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Spectral sharpening: sensor transformations
for improved color constancy
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We develop sensor transformations, collectively called spectral sharpening, that convert a given set of sensor
sensitivity functions into a new set that will improve the performance of any color-constancy algorithm
that is based on an independent adjustment of the sensor response channels. Independent adjustment of
multiplicative coefficients corresponds to the application of a diagonal-matrix transform (DMT) to the sensor
response vector and is a common feature of many theories of color constancy, Land's retinex and von Kries
adaptation in particular. We set forth three techniques for spectral sharpening. Sensor-based sharpening
focuses on the production of new sensors as linear combinations of the given ones such that each new sensor
has its spectral sensitivity concentrated as much as possible within a narrow band of wavelengths. Data-
based sharpening, on the other hand, extracts new sensors by optimizing the ability of a DMT to account
for a given illumination change by examining the sensor response vectors obtained from a set of surfaces
under two different illuminants. Finally in perfect sharpening we demonstrate that, if illumination and
surface reflectance are described by two- and three-parameter finite-dimensional models, there exists a unique
optimal sharpening transform. All three sharpening methods yield similar results. When sharpened cone
sensitivities are used as sensors, a DMT models illumination change extremely well. We present simulation
results suggesting that in general nondiagonal transforms can do only marginally better. Our sharpening
results correlate well with the psychophysical evidence of spectral sharpening in the human visual system.
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1. INTRODUCTION

The performance of any color-constancy algorithm,
whether implemented biologically or mechanically, will
be strongly affected by the spectral sensitivities of the
sensors providing its input. Although in humans the
cone sensitivities obviously cannot be changed, we need
not assume that they form the only possible input to the
color-constancy process. New sensor sensitivities can be
constructed as linear combinations of the original sen-
sitivities, and in this paper we explore what the most
advantageous such linear transformations might be.

We call the sensor response vector for a surface viewed
under an arbitrary test illuminant an observation. The
response vector for a surface viewed under a fixed canoni-
cal light is called a descriptor. We take as the goal of
color constancy the mapping of observations to descrip-
tors. Since a descriptor is independent of illumination,
it encapsulates surface reflectance properties.'

In the discussion of a color-constancy algorithm there
are two separate issues: the type of mechanism or ve-
hicle supporting the transformation from observations to
descriptors in general and the method used to calculate
the specific transformation that is applicable under a par-
ticular illumination. In this paper we address only the
former and therefore are not proposing a completely new
theory of color constancy.

A diagonal-matrix transformation (DMT) has been
the transformation vehicle for many color-constancy al-
gorithms, in particular von Kries adaptation,2 all the
retinex/lightness algorithms,3 -5 and, more recently,
Forsyth's gamut-mapping approach.6 All these algo-
rithms respond to changing illumination by adjusting the

response of each sensor channel independently, although
the strategies that they use to decide on the actual ad-
justments differ.

DMT support of color constancy is expressed mathe-
matically in relation (1). Here pe denotes an observa-
tion (a 3-vector of sensor responses), where i and e are
index surface reflectances and illumination, respectively.
The vector pic represents a descriptor and depends on
the single canonical illuminant. The diagonal transform
De best maps observations onto descriptors. Through-
out, the superscript e denotes dependence on a variable
illuminant and the superscript c denotes dependence on
the fixed canonical illuminant. Boldface indicates vector
quantities.

In general, there may be significant error in this ap-
proximation. Indeed West and Brill2 and D'Zmura and
Lennie7 have shown that a visual system equipped with
sensors having the same spectral sensitivity as the hu-
man cones can achieve only approximate color constancy
through a DMT.

A DMT will work better with some sensor sensitivities
than with others, as one can see by considering how the
illumination, surface reflectance, and sensor sensitivities
combine in the formation of an observation. An observa-
tion corresponds to

p = f E(A)S(A)R(A)dA, (2)

where E(A), S(A), and R(A) denote illumination, surface
reflectance, and sensor sensitivities, respectively, and the
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integral is taken over the visible spectrum . For a DMT
to suffice in modeling illumination change,2 it must be
the case, given a reference reflectance Sr, a secondary
arbitrary reflectance S, and illuminants Ei and Ei, that,

f Ei(A)S(A)R(A)dA f EJ(A)S(A)R(A)dA
@ = @ * ~~~~~~~~~~~(3)

