
Spectral Segmentation with Multiscale Graph Decomposition

Timothée Cour1 Florence Bénézit2 Jianbo Shi3

1,3Computer and Information Science 2Applied Mathematics Department

University of Pennsylvania Ecole Polytechnique

Philadelphia, PA 19104 91128 Palaiseau Cedex, FRANCE

timothee@seas.upenn.edu florence.benezit@polytechnique.org

Abstract

We present a multiscale spectral image segmentation al-

gorithm. In contrast to most multiscale image processing,

this algorithm works on multiple scales of the image in par-

allel, without iteration, to capture both coarse and fine level

details. The algorithm is computationally efficient, allowing

to segment large images. We use the Normalized Cut graph

partitioning framework of image segmentation. We con-

struct a graph encoding pairwise pixel affinity, and parti-

tion the graph for image segmentation. We demonstrate that

large image graphs can be compressed into multiple scales

capturing image structure at increasingly large neighbor-

hood. We show that the decomposition of the image seg-

mentation graph into different scales can be determined by

ecological statistics on the image grouping cues. Our seg-

mentation algorithm works simultaneously across the graph

scales, with an inter-scale constraint to ensure communi-

cation and consistency between the segmentations at each

scale. As the results show, we incorporate long-range con-

nections with linear-time complexity, providing high-quality

segmentations efficiently. Images that previously could not

be processed because of their size have been accurately seg-

mented thanks to this method.

1. Introduction

There are two things you could do to make image seg-

mentation difficult: 1) camouflage the object by making its

boundary edges faint, and 2) increase clutter by making

background edges highly contrasting, particularly those in

textured regions. In fact, such situations arise often in natu-

ral images, as animals have often evolved to blend into their

environment.

Several recent works have demonstrated that multiscale

image segmentation can produce impressive segmentation

results under these difficult conditions. Sharon, et. al. [9]

uses an algebraic multi-grid method for solving the normal-

ized cut criterion efficiently, and uses recursive graph coars-

ening to produce irregular pyramid encoding region based

grouping cues. Yu [11] constructs a multiple level graph en-

coding edge cues at different image scales, and optimizes

the average Ncut cost across all graph levels. Zhu et. al. [1]

explicitly controls the Markov chain transitions in the space

of graph partitions by splitting, merging and re-grouping

segmentation graph nodes.

We argue that there are in fact three orthogonal issues

in multiscale image segmentation: 1) multiscale signal pro-

cessing to enhance faint contours [6, 2]; 2) image region

similarity cues at multiple scales provides texture/shape

cues for larger regions; 3) propagation of local grouping

cues across multiple ranges of spatial connections allows us

to detect coherent regions with faint boundary.

Sharon [9], Zhu [1]’s approaches focus on the last two is-

sues, and Yu [11] focuses on the first and third. The primary

motivation underlying all these approaches is that local in-

formation propagates faster with long range connections

across image regions, and computation converges faster

both in graph partitioning and MRF probabilistic formu-

lation. Both Sharon and Zhu advocated data driven adap-

tive coarsening of an image region/segmentation graph as

an essential step in multiscale segmentation. This conclu-

sion is partly justified by the failure of most multiscale seg-

mentation algorithms [8, 7, 4] which use simple geometric

coarsening of images: typically fine level details along ob-

ject boundaries are lost due to coarsening error.

We focus on the third issue of multiscale propagation of

grouping cues in isolation. We show that simple geomet-

ric coarsening of the image region/segmentation graph can

work for multiscale segmentation. The key principle is that

segmentation across different spatial scales should be pro-

cessed in parallel. We specify the constraint that segmen-

tation must be self-consistent across the scales. This con-

straint forces the system to seek an “average” segmentation

across all scales. We show our multiscale segmentation al-

gorithm can precisely segment objects with both fine and

coarse level object details.

