , 1︸ ︷︷ ︸
ni

, 0, . . . , 0)T (3)

Note that

q̂T
i q̂j =

{
ni i = j
0 i 6= j

(4)

for 1 ≤ i, j ≤ K. We can then observe that

s (Ci, Ci) = q̂T
i W q̂i∑

j∈Ci
dj = q̂T

i Dq̂i

s(Ci, C̄i) =
∑

j∈Ci

∑
k∈C̄i

Wjk = q̂T
i (D −W )q̂i

(5)

where D is a diagonal matrix with the i-th element di. As a
result, we can write the clustering objective functions Eq. (1)
in the following way:

Jrcut =
K∑
i=1

q̂T
i (D−W )q̂i

q̂T
i q̂i

Jncut =
K∑
i=1

q̂T
i (D−W )q̂i

q̂T
i Dq̂i

(6)

We can clearly see the connections and differences between
these spectral clustering objective functions.

Now let us first look at how to minimize Jrcut with re-
spect to q̂i. Clearly if we restrict q̂i to be a discrete value
vector whose elements can be either 0 or 1, then this prob-
lem becomes NP-hard. To make the optimization computa-
tion manageable, we relax the discrete constraint and seek a
continuous solution of q̂i. Note that

Jrcut =
K∑
i=1

q̂T
i (D −W )q̂i/ni

q̂T
i q̂i/ni

=
K∑
i=1

q̂T
i (D −W )q̂i

ni
(7)

due to Eq. (4). Let

Q = [q̂1/
√
n1, . . . , q̂K/

√
nK ] = [q1, . . . ,qK ] (8)

It is easy to see QTQ = I . The Eq. (7) becomes

Jrcut =
K∑
i=1

qT
i (D −W )qi (9)

Then it is straightforward to get ratio cut optimization prob-
lem as follows:

min
QTQ=I

Tr(QTLQ) (10)

where L = D−W is the Laplacian graph (Chung 1997) and
Tr denotes the trace operation of the matrix. The solution of
Q is the collection of eigenvectors corresponding to the top

smallest K eigenvalues of L. The derivation of relaxed Nor-
malized Cut objective function is in a very similar manner,
just let

Q = [q̂1/
√
d1n1, . . . , q̂K/

√
dKnK ] (11)

and we again get the same Eq. (10).
SinceQ is now in relaxed continuous form, to get the final

cluster solution, it is a common practice to apply K-Means
to Q to get the final discrete solution.

To conclude this section, we summarize the main steps of
Normalized Cut clustering in Algorithm 1 (Shi and Malik
2000).

Algorithm 1: Normalized Cut Clustering

Input: Data vector matrix X = [x1, . . . ,xn]T , Number
of clusters K

Output: Clusters C1,. . . ,CK

Construct a similarity matrix S and weight matrix W .
Compute the Laplacian matrix L.
Compute the first K generalized eigenvectors
q1,. . . ,qK of the generalized eigenproblem Lq = λDq.
Let Q ∈ Rn×K be the matrix containing the vectors
q1,. . . ,qK as columns.
For i = 1, ..., n, let yi ∈ RK be the vector
corresponding to the i-th row of Q.
Cluster the points (yi)i=1,...,n in RK with the K-Means
algorithms into clusters C1,. . . ,CK .

How K-Means Works
In this section we re-deriveK-Means in a way that motivates
and explains our subsequent contribution.

Given the spectral vectors {y1, . . . ,yn}, K-Means clus-
tering aims to partition the n vectors into K sets, C =
{C1, ..., CK} so as to minimize the within-cluster sum
of squares, mathematically, the solution of K-Means is

arg min
C

K∑
i=1

∑
yj∈Ci

‖yj − ui‖22, where ui is the mean of vec-

tors in Ci. The common way to solve it is via the EM al-
gorithm, which repeats the cluster assignment (assign each
observation to the cluster with the closest mean) and the up-
date (calculate the new means to be the centroid of the ob-
servations in the cluster) processes (MacKay 2003).

The above K-Means objective function can be written in
another way. LetQ ∈ Rn×K be the eigenvector matrix, then
the K-means objective function is

min
G∈Ind,H

‖Q−GH‖2F , (12)

where G ∈ Ind denotes G is an indicator matrix. G =
[g1, . . . ,gn]T and the unique 1 in each row vector gi in-
dicates its cluster membership.