f Ei(A)Sr(A)R(A)dA fEi(A)S(A)R(A)dA
As others have observed, one way to ensure that this

condition holds is to use extremely narrow-band sensors,
which in the limit leads to sensors that are sensitive to a
single wavelength (Dirac delta functions).6 Our intuition
when we began this work was that if we could find a lin-
ear combination of sensor sensitivities such that the new
sensors would be sharper (more narrow band), then the
performance of DMT color-constancy algorithms should
improve and the error of relation (1) would be reduced.
It should be noted, however, that Eq. (3) can be satisfied
in other ways, such as by the placement of constraints on
the space of illuminants or reflectances.2 With the addi-
tion of sharpening, relation (1) becomes

Tpi - Tpi, (4)

where T denotes the sharpening transform of the original
sensor sensitivities. It is important to note that applying
a linear transformation to response vectors has the same
effect as application of the transformation to the sensor
sensitivity functions.

The sharpening transform effectively generalizes
diagonal-matrix theories of color constancy. Other
authors2 36 also have discussed this concept of an inter-
mediate (or sharpening) transform. However, our work
appears to be the first to consider the precise form of this
transform.

The sharpening transform is a mechanism through
which the inherent simplicity of many color-constancy
algorithms can be maintained. For example, Land's
retinex algorithm requires color ratios to be illumination
independent (and hence implicitly assumes a diagonal-
matrix model of color constancy), which, as can be seen
from Eq. (3), they generally will not be. It seems dif-
ficult to improve the accuracy of retinex ratioing di-
rectly without making the overall algorithm much more
complicated8 ; however, if a simple, fixed sharpening
transformation of the sensors as a preprocessing stage
is applied, the rest of the retinex process can remain
untouched. Similar arguments apply to Forsyth's stan-
dards for coefficient rule (CRULE)6 and Brill's9 volumet-
ric theory.

We initially present two methods for calculating T:
sensor-based and data-based sharpening. Sensor-based
sharpening is a general technique for determining the
linear combination of a given sensor set that is maxi-
mally sensitive to subintervals of the visible spectrum.
This method is founded on the intuition that narrow-
band sensors will improve the performance of DMT
theories of color constancy. We apply sensor-based

sharpening over three different ranges in order to gen-
erate three new sharpened sensors that are maximally
sensitive in the long-wave, medium-wave, and shortwave
bands. Figure 1 below contrasts the cone fundamentals

derived by Vos and Walraven10 (VW) before and after
sharpening. Although the new sensitivity functions are
sharper, they are far from meeting the intuitive goal of
being very narrow band (i.e., with strictly zero response in
all but a small spectral region); nonetheless, we perform
simulations that show that they in fact work much better
than the unsharpened cone fundamentals. In Section 2
we present the details of sensor-based sharpening.

Sensor-based sharpening does not take into account the
characteristics of the possible illuminants and reflect-
ances but considers only the sharpness of the resulting
sensor. Our second sharpening technique, data-based
sharpening, is a tool for validating the sensor-based
sharpening method. Given observations of real surface
reflectances viewed under a test illuminant and their
corresponding descriptors, data-based sharpening finds
the best, subject to a least-squares criterion, sharpen-
ing transform T'f. Interestingly, data-based sharpening
yields stable results for all the test illuminations that
we tried, and in all cases the data-based-derived sensors
are similar to the fixed sensor-based sharpened sensors.
Data-based sharpening is presented in Section 3.

In Section 4 we present simulations evaluating
diagonal-matrix color constancy for sharpened and
unsharpened sensor sets. Over a wide range of illu-
minations, sensor-based sharpened sensors provide a
significant increase in color-constancy performance.

Data-based sharpening is related to Brill's9 volumetric
theory of color constancy. This relationship is explored
in Section 5. Through spectral sharpening, the volumet-
ric theory is shown to be informationally equivalent to
Land'sl white-patch retinex.

The data-based sharpening technique finds the opti-
mal sharpening transform for a single test illuminant.
In Section 6 we investigate the problem of finding a good
sharpening transform relative to multiple illuminants.
We show that if surface reflectances are three dimen-
sional and illuminants two dimensional there exists a
sharpening transform with respect to which a diagonal
matrix supports perfect color constancy. This analysis
constitutes a third technique for deriving the sharpening
transform.