The advantage of graphs with long connections comes

with a great computational cost. If implemented naively,

segmentation on a fully connected graph G of size N would

require at least O(N2) operations. This paper develops an

efficient computation method of multiscale image segmen-

tation in a constrained Normalized cuts framework. We

show that multiscale Normalized cuts can be computed in

linear time.

This paper is organized as follows. In section 2, we re-

view the basics of graph based image segmentation. In sec-

tion 3 and 4, we show how to compress a large fully con-

nected graph into a multiscale graph with O(N) total graph

weights. In section 5, 6, we demonstrate efficient optimiza-

tion of multiscale spectral graph partitioning with O(N)
running time. We conclude with experiments in section 7.

2. Graph based image segmentation

Given an image I, we construct a graph G = (V, E,W),
with the pixels as graph nodes V , and pixels within dis-

tance ≤ Gr are connected by a graph edge in E. A weight

value W (i, j) measures the likelihood of pixel i and j be-

longing to the same image region. Partitioning on this graph

provides image regions segmentation.

2.1. Encoding Graph Edges

The overall quality of segmentation depends on the pair-

wise pixel affinity graph. Two simple but effective local

grouping cues are: intensity and contours.

Intensity Close-by pixels with similar intensity value are

likely to belong to one object:

WI(i, j) = e−||Xi−Xj ||
2/σx−||Ii−Ij ||

2/σI (1)

where Xi and Ii denote pixel location and intensity. Con-

necting pixels by intensity is useful to link disjoint object

parts. But because of texture clutter, the intensity cue alone

often gives poor segmentations.

Intervening Contours Image edges signal a potential object

boundary. It is particularly useful when background clut-

ter has similar intensity value with object body. We evalu-

ate the affinity between two pixels by measuring the magni-

tude of image edges between them:

WC(i, j) = e−maxx∈line(i,j)||Edge(x)||2/σC (2)

where line(i, j) is a straight line joining pixels i and j, and

Edge(x) is the edge strength at location x. Fig. 1 shows

graph weights W (i, :) for a fixed pixel i. At coarse image

scales, texture edges tend to be blurred out and suppressed,

while at fine image scales faint elongated edges are more

likely to be detected, together with texture edges. To de-

fine the affinity between two pixels i and j we look at the

edges across multiple scales.

We can combine the two cues with WMixed(i, j) =
√

WI(i, j) × WC(i, j) + αWC(i, j).

Figure 1: Column 1 and 2: image and image edges. Column 3

and 4: segmentation graph encoding intervening contour group-

ing cue. Two pixels have high affinity if the straight line connect-

ing them does not cross an image edge. Column 3 displays one

row WC(i, :) of the graph connection matrix reshaped as an im-

age, for the central pixel i. The row corresponds to the red line on

column 4.

2.2. Computing Optimal Normalized Cuts

For a bipartition of the graph V = A
⋃

B,

the Normalized Cuts [10] cost is defined as:

Ncut(A,B) = Cut(A,B)
V olume(A)×V olume(B) . We can rewrite it

using binary group indicator function Xl ∈ {0, 1}N ,

with Xl(i) = 1 iff pixel i belongs to segment l.
Let X = [X1, X2], D be a diagonal matrix where

D(i, i) =
∑

j W (i, j). The segmentation criterion amounts

to the following:

maximize ǫ(X) =
1

2

2
∑

l=1

XT
l WXl

XT
l DXl

(3)

subject to X ∈ {0, 1}N×2
and X12 = 1N (1N is a vector

of N ones). A generalized K-way Ncut cost function can be

similarly defined using X = [X1, . . . , XK]. Finding the op-

timal Ncut graph partitioning is NP hard. A spectral graph

partitioning technique allows us to solve this problem us-

ing a continuous space solution by computing the K eigen-

vectors corresponding to the K largest eigenvalues in:

WV = λDV (4)

To discretize V into X , we first normalize the rows of V
into V ′, and then search for the rotation R that brings V ′

the closest possible to a binary indicator vector X .