In EM, we optimize this objective function by employing
iterative alternative optimization steps:

When H is fixed, the solution to the indicator matrix G is

Gij =

{
1, j = arg min

k
‖qi − hk‖2F

0, else
(13)
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Figure 1: A demonstration of our motivation. The curve
on the left represents the discrete clustering solutions. The
green ellipse represents the solution set due to the orthonor-
mal matrix R. The blue triangle represents the solution
yielded via solving relaxed spectral clustering problem. The
yellow star represents the solution we get via the proper ro-
tation.

When G is fixed, it is easy to get the solution as a classic
regression problem. From GT (GH − Q) = 0, it is easy to
get

H = (GTG)−1GTQ . (14)
These steps repeat until convergence and the yielded discrete
gis provide the cluster membership for each xi.

Notice that Eq. (12) only guarantees that GH combined
best approximates the relaxed continuous vector matrixQ in
terms of `2 distance, there is no guarantee that such yielded
G best approximates Q! Indeed, such solution G by K-
Means generally is not the one that best approximates Q.
This leads to the question: how can we find a better G?

Why Spectral Rotation Works Better
We now introduce our contribution: the application of spec-
tral rotation to spectral clustering. In the literature, research
papers related to spectral rotation include multi-class clus-
tering (Yu and Shi 2003), self-tuning spectral clustering
(Zelnik-manor and Perona 2004). While these two papers
also take advantage of the spectral solution invariance prop-
erty, neither of them use this property to explicitly propose
a new spectral clustering method.

Let us first inspect the Eq. (10) again, note that the relaxed
solution to Eq. (10) is not unique. Indeed, for any solutionQ,
QR is another solution, where R is an arbitrary orthonormal
matrix. Our goal is to find a proper orthonormal R such that
the resulting QR are closer to the discrete indicator matrix
solution set (in terms of `2 distance) than theQ inK-Means.
Fig 1 demonstrates our idea, the rotated spectral vectors are
geometrically closer to the discrete indicator matrix solution
set than the traditional spectral vectors.

Similar to K-Means, we aim to find the optimal G and
therefore to minimize the `2 distance between QR and G, in
other words,

min
G,R

‖QR−G‖2F
s.t. G ∈ Ind,RTR = I

(15)

It is easy to see Eq. (15) is equivalent to the following one:

min
G,R

∥∥Q−GRT
∥∥2

F

s.t. G ∈ Ind,RTR = I
(16)

and can be further re-written in the following form:

min
G,R

‖Q−GR‖2F
s.t. G ∈ Ind,RTR = I

(17)

Note that Eq. (17) and Eq. (12) are very similar, except that
the orthonormal constraint imposed on theR. This is also the
key difference between spectral rotation and K-Means, the
additional orthonormal constraint guarantees that G best ap-
proximatesQR among all discrete cluster membership indi-
cator matrices, whileQR is the optimal solution to Eq. (10)!
It is expected and also we will demonstrate in the experi-
ment section, such feature would lead to better optimization
for both graph cut objective functions and improvement in
clustering accuracy for spectral clustering.

We use the same alternative optimization method for ob-
jective function in Eq. (17).
When R is fixed,

Gij =

{
1, j = arg min

k
‖qi − rk‖2F

0, else
(18)

When G is fixed,
R = UV T (19)

where U and V are left and right parts of the SVD decom-
position of GTQ. We would prove Theorem 1 to explain
Eq. (19).

since Q and G are fixed at this step, Eq. (17) is equivalent
to the following equation due to the trace norm property

max
RTR=I

Tr(RTM) (20)

where M = GTQ.