In Section 7 we relate our work specifically to theories
of human color vision. Sharpened spectral sensitivities
have been measured in humans.12- 6 We advance the
hypothesis that sharpened sensor sensitivities arise as a
natural consequence of optimization of the visual system's
color-constancy abilities through an initial linear trans-
formation of the cone outputs.

2. SENSOR-BASED SHARPENING

Sensor-based sharpening is a method of determining the
sharpest sensor, given an s-dimensional (s is usually 3)
sensor basis R(A) and wavelength interval [Al, A2]. The
sensor Rt(A)c, where c is a coefficient vector, is maximally
sensitive in [Al, A2] if the percentage of its norm lying in
this interval is maximal relative to all other sensors. We
can solve for c by minimizing:

I = L [R(A)tc]2dA + p, [R(A)tc]2dA - ,
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where (o is the visible spectrum, 0 denotes wavelengths
outside the sharpening interval, and jz is a Lagrange, mul-
tiplier. The Lagrange multiplier guarantees a nontrivial
solution for Eq. (5): the norm of the sharpened sensor is
equal to 1. Moreover, this constraint ensures that the
same sharpened sensor is recovered independent of the
initial norms of the basis set R(A).

By differentiating with respect to c and equating to the
zero vector, we find the stationary values of Eq. (5):

2 aI = f R(A)R(A)tcdA + pff R(A)R(A)tcdA =0.

(6)

Differentiating with respect to /,t simply yields the con-
straint equation f, [R(A)tc]2 dA = 1. The solution of
Eq. (6) can thus be carried out, assuming that the con-
straint holds.

Define the s x s matrix A(a) = It R(A)R(A)t dA so that
Eq. (6) becomes

A()c = -A(w)c. (7)

Assuming a nontrivial solution c 0, , 0 0 -and rearrang-
ing Eq. (7), we see that solving for c (and consequently for
the sharpened sensor) is an eigenvector problem:

[A(co)]-'A(5)c = -nc. (8)

There are s solutions of Eq. (8), each solution corre-
sponding to a stationary value, so we choose the eigenvec-
tor that minimizes f¢ [R(A)tc]2 dA. It is important that
c be a real-valued vector, as it implies that our sharpened
sensor is a real-valued function. That c is real valued fol-
lows from the facts that the matrices [A())]-' and A(+)
are positive definite and that eigenvalues of the product of
two positive-definite matrices are real and nonnegative.' 7

Solving for c for each of three wavelength intervals yields
a matrix '2' for use in relation (4). The matrix C is
not dependent on any illuminant and denotes the sensor-
based sharpening transform.

We sharpened two sets of sensor sensitivities: the
cone absorptance functions measured by Bowmaker and
Dartnell' 5 (BOW) and the cone fundamentals derived by
Vos and Walraven' 0 (VW), which take into account the
spectral absorptions of the eye's lens and macular pig-
ment. The BOW functions were sharpened with respect
to the wavelength intervals (in nanometers) [400,480],
[510,550], and [580,650] and the VW fundamentals
with respect to the intervals [400,480], [520,560], and
[580,650]. (All spectra used in this paper are in the
range 400-650 nm measured at 10-nm intervals.) These
intervals were chosen to ensure that the whole visible
spectrum would be sampled and that the peak sensitivi-
ties of the resulting sensors would roughly correlate with
those of the cones.

The results for the VW sensors are presented in Fig. 1
(those for the BOW sensors are similar), where it can be
seen that the sharpened curves contain negative sensitivi-
ties. These need not cause concern in that they do not
represent negative physical sensitivities but merely repre-
sent negative coefficients in a computational mechanism.
Clearly, the sharpening intervals are somewhat arbitrary.

They were chosen simply because the resulting sharpened
sensors appeared, to the human eye, significantly sharper
than the unsharpened sensors. Nevertheless, the inter-
vals used are sensible, and their suitability is verified by
the fact that they provide sharpened sensors that are in
close agreement with those derived by data-based sharp-
ening as described in Section 3. The actual values of the
c's in Eq. (8) are given in Section 6 below.