3. How large of a graph connection radius?

The construction of our image segmentation graph thus

far has focused on encoding grouping cues to compute the

graph weights W (i, j). We turn our attention to the graph

topology. Recall that two pixels are connected in a graph if

they are within distance Gr. How big should the graph con-

nection radius Gr be ?

A larger graph radius Gr generally makes segmentation

better. Long range graph connections facilitate propagation

of local grouping cues across larger image regions. This ef-

fect allows us to better detect objects with faint contours in

a cluttered background, as shown in fig. 2.

Figure 2: The Ncut segmentation eigenvector of the left image for

increasingly large graph connection radius Gr . With larger Gr , the

squirrel with faint contours pops out more clearly, but the graph

affinity matrix becomes denser. The bottom row shows zoomed

out versions of the affinity matrices.

Smaller Gr generally makes segmentation faster. The

graph weight matrix grows rapidly with rate of O(G2
r). In

computing the Ncut eigenvectors, the overall running time

is dominated by two factors: 1) the cost of matrix-vector

multiplication y := Wx (which can be thought of as a lo-

cal anisotropic diffusion on partitioning function x), and 2)

the number of iterations, or number of matrix-vector mul-

tiplications until convergence. For faster computation, we

want to minimize the number of iterations and make each it-

eration faster. However, as the following experiment (fig. 3)

shows, setting Gr small does not necessarily make the over-

all Ncut optimization faster. As we see in fig. 3, there is a

tradeoff between the number of eigensolver iterations, and

the size of Gr. It appears there is a minimum required con-

nection radius. A graph with a too small connection radius

requires a lot of diffusion operations y := Wx to propa-

gate local grouping cues across larger neighborhood.

4. Compression of long range connection

graphs

The ideal graph connection radius Gr is a tradeoff be-

tween the computation cost, and segmentation result. We

will show that we can alleviate this tradeoff by providing an

efficient segmentation algorithm which can effectively have

a very large Gr. We do so by decomposing the long range

connection graph into independent subgraphs.

Figure 3: We compute Ncut segmentation eigenvectors for graphs

with increasing connection radius Gr for the squirrel image in

Fig. 2. The number of eigensolver iterations and total running

time (sec) as a function of graph radius Gr . The number of eigen-

solver iterations is high for small Gr , and decreases steadily until

Gr = 7. The total running time remains constant until Gr = 5 de-

spite rapid increase in the cost of y := Wx.

4.1. Statistics of Segmentation Graph Weights

Consider the following experiment. We extract 60 × 60
patches from 200 randomly selected images. For each im-

age patch Pk, we use the intervening contour cue to com-

pute WPk(i, j) = WPk

C (i, j) for the central pixel i and all

possible j. We estimate the following statistical measures:

1) Average of graph weights across images:

Ave[W (i, j)] = 1
N

∑N
k=1 WPk(i, j), shown in Fig. 4(a).

As expected, the average affinity between two pixels i
and j at distance rij = ||Xi − Xj || decreases exponen-

tially fast as a function of rij . This can be explained.

If pedge is the probability that an edge does not fall be-

tween two adjacent pixels, the probably that i and j are not

separated by an image edge is theoretically p
rij

edge.

2) Variance of graph weights across images:

V ar[W (i, j)] = 1
N

∑N
k=1 |W

Pk(i, j) − Ave[W (i, j)]|2,

shown in Fig. 4(b). Overall, as a function of rij , the graph

variance approximates a Laplacian. For short range con-

nections (rij ≤ 3), the pair-wise affinity has low variance

across image patches. As pair-wise pixel separation rij in-

creases, the variance in graph affinity increases quickly

until rij = 13. For long range connections, the vari-

ance drops back to zero. This implies that for very short

and very long range connections, the W (i, j) are more pre-

dictable between the images, than those of mid-range

connections. Therefore, the mid-range connections con-

tain most information of the image structure.