Theorem 1 Given the objective function in Eq. (20), the op-
timal value is

R = UV T (21)
where U and V are left and right singular values of SVD
decomposition of M , which is defined in Eq. (20).
Proof
Suppose SVD of M is M = UΓV T , then we have

Tr(RTM) = Tr(RTUΓV T ) = Tr(ΓV TRTU)
= Tr(ΓB) =

∑
i

σiibii (22)

where B = V TRTU ,σii and bii are the (i, i) elements of Γ
and B. It is not difficult to verify B is orthonormal as

BBT = V TRTUUTRV = I (23)

Therefore −1 ≤ bij ≤ 1. σii ≥ 0 since σii is singular value
of Γ, therefore

Tr(RTM) =
∑
i

σiibii ≤
∑
i

σii (24)

The equality holds when B is the identity matrix, i.e,
V TRTU = I. Therefore,

R = UV T . (25)

This completes our proof. �
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The optimization of G and R repeats until convergence
criteria is satisfied(the elements in indicator matrix G no
longer change). The details of our spectral rotation algorithm
are summarized in Algorithm 2. Note that the computation
complexity of our algorithm is the same as K-Means. Given
spectral vector matrix Q ∈ Rn×K , the time cost of our al-
gorithm is O(tnK2), where t is the number of iterations.
Therefore, our algorithm can be applied to a wide range of
data sets.

Algorithm 2: Spectral Rotation Algorithm for Spectral
Clustering

Input: Spectral vector matrix Q ∈ Rn×K , Maximum
number of iteration T

Output: Cluster indicator matrix G
Construct a random initial indicator matrix G.
while Convergence criteria not satisfied and number of
iteration ≤ T do

For fixed G,update R according to Eq. (19).
For fixed R,update G according to Eq. (18).

end

Experimental Results
In this section, we will evaluate the performance of the pro-
posed method on benchmark data sets. We compare the pro-
posed method with K-Means, NMF (Lee and Seung 2001),
NMF with non-negative constraint (NMFNC) (Ding, Li, and
Jordan 2008), Normalized Cut (Shi and Malik 2000) and Ra-
tio Cut (Hagen and Kahng 1992). Note that Normalized Cut
and Ratio Cut both use K-Means in their algorithms, so we
denote them NC+KM and RC+KM respectively.

There are in total 12 data sets used in our experiment
section, which includes 9 image ones: AR (Martinez and
Kak 2001), AT&T (Samaria and Harter 1994), COIL20
(Nene, Nayar, and Murase 1996), JAFFE (Lyons et al. 1998),
MNIST (LeCun et al. ), PIE (Sim, Baker, and Bsat 2002),
UMIST, Yale and YaleB (Georghiades and et al. 2001).
The other 3 non-image ones are from UCI machine learn-
ing repository (Frank and Asuncion 2010): Abalone, Ecoli,
Scale.

Table 1 summarizes the characteristics of the data sets
used in the experiments.

Parameter Setting
Since this paper is mainly demonstrating the advantage of
spectral rotation over K-Means in dealing with relaxed
spectral vectors, we set the parameters to constructW as fol-
lows: we use the heat kernel and `2 distance, KNN neigh-
borhood mode with K rounded to the average number of
samples in each cluster for each data set. We tune the width
of the neighborhood σ from list {1, 10, 100, 1000}.

For K-Means and NMF, we set the number of clusters
equal to the ground truth.

Under each parameter setting of each method mentioned
above, we repeat clustering 20 times and compute the aver-
age result. We report the best average result for each method.

Data set No. of Observations Dimensions Classes
AR 2600 792 100

AT&T 400 168 40
COIL20 1440 1024 20
JAFFE 360 90 15
MNIST 150 196 10

PIE 680 256 68
UMIST 360 168 20

Yale 165 256 11
YaleB 1140 1024 38

Abalone 4177 8 3
Ecoli 327 7 5
Scale 625 4 3

Table 1: Description of Data Sets

Objective Function Evaluation

First, we compare our method and K-Means on the spectral
clustering objective function values defined in Eq. (6), which
shows spectral rotation generally yields a better cut than K-
Means in terms of the objective functions.

Table 2 lists the normalized cut and ratio cut objective
function values and the standard deviation on the 12 data
sets we mentioned in previous part. We use' 0 for the cases
when standard deviation is less than 10−4 to save space. We
do the one sided two-sample T test based on the 20 simula-
tions on each data to test whether these cut objective func-
tion values using spectral rotation is significantly lower than
the corresponding values via K-Means. Statistical signifi-
cance test results at the 0.05 level are indicated in column
T1.