Figure 1 contrasts the sharpened VW sensor set with
the corresponding unsharpened set; the degree of sharp-
ening is quite significant. The peak sensitivities of
the new sensors are shifted with respect to the initial
sensitivities; this shift is due to both the choice of sharp-
ening intervals and the shape of the VW sensitivities.
The sharpened long-wavelength mechanisfn is pushed
further toward the long-wavelength end of the spectrum;
in contrast, the medium-wavelength mechanism is
shifted toward the shorter wavelengths; and the short-
wavelength mechanism remains essentially the same.
Intriguingly, field sensitivities of the human eye mea-
sured under white-light conditioning with long test
flashes13 are sharpened in an analogous manner.

Table 1 contrasts the percentage-squared norm lying in
the sharpening intervals for the original versus the sharp-
ened curves. For both the VW and the BOW sensors the
degree of sharpening is significant. Furthermore, from
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Fig. 1. VW fundamentals (solid curves) are contrasted with
the sharpened sensitivities derived through sensor-based
(dotted curves) and data-based (dashed curves) sharpening.
Top, long-wavelength mechanism; middle, medium-wavelength
mechanism; bottom, short-wavelength mechanism.
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Table 1. Percentage of Total Squared Norm
in the Sharpening Intervals

% Squared Norm

Sensors [400,480] [510,550] [580,650]

BOW, original 98.9 51.4 30.1
BOW, sharpened 99.4 66.3 76.2

[520,560]
VW, original 97.5 67.6 40.3
VW, sharpened 97.8 74.7 89.1

Ire~ is unique also, always exists, and equals [e]-l, for

diagonal [De].
It is interesting to compare Eq. (12) with the relation

for the problem of finding the best general transform G 
that maps observations obtained under a test illuminant
to their corresponding descriptors:

Wc,: G e~e. (13)

Fig. it is clear that the sharpening effect is not limited
to the sharpened interval.

3. DATA-BASED SHARPENING

It could be the case that the best sensors for DMT al-
gorithms might vary substantially with the type of -
lumination change being modeled. If so, sensor-based
sharpening, which does not take into account any of the
statistical properties of collections of surfaces and illumi-
nants, might perform well in some cases and poorly in
others. To test whether radically different sharpening
transformations are required in different circumstances,
we explore a data-based approach to deriving sharpened
sensitivities, in which we optimize the sensors for DMT al-
gorithms by examining the relationship between observa-
tions, obtained under different test illuminants, and their
corresponding descriptors.

Let WI be a 3 n matrix of descriptors generated from
a set n of surfaces observed under a canonical illuminant
Ec. Similarly, let We be the matrix of observations of n
surfaces imaged under another test illuminant El. To
the extent that DMT-based algorithms suffice for color
constancy, WC and We should be approximately equiva-
lent under a DMT:

WC =::DeWe. (9)

The diagonal transform is assumed to be an approxi-
mate mapping and will have a certaln degree of error.
The idea of spectral sharpening is that this approximation
error can be reduced if We and We are first transformed
by a matrix rfe;

q'eWc =:De'eWe. (10)

D e will in fact be optimal in the least-squares sense if it

is defined by the Moore-Penrose inverse:

De= rf~ewc[9-ewe]+,(1

where + denotes the Moore-Penrose inverse. (The
Moore-Penrose inverse of the matrix A is defined as

A+- At[AAt]-1.) Now [Te] must be chosen to ensure
that [De] is diagonal. To see how to do this, carry out
some matrix manipulation to obtain

[T'e]-lveje = Wc[We]+. (12)

Since the eigenvector decomposition of the matrix on
the right-hand side of Eq. (12), Wc[We]+ = UleDe[(Je]-l,
is unique, its similarity to the left-hand side implies that

Such optimal fitting effectively bounds the possible per-
formance within a linear model of color constancy. When
the approximation of relation (13) is to be optimized in the
least-squares sense, G I is simply

(14)

Equation (12) can be interpreted, therefore, as simply
the eigenvector decomposition of the optimal general
transform G .Of course, it is obvious that the opti-
mal transform could be diagonalized; what it is impor-
tant is that if one knows a sharpening transform Te~],

then the best least-squares solution relating ffeWc and
IWe is precisely the diagonal transformation De; that

is, TeWc[cyeWe]+ = De. In other words, when one is
using the sharpened sensors, the optimal transform is
guaranteed to be diagonal, so finding the best diagonal
transform after sharpening is equivalent to finding the
optimal general transform. Therefore sharpening allows
us to replace the problem of determining the nine pa-
rameters of GeI with that of determining only the three
parameters of De.