3) Variance of graph weights across small neighborhood.

For a pair of pixels i, j with r pixels apart, we take two

balls of radius R, Bi and Bj around i and j. We measure

the variance of graph weights WPk(i′, j′) for all (i′, j′) ∈
Bi × Bj , denoted as V arWPk(Bi, Bj), and average it

across all image patches and all i, j with r pixels apart:

V arW (r) = 1
N

∑N
k=1 Avei,j:rij=rV arWPk(Bi, Bj), as

Li
i'

j

j'

Image Edge W(icenter,j)

(a) Ave[W(i,j)] (b) Var[W(i,j)] (c) VarW(r) (e) Graph Coarsing

Image Edge W(icenter,j)

0 15 30 45
0.005

0.025

0.04

R=16

R=9

R=4

0 15 30 45

10
 2

10
 1

(d) Log(VarW(r))

Image Edge W(icenter,j)

Figure 4: Statistics of graph weights on natural images. Top row: we use intervening contour cue to compute graph weights for randomly

selected image patches across 200 images. For a fixed pixel i, we estimate average graph weight W (i, j) in (a), variance of W (i, j) across

images in (b), and variance of each graph edge W (i, j) across a small neighborhood R of the edge as a function of spatial separation

r = rij , in (c), (d). Distant pixels are more likely to be disconnected by an image contour far from both pixels. Together, these facts allow

us to create a multiscale decomposition of large radius graph connections by “condensing” close-by edge weights (i, j) and (i′, j′), (e).

shown in Fig. 4(c,d). V arW (r) decreases exponentially fast

as a function of spatial separation r! For short range graph

edges, it is hard to predict neighboring affinities around

graph edge (i, j) from a particular affinity W (i, j). As

spatial separation increases, the affinity variations decrease

quickly, indicating one can potentially predict graph edge

weights in its neighborhood using one representative edge

connection.

In summary, statistical measurements of the interven-

ing contour image segmentation graph reveal three facts: 1)

graph edge weights decrease exponentially fast with pair-

wise pixel separation; 2) across the images, the mid-range

graph edges are most un-predictable, therefore contain most

relevant grouping information; 3) the variations in graph

weights across a small neighborhood of graph edge (i, j)
decrease exponentially fast with the pixel separation rij ,

implying that longer range graph connections have more re-

dundant information with their nearby connections, there-

fore can be compressed.

4.2. Decomposition of graph into multiple scales

Our empirical estimation of Graph mean and Graph

variance indicates that at different ranges of spatial sepa-

rations rij , the graph affinity W (i, j) exhibits very different

characteristics. Therefore, we can separate the graph links

into different scales according to their underlying spatial

separation:

W = W1 + W2 + ... + WS , (5)

where Ws contains affinity between pixels with certain spa-

tial separation range: Ws(i, j) 6= 0 only if Gr,s−1 < rij ≤

Gr,s. This decomposition allows us to study behaviors of

graph affinities at different spatial separations.

Furthermore, affinity variation V arW (r) decreases

quickly, implying that, at a given scale, one can poten-

tially “condense” pixels in a small neighborhood into

representative pixels, and store only the affinity be-

tween those pixels. More importantly, the exponential de-

cay of V arW (r) implies we can condense pixels very ag-

gressively, at exponential rate, as we increase the graph

connection radius. Therefore even though the non-zero el-

ements in Ws grow quadratically with s, we can represent

Ws more efficiently with fewer representative connec-

tions.

How do we determine representative pixels at graph

scale Ws? For the first graph scale W1, we take every pixel

as graph node, and connect pixels within r distance apart

by a graph edge. For the second graph scale W2, there are

no short graph connections, we can sample pixels at dis-

tance 2r + 1 apart in the original image grid as represen-

tative nodes. Applying this procedure recursively, at scale

s, we sample representative pixels at (2r + 1)s−1 distance

apart on the original image grid, as shown in Fig. 5. We will

denote the representative pixels in each scale by Is, and de-

note W c
s as a compressed affinity matrix with connections

between the representative pixels in Is. The different scales

of the graph are defined on different layers of the image

pyramid, each a sub-sample of the original image.