Sometimes the T test is not able to detect the difference
between the means of two groups when grouped standard
deviation is relatively large. To overcome this, in this pa-
per, we also use Mann-Whitney U test (also called Wilcoxon
rank-sum test) (Mann and Whitney 1947) to assess whether
objective function values with K-Means tend to have larger
values than the spectral rotation group. This test is a non-
parametric statistical hypothesis test and especially helpful
for two reasons: first, our experiment process and results sat-
isfy the general assumptions of the test; second, the test uses
sum of rank for the test statistics, which is able to detect the
cases where samples from one group are generally larger
than the other group. We use T2 to denote the U test, where
the null hypothesis that the algorithms are equal with the
same type-I error rates.

From Table 2, we can see spectral rotation significantly
outperforms K-Means method on 9 out of the 12 bench-
mark data sets for T-test. What is more important, based on
U test result, for both Normalized Cut and Ratio Cut on all
12 such data sets, spectral rotation always yields a low ob-
jective function value thanK-Means. This demonstrates that
spectral rotation has better cut thanK-Means in terms of the
objective functions on these data sets.
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Table 2: Objective Cut Function Values on Data Sets
(a) Normalized Cut

Data K-means SR T-test U Test
AR 53.62± 0.24 31.34± 0.53 Y Y

AT&T 4.93± 0.67 3.91± 0.65 Y Y
COIL20 1.28± 0.13 0.78± 0.12 Y Y
JAFFE 1.16± 0.52 0.82± 0.55 N Y
MNIST 5.08± 0.57 4.40± 0.56 N Y

PIE 22.22± 1.77 10.38± 2.52 Y Y
UMIST 2.32± 0.66 1.67± 0.59 Y Y

Yale 6.52± 0.98 5.85± 0.72 N Y
YaleB 21.89± 1.04 16.83± 1.21 Y Y

Abalone 0.15± 0.01 0.08± 0.01 Y Y
Ecoli 2.38± 0.69 1.48± 0.58 Y Y
Scale 0.41± 0.01 0.38± 0.01 Y Y

(b) Ratio Cut

Data K-means SR T-test U test
AR 0.35± 0.02 0.25± 0.03 Y Y

AT&T 29.69± 4.47 21.41± 3.85 Y Y
COIL20 3.54± 0.88 2.65± 0.23 Y Y
JAFFE 10.87± 3.04 7.84± 2.13 Y Y
MNIST 50.42± 9.69 35.99± 7.56 Y Y

PIE 121.24± 15.54 44.45± 8.63 Y Y
UMIST 11.62± 5.22 6.20± 1.88 Y Y

Yale 56.60± 9.75 51.95± 7.43 N Y
YaleB 82.71± 12.71 60.50± 11.68 Y Y

Abalone 0.11± 0.01 0.08± 0.01 Y Y
Ecoli 8.76± 2.62 7.43± 1.24 N Y
Scale 2.61± 0.05 2.56± 0.12 N Y

Evaluation Metrics
To evaluate the clustering results, we adopt the three widely
used clustering performance measures.

Clustering Accuracy discovers the one-to-one relation-
ship between clusters and classes and measures the extent
to which each cluster contained data points from the corre-
sponding class. Clustering Accuracy is defined as follows:

Acc =

∑n
i=1 δ(map(ri), li)

n
, (26)

where ri denotes the cluster label of xi and li denotes the
true class label, n is the total number of samples, δ(x, y) is
the delta function that equals one if x = y and equals zero
otherwise, and map(ri) is the permutation mapping func-
tion that maps each cluster label ri to the equivalent label
from the data set.

Normalized Mutual Information (NMI) is used for de-
termining the quality of clusters. Given a clustering result,
the NMI is estimated by

NMI =

∑c
i=1

∑c
j=1 ni,j log

ni,j

nin̂j√
(
∑c

i=1 ni log ni

n )(
∑c

j=1 n̂j log
n̂j

n )
(27)

where ni denotes the number of data contained in the cluster
Ci(1 ≤ i ≤ c), n̂j is the number of data belonging to the

Lj(1 ≤ j ≤ c), and ni,j denotes the number of data that are
in the intersection between cluster Ci and the class Lj .

Purity measures the extent to which each cluster con-
tained data points from primarily one class. The purity of
a clustering is observed by the weighted sum of individual
cluster purity values, given as follows:

Purity =
K∑
i=1

ni
n
P (Si), P (Si) =

1

ni
max

j
(nji ) (28)

where Si is a particular cluster size of ni, n
j
i is the number

of the i-th input class that was assigned to the j-th cluster.
K is the number of the clusters and n is the total number of
the data points.