Data-based sharpening raises two main questions: (1)
Will the resulting sensors be similar to those obtained by
sensor-based sharpening, and (2) will the derived sensors
vary substantially with the illuminant? To answer these
questions requires the application of data-based sharpen-
ing to response vectors obtained under a single canonical
illuminant and several test illuminants. For illuminants
we used five Judd daylight spectra' 9 and CIE standard il-
luminant A,10 and as reflectances we used the set of 462
Munsell spectra 20 We arbitrarily chose Judd's D55 (55

stands for 5500 K) as the canonical illuminant; descrip-
tors are the response vectors for surfaces viewed under
D55. For each of the other illumninants El, we derived
the data-based sharpening transform Tje in accordance

with Eq. (12).
Figure 2 shows for the VW sensors the range of the five

sets of data-based sharpened sensors obtained for map-
ping between each of the five illuminants and D55. For
these five illuminants, the results are remarkably stable
and hence relatively independent of the particular illumi-
nant, so the mean of these sharpened sensors character-
izes the set of them quite well. Referring once again to
Fig. 1, we can see that these mean sensors are very simi-
lar to those derived through sensor-based sharpening. 

The stability of the results for the five cases and the
similarity of these results to the sensor-based results
is reassuring; nonetheless, it would be nice to find the

sharpening transformation that optimizes over all the
illuminants simultaneously. This issue is addressed in
Section 6, where we show that, given illuminant and re-
flectance spectra that are two and three dimensional,

Finlayson et al.
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Fig. 2. Data-based sharpening generates different sharpened
sensors for each illuminant. The range of sharpened curves
over all the test illuminants (CIE A, D48, D65, D75, and
D100) mapped to D55 is shown for the VW cone mechanisms.
Top, long-wavelength mechanism; middle, medium-wavelength
mechanism; bottom, short-wavelength mechanism.

respectively, there exists a unique optimal sharpening
transform.

4. EVALUATING SHARPENED SENSORS

Since the sensor-based and data-based sharpened sensors
are similar, we restrict our further attention to the evalu-
ation of sensor-based sharpened sensors alone. The re-
sults for VW and BOW sensors are similar as well, so we
include figures only for the VW case.

For each illuminant we generated sensor responses
for our 462 test surface reflectances, using both the
sharpened and the unsharpened VW sensors so that we
could determine how much sharpening improves DMT
performance.

To measure the performance of a DMT in mapping test
observations to canonical descriptors, we compare fit-
ted observations (observations mapped to the canonical
illuminant by means of a diagonal matrix) with corre-
sponding (canonical) descriptors. The Euclidean dis-
tance between a fitted observation qe and its descriptor
pC, normalized with respect to the descriptor's length,
provides a good error metric, given the definition of color
constancy that we are using. This percent normalized

fitted distance (NFD) metric is defined as

NFD = 100 * IIp - qej1
IOpCI

(15)

Let WI be a 3 X 462 matrix of descriptors correspond-
ing to the 462 surfaces viewed under the canonical illu-
minant. Similarly, let WI denote the 3 X 462 matrix of
observations for the 462 surfaces viewed under a test illu-
minant. Relation (9) can then be solved to yield the best
diagonal transformation in the least-squares sense; this
procedure will be called simple diagonal fitting. Since
D e is a diagonal matrix, each row of We is fitted indepen-
dently. The components of De are derived as follows:

D,, = Wi [We]+ = Wvc[We,]t/Wie[We]t , (16)

where the single subscript i denotes the ith matrix row
and the double subscript ii denotes the matrix element at
row i column i.

Given a fixed set of sensor functions, Eq. (16) yields
the best diagonal transformation that takes observations
under the test illuminant onto their corresponding de-
scriptors. Simple diagonal fitting, therefore, does not in-
clude sharpening but rather for a fixed set of sensors finds
the best diagonal matrix DI for that set of sensors.

For performance comparisons we are also interested in
the NFD that results under transformed diagonal fitting.
Transformed diagonal fitting proceeds in two stages:

1. 'tWc D"ec'We, where ' is the fixed sharpening
transform and D I is calculated by means of Eq. (16);

2. q1`19jWc r1-lDeTwe.