Note we create W c
s by simply sub-sampling the orig-

inal graph Ws which encodes combined intervening-

contour/brightness cues. There are several alternatives:

one can average the graph connections within the sam-

pled image region, or use region based grouping cues to

define the graph weights between the representative pix-

els. We choose not to use these alternatives, and focus on

purely the effect of multiscale graph decomposition it-

self.

Scale 3:

Scale 2:

Scale 1:

W (i,j)
1

W (i,j)
2

W (i,j)
3

Figure 5: 1D view of multiple-scale graph decomposition with

r = 1. Large radius graphs can be decomposed into different

scales, each containing connections with specific range of spatial

separation: W = W1 +W2 + ...+WS . At larger scales, the graph

weights vary slowly in a neighborhood, we can sample them us-

ing representative pixels at (2 · r + 1)s−1 distance apart.

Figure 6: Multiscale graph compression. With a maximal graph

connection radius Gr , the affinity matrix WFull probably doesn’t

fit in memory. We can decompose it into short-range and long-

range connections: WFull = W1 + W2, and compress W2 with

a low-rank approximation: W2 ≈ CT
1,2W

c
2 C1,2. W c

2 can be com-

puted either directly on a sub-sampled image, or by sampling val-

ues from W1. The interpolation matrix C1,2 from scale 2 to scale

1 will be introduced later on to couple segmentations at each scale.

Computational saving. Using the above mentioned mul-

tiscale graph decomposition and compression, at com-

pressed graph scale s we have N/ρ2(s−1) nodes, where

N is the number of pixels, and ρ is the sampling fac-

tor, in our case ρ = 2r + 1. Summing across all the

scales, we have a total of N/(1 − 1
ρ2) nodes. Since at

each scale nodes are connected with only (2r + 1)2 near-

est neighbors, we can compress a fully connected graph

with N(2r + 1)2/(1 − 1
ρ2) graph weights. Take a typi-

cal value of ρ = 3, r = 1, the total number of multiscale

graph connections is about 10N which is a very small frac-

tion of the original N2 connections. As Fig. 6 illustrates,

such a small number of connections can have virtu-

ally the same effect as a large fully connected graph.

In summary, we have proposed a decomposition of a seg-

mentation graph W into disjoint scales: (Ws)s=1..S , where

each Ws can be compressed using a recursive sub-sampling

of the image pixels. This compression of W is not perfect,

compared to more accurate data-driven graph compression

schemes such as algebraic multi-grid. However, as we will

explain in the following section, we can still achieve pre-

cise and efficient graph partitioning using this simple mul-

tiscale graph decomposition.

5. Multiscale Graph Segmentation

Principle We process the multiscale graph in parallel so

that information propagates from one scale to another. We

achieve this by specifying constraints on the multiscale

graph partitioning criterion. This is in contrast to most ex-

isting multiscale segmentation algorithms where the differ-

ent scales are processed sequentially. The main difficulty is

in specifying information flow across scales, which is the

topic of the next section.

5.1. Parallel segmentation across scales

Let Xs ∈ {0, 1}Ns×K be the partitioning matrix at scale

s, Xs(i, k) = 1 iff graph node i ∈ Is belongs to partition k.

We form the multiscale partitioning matrix X and the bloc

diagonal multiscale affinity matrix W as follows:

X =







X1

...

XS






, W =







W c
1 0

. . .

0 W c
S






(6)

We seek a multiscale segmentation optimizing the Ncut

criterion on W defined in Sec. 2.2.