Clustering Results
Table 3 displays the average clustering results on different
data sets for all the methods we mentioned. We can see that
spectral clustering with different cuts using our method has
superior performance on most benchmark data sets. We do
not list many competitive methods here for 2 primary rea-
sons: (1) The purpose of this paper is to show our proposed
approach can bring significant improvement over conven-
tional spectral clustering approaches, not to claim this is
the best method among all clustering methods. In fact, if
conventional spectral clustering methods outperforms other
methods, then our approach has a high probability to do even
better. (ii) This gives our figure better visual effects.

Conclusion
In this paper, we employ spectral rotation (SR) in spectral
clustering to convert relaxed continuous spectral vectors into
a cluster membership indicator matrix in a more effective
way than traditional K-Means. Our method takes advantage
of the rotation invariant property of the spectral solution vec-
tors, but still uses an iterative optimization method to get
the final solution. Such a solution better approximates graph
cut objective functions and generally has better performance
than the corresponding K-Means method. We also establish
a theoretical connection between our method and simple K-
Means, which explains the performance improvement. We
are then able to demonstrate this improvement experimen-
tally, both in terms of solutions associated with smaller ob-
jective function values, as well as improved clustering met-
rics. Our proposed method consistently yields better graph
cut objective function values and clustering performance,
shows its significance in both theory and application.
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(c) Accuracy

Data NC+KM NC+SR RC+KM RC+SR K-Means NMF NMFNC
AR 0.1062± 0.01 0.1423± 0.02 0.1055± 0.02 0.1383± 0.02 0.1315± 0.02 0.1347± 0.02 0.1389± 0.02
AT&T 0.6600± 0.03 0.7110± 0.01 0.6598± 0.03 0.7080± 0.02 0.6790± 0.03 0.6720± 0.02 0.6685± 0.02
Coil20 0.6121± 0.02 0.6753± 0.02 0.6228± 0.02 0.6694± 0.03 0.6092± 0.05 0.6034± 0.03 0.6143± 0.04
Jaffe 0.7317± 0.02 0.7746± 0.02 0.7647± 0.02 0.7981± 0.02 0.7543± 0.02 0.7598± 0.02 0.7654± 0.02
MNIST 0.7134± 0.04 0.7316± 0.04 0.7145± 0.05 0.7441± 0.05 0.6913± 0.05 0.7014± 0.05 0.5267± 0.03
PIE 0.1956± 0.03 0.2276± 0.01 0.1818± 0.01 0.2344± 0.01 0.2250± 0.01 0.2245± 0.02 0.2126± 0.01
Umist 0.5212± 0.03 0.5612± 0.03 0.5421± 0.03 0.5717± 0.03 0.4953± 0.03 0.5024± 0.03 0.5133± 0.04
Yale 0.3319± 0.03 0.3502± 0.02 0.3592± 0.03 0.3724± 0.02 0.3418± 0.02 0.3524± 0.02 0.3542± 0.02
YaleB 0.1466± 0.01 0.1527± 0.01 0.1235± 0.01 0.1442± 0.01 0.1250± 0.01 0.1320± 0.01 0.1474± 0.01
Abalone 0.4652± 0.01 0.5237± 0.02 0.4873± 0.02 0.5437± 0.02 0.5083± 0.02 0.5194± 0.02 0.5243± 0.03
Ecoli 0.5394± 0.03 0.5785± 0.03 0.5506± 0.02 0.6130± 0.03 0.4967± 0.03 0.5132± 0.02 0.5383± 0.04
Scale 0.5364± 0.03 0.5824± 0.03 0.5125± 0.02 0.5372± 0.02 0.5174± 0.02 0.5347± 0.02 0.5572± 0.03