Direct partitioning of graph W gives the trivial seg-

mentation, grouping all the nodes in a given scale as one

segment. For multiscale segmentation, we need segmenta-

tion costs to propagate across the different scales. At the

finest graph scale, the segmentation should take into ac-

count graph links at all coarser levels. We need to seek one

consistent segmentation across all scales. The cross-scale

consistency we seek is simple: the coarse-scale segmenta-

tion (Xs+1) should be locally an average of the fine-scale

segmentation (Xs). This is done by constraining the multi-

scale partitioning vector X to verify: for all node i in layer

Is+1, Xs+1(i) = 1
|Ni|

∑

j∈Ni
Xs(j). The neighborhood Ni

Figure 7: Left: 2D view of a three-layer graph with connection ra-

dius r = 1. The three scales communicate through cross-scale in-

terpolation matrices C1,2 and C2,3. Middle: cross-scale constraint

between scale 1 and scale 2 for partitioning vector X . X2(i) is the

average of X1(j) for nodes j below i. Stacking those equations

together, we get the cross-scale constraint CX = 0, here for two

scales. We see the upper triangular structure of C = [C1,2,−I2].

specifies the projection of i ∈ Is+1 on the finer layer Is,

and is simply defined on a regularly spaced grid of size ρ,

the sampling factor.

Define matrix Cs,s+1 (of size Ns+1 × Ns) as the cross-

scale interpolation matrix between nodes in layer Is and

those in coarser layer Is+1, as shown in Fig. 7:

Cs,s+1(i, j) =

{ 1
|Ni|

if j ∈ Ni,

0 else
(7)

We define the cross-scale constraint matrix C:

C =







C1,2 −I2 0
. . .

. . .

0 CS−1,S −IS






, (8)

and the cross-scale segmentation constraint equation:

CX = 0 (9)

As illustrated in Fig.7, the cross-scale constraint is a key

concept in our multiscale segmentation algorithm. With this

constraint, the segmentation cost is forced to propagate

across the scales to reach a consistent segmentation at all

scales.

Multiscale segmentation criterion The segmentation

criterion we will use is the constrained multiscale Normal-

ize Cut:

maximize ε(X) =
1

K

K
∑

l=1

XT
l WXl

XT
l DXl

(10)

subject to CX = 0, X ∈ {0, 1}N∗×K
, X1K = 1N∗ , (11)

where N∗ =
∑

s Ns. The problem being set, we will now

show how to handle it in an efficient way.

6. Computational solution and running time

We transform this NP-complete combinatorial problem

into its counter part in a continuous space. After some alge-

bra, the problem becomes:

maximize ε(Z) =
1

K
tr(ZT WZ) (12)

subject to CZ = 0, ZT DZ = IK , (13)

This constrained optimization problem has been ad-

dressed in [12], we adapt the main result below. Let

P = D− 1
2 WD− 1

2 be the normalized affinity ma-

trix, and Q be the projector onto the feasible solution

space:

Q = I − D− 1
2 CT (CD−1CT)−1CD− 1

2 . (14)

Let V = (V1, ..., VK) be the first K eigenvectors of matrix

QPQ. Then the solutions to (12) are given by scaling any

rotation of the K eigenvectors V = (V1, ..., VK):

arg max
Z

ε(Z) = {D− 1
2 V R : R ∈ O(K)}. (15)

The proof, given in [12], uses Lagrange multipliers to

get rid of the constraint. The optimal solution is a sub-

space spanned by the K largest eigenvectors, but this time

the matrix is QD− 1
2 WD− 1

2 Q instead of D− 1
2 WD− 1

2 .

The final algorithm is summarized in the box below.

1. Given a p×q image I , for s = 1..S (S=# scales):

(a) sample p
ρ × q

ρ pixels i ∈ Is from Is−1 on

a regular grid, where ρ is the sampling fac-

tor.

(b) compute constraint Cs−1,s(i, j) = 1
|Ni|

∀j ∈ Ni sampling neighborhood of i.

(c) compute affinity W c
s on Is with small ra-

dius r, using image edges at scale s.

2. compute W,C from (W c
s , Cs,s+1)s as in (6),(8)

3. Compute Q using (14), compute V , the first K

eigenvectors of QD− 1
2 WD− 1

2 Q. Compute V =
D− 1

2 V and discretize.

6.1. Running time analysis

We show that the complexity of this algorithm is lin-

ear in the number of pixels. Fix the sampling factor ρ be-

tween the scales, and the connection radius r to compute

Ws at each scale s. Suppose we use all possible scales, i.e.

S = logρ(max(p, q)) for a N = p × q image. Denoting

nnz(A) the number of non-zero elements of a matrix A, we

have nnz(W) =
∑

s nnz(Ws) =
∑

s
N

ρ2(s−1) (2r + 1)2 =

O(N).
We show the constrained multiscale Ncut can also be

computed in O(N) time. The complexity of the eigen-

solver is dominated by the running time of the matrix-

vector multiplication y := QPQx, where Q defined in

(14) could be full. Instead of computing Q explicitly, we

expand out the terms in Q, and apply a chain of smaller

matrix-vector operations. The only time consuming term is

computation of y := (CD−1CT)−1x, which has O(N3)
running time. However, because we chose non-overlapping

grid neighborhoods, we can order the graph nodes to make

C (and hence CD− 1
2) upper triangular. We then compute

y := (CD−1CT)−1x by solving 2 triangular systems with

nnz(C) = O(N) elements. Overall, the complexity of

y := QPQx is O(N). We verified empirically this linear

running time bound, and the results in Fig. 8 show a dra-

matic improvement over state of the art implementations.

0 512^2 768^2 1024^2
0

500

1000

1500

2562

1282

Original Ncut

Multiscale Ncut

(a) (b)

40^2 90^2 140^2 185^2
0

40

80

Original Ncut

Multiscale Ncut

Figure 8: Running time in seconds of original Ncut vs. Multi-

scale Ncut as a function of image pixels N . In original Ncut, we

scale connection radius with image size:Gr =
√

N
20

, and running

time is ≥ O(NG2

r) = O(N2). In Multiscale Ncut, we construct

a multiscale graph with same effective connection radius. Its run-

ning time is O(N).

6.2. Comparison with other multi-level graph cuts

It is important to contrast this method to two other suc-

cessful multilevel graph partitioning algorithms: METIS [5]

and Nystrom approximation [3]. In both cases, one adap-

tively coarsens the graph into a small set of nodes, and com-

pute segmentation on the coarsened graph. The fine level

segmentation is obtained by interpolation. Both algorithms

require correct initial graph coarsening [3]. Nystrom works

quite well for grouping cues such as color. However for in-

tervening contour grouping cues, graph weights have abrupt

variations making such precise graph coarsening infeasible.

7. Results

Sanity check. We verify Multiscale Ncut segmentation with

a simple “tree” image shown in Fig. 9. We create two scales,

with sampling rate = 3. The first level graph has radius =1,

the second level has radius = 9. We test whether Multi-

scale Ncut is able to segment coarse and fine structures at

the same time: the large trunk as well as the thin branches.

For comparison, we computed Ncut eigenvectors of coarse

and fine level graphs in isolation. As we see in Fig.9, mul-

tiscale segmentation performs correctly, combining benefits

of both scales.

Figure 9: Top middle: fine level segmentation fails in cluttered re-

gion; Bottom left, coarse level segmentation alone fails to provide

detailed boundary; Bottom middle multiscale segmentation pro-

vides correct global segmentation with detailed boundary. Right:

zoom portion of the segmentation in fine level (a), coarse level (b),

and multiscale (c).

Effect of sampling error in coarse graph construction. We

purposely kept construction of multiscale graph extremely

simple with geometric sampling. This sampling could have

a bad effect on pixels near an object boundary. We study if

Multiscale Ncut can overcome this sampling error. Fig. 10

shows the final segmentation can overcome errors in coarse

grid quantization, with a small decrease in boundary sharp-

ness (defined as eigenvector gap across the object bound-

ary) in worst case.