(d) NMI

Data NC+KM NC+SR RC+KM RC+SR K-Means NMF NMFNC
AR 0.3063± 0.02 0.3943± 0.02 0.3392± 0.03 0.3843± 0.03 0.4273± 0.03 0.4163± 0.02 0.4028± 0.02
AT&T 0.8272± 0.01 0.8710± 0.01 0.8391± 0.01 0.8640± 0.01 0.8531± 0.02 0.8490± 0.02 0.8376± 0.01
Coil20 0.7482± 0.03 0.8141± 0.04 0.7468± 0.03 0.7748± 0.02 0.7432± 0.03 0.7384± 0.03 0.7532± 0.02
Jaffe 0.7822± 0.03 0.8005± 0.03 0.7932± 0.03 0.8174± 0.03 0.7865± 0.03 0.7885± 0.03 0.7943± 0.03
MNIST 0.7062± 0.03 0.7253± 0.03 0.7147± 0.02 0.7381± 0.02 0.7005± 0.03 0.7025± 0.04 0.5217± 0.04
PIE 0.3883± 0.09 0.4970± 0.01 0.3658± 0.01 0.506± 0.01 0.4950± 0.01 0.4980± 0.01 0.4600± 0.03
Umist 0.5212± 0.03 0.5612± 0.03 0.5421± 0.03 0.5717± 0.03 0.4953± 0.03 0.5024± 0.03 0.5133± 0.04
Yale 0.3319± 0.03 0.3502± 0.02 0.3592± 0.03 0.3724± 0.02 0.3418± 0.02 0.3524± 0.02 0.3542± 0.02
YaleB 0.7010± 0.02 0.7409± 0.04 0.7128± 0.02 0.7563± 0.02 0.6751± 0.02 0.6772± 0.02 0.7017± 0.02
Abalone 0.0860± 0.01 0.1324± 0.01 0.0970± 0.01 0.1472± 0.01 0.1153± 0.01 0.1543± 0.01 0.1572± 0.01
Ecoli 0.7162± 0.02 0.7452± 0.02 0.7136± 0.01 0.7730± 0.02 0.6784± 0.02 0.6935± 0.02 0.7142± 0.03
Scale 0.1074± 0.01 0.1435± 0.01 0.097± 0.01 0.1325± 0.01 0.1293± 0.01 0.089± 0.01 0.1274± 0.01

(e) Purity

Data NC+KM NC+SR RC+KM RC+SR K-Means NMF NMFNC
AR 0.1108± 0.01 0.1473± 0.02 0.1034± 0.01 0.1282± 0.02 0.1323± 0.02 0.1413± 0.02 0.1358± 0.02
AT&T 0.6820± 0.03 0.7340± 0.02 0.6930± 0.02 0.7290± 0.02 0.7282± 0.03 0.7214± 0.02 0.7052± 0.02
Coil20 0.6115± 0.02 0.6836± 0.03 0.6267± 0.02 0.6534± 0.02 0.6084± 0.04 0.5973± 0.03 0.6124± 0.03
Jaffe 0.7596± 0.02 0.7908± 0.02 0.8032± 0.03 0.8152± 0.03 0.7829± 0.03 0.7884± 0.03 0.8065± 0.03
MNIST 0.7124± 0.03 0.7253± 0.03 0.7185± 0.03 0.7326± 0.02 0.7113± 0.04 0.7037± 0.03 0.5333± 0.03
PIE 0.2265± 0.04 0.2559± 0.01 0.2041± 0.01 0.2600± 0.01 0.2550± 0.01 0.2560± 0.01 0.2530± 0.01
Umist 0.5643± 0.03 0.6135± 0.05 0.5799± 0.03 0.6262± 0.01 0.5513± 0.02 0.5524± 0.02 0.5674± 0.03
Yale 0.3398± 0.03 0.3578± 0.04 0.3599± 0.03 0.3837± 0.04 0.3516± 0.02 0.3742± 0.02 0.3647± 0.02
YaleB 0.1564± 0.01 0.1618± 0.01 0.1370± 0.01 0.1552± 0.01 0.1324± 0.01 0.1435± 0.01 0.1572± 0.01
Abalone 0.4360± 0.02 0.4740± 0.02 0.4680± 0.01 0.5042± 0.02 0.4804± 0.02 0.5142± 0.02 0.5245± 0.02
Ecoli 0.5819± 0.03 0.6123± 0.02 0.5822± 0.02 0.6434± 0.03 0.5458± 0.02 0.5643± 0.02 0.5836± 0.03
Scale 0.6554± 0.03 0.6943± 0.03 0.6341± 0.03 0.6724± 0.03 0.6674± 0.03 0.6583± 0.03 0.6721± 0.03

Table 3: Clustering Performance on Benchmark Data Sets
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