Effect of image clutter and faint contours We argue multi-

scale segmentation can handle image clutter and detect ob-

jects with faint contours. Such a problem is particularly im-

portant for segmenting large images. Fig. 11 provides one

such example with a 800× 700 image. The segmentation is

both accurate (in finding details), robust (in detecting faint

but elongated object boundary), and fast.

We have experimented with the multiscale Ncut on a

variety of natural images, shown in Fig. 12. We observed

that compressed long range graph connections significantly

improve running time and quality of segmentation. More

quantitative measurement is currently underway.

References

[1] Adrian Barbu and Song-Chun Zhu. Graph partition by

swendsen-wang cuts. In Int. Conf. Computer Vision, pages

320–327, Nice, France, 2003.

Figure 10: Non-adaptive grid can produce precise object bound-

aries and recover from errors in grid quantization. Top: a two level

graph, with coarse nodes spaced on a regular grid (boundaries in

red). An object boundary (in blue) specifies two regions (green vs.

blue) with low mutual affinity. Its location d (as % of grid size)

w.r.t. the grid varies from d = 0% (best case, grid and object

boundaries agree) to d = 50% (worst case, object boundary cuts

the grid in half). The central coarse node is linked either to left or

right coarse nodes depending on d. Bottom: multiscale Ncut eigen-

vector for d = 0%, 25%, 50%. In all cases, multiscale segmenta-

tion recovers from errors in coarse level grid. Notice that the gap

in Ncut eigenvector across the object boundary remains high even

in worst case.

[2] Peter J. Burt and Edward H. Adelson. The laplacian pyramid

as a compact image code. COM-31(4):532–540, April 1983.

[3] C. Fowlkes, S. Belongie, F. Chung, and J. Malik. Spectral

grouping using the nystrom method. 2003.

[4] J-M. Jolion and A. Rosenfeld. A Pyramid Framework for

Early Vision. Kluwer Academic Publishers, Norwell, MA,

1994.

[5] George Karypis and Vipin Kumar. Multilevel k-way parti-

tioning scheme for irregular graphs. 1995.

[6] T. Lindeberg. Edge detection and ridge detection with auto-

matic scale selection. pages 465–470, 1996.

[7] M. Luettgen, W. Karl, A. Willsky, and R. Tenney. Multiscale

representations of markov random fields. pages 41:3377–

3396, 1993.

[8] Patrick Perez and Fabrice Heitz. Restriction of a markov

random field on a graph and multiresolution image analysis.

Technical Report RR-2170.

[9] Eitan Sharon, Achi Brandt, and Ronen Basri. Fast multiscale

image segmentation. In IEEE Conference on Computer Vi-

sion and Pattern Recognition, pages 70–7, 2000.

[10] Jianbo Shi and Jitendra Malik. Normalized cuts and image

segmentation. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 22(8):888–905, 2000.

[11] Stella X. Yu. Segmentation using multiscale cues. In IEEE

Conference on Computer Vision and Pattern Recognition,

pages 70–7, 2004.

[12] Stella X. Yu and Jianbo Shi. Grouping with bias. In Ad-

vances in Neural Information Processing Systems, 2001.

1

2

3

4

5

6

7

8

9

10

11

12

13

Edge

EdgeEdge

Ncut Eigenvector Ncut Eigenvector

Ncut Eigenvector

Ncut Eigenvector

Segmentation

Figure 11: Multiscale Ncut segmentation of a 800 × 700 image.

Top left, image with detected object boundary. Top right, segmen-

tation and input edge map. Bottom: zoom in details. Note the faint

roof boundary is segmented clearly.

Figure 12: Multiscale Ncut prevents braking large uniform im-

age regions into smaller parts due to its efficient use of long range

graph connections.