Application of T`1 transforms the fitted observations
back to the original (unsharpened) sensor set so that an
appropriate comparison can be made between the fitting
errors: the performance of sharpened diagonal-matrix
constancy is measured relative to the original unsharp-
ened sensors.

Figure 3 shows NFD cumulative histograms for diago-
nal fitting of VW observations (solid curves) and diago-
nal fitting of sharpened VW observations (dotted curves).
For each illuminant the sharpened sensors show bet-
ter performance than the unsharpened ones, as indi-
cated by the fact that in the cumulative NFD histograms
the sharpened sensor values are always above those for
the unsharpened ones. In general the performance dif-
ference increases as the illuminant color becomes more
extreme: from D55 to D100 the illuminants become pro-
gressively bluer and toward CIE A, redder.

Figure 4 shows the cumulative NFD histograms for di-
agonal fitting of VW observations (solid curves) and trans-
formed diagonal fitting of sharpened VW observations
(dashed curves). Once again it is clear that the sharp-
ened sensors perform better; however, the performance
difference is greater, which shows that the question of
sensor performance is linked to the axes in which color
space is described.

Finally, Fig. 5 contrasts the cumulative NFD histo-
grams for optimal fitting of VW observations [the unre-
stricted least-squares fit of relation (13) (solid curves)]
and transformed diagonal fitting of sensor-based sharp-
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fitting of VW observations (solid curves) and diagonal fitting
of sensor-based sharpened VW observations (dotted curves).
The sixth cumulative NFD histogram shows the average fitting
performance.
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ened VW observations (dashed curves). For these cases,
with the exception of CIE A, a DMT achieves almost
the same level of performance as the best nondiagonal
transform.

5. DATA-BASED SHARPENING
AND VOLUMETRIC THEORY

Data-based sharpening is a useful tool for validating
our choice of sensor-based sharpened sensors. However,
more than this, data-based sharpening can also be viewed
as a generalization of Brill's9 volumetric theory of color
constancy. In that theory Brill develops a method for
generating illuminant-invariant descriptors that is based
on two key assumptions:

1. Surface reflectances are well modeled by a three-
dimensional basis set and are thus defined by a surface
weight vector oa. For example, S(A) = 1 Si(A)o-1.

2. Each image contains three known reference re-
flectances. In the discussion that follows, Qe denotes the
3 x 3 matrix of observations for the reference patches seen
under Ee(A).

Given the first assumption, observations for surfaces
viewed under Ee(A) are generated by application of a
lighting matrix (a term first used by Maloney2 1 ) to surface
weight vectors:

pe = A eo, (17)

where the ijth entry of Ae is equal to f Rj(A)Ee(A)Sj(A)dA.
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It follows immediately that Qe is a fixed linear transform
of the lighting matrix:

Qe Ae_4, (18)

where the columns of .A correspond to the surface weight
vectors of the reference reflectances and are independent
of the illuminant. Now, given any arbitrary response
vector pe, one can easily generate an illuminant-invariant
descriptor by premultiplying with [Qe]-l:

[Qe]l-pe = -q--[Aep]lAeu = -A' 0. (19)

The color-constancy performance of Brill's volumetric
theory is linked directly to the dimensionality of surface
reflectances. Real reflectance spectra are generally not
three dimensional (Maloney2 ' suggests that a basis set of
between three and six functions is required), leading to
inaccuracies in the calculated descriptors.

Data-based sharpening, like volumetric theory, aims
to generate illuminant-invariant descriptors by applying
a linear transform. If we impose the extremely strong
constraint that all surface reflectances appear in each
image, then data-based sharpening can be viewed as an
algorithm for color constancy. As a color-constancy al-
gorithm, data-based sharpening has a distinct advantage
over volumetric theory in that it is optimal with respect
to the least-squares criterion and consequently is guar-
anteed to outperform the volumetric method. Unfortu-
nately, this performance increase is gained at the expense
of the extremely strong requirement that all surface re-
flectances appear in each image.

In practice we can weaken this constraint and assume
that there are k known reference patches per image,
where k is small. Novak and Shafer2 2 develop a simi-
lar theory called supervised color constancy, which is
based on the assumption that there are 24 known refer-
ence patches in each image; however, unlike data-based
sharpening, their constancy transform is derived by ex-
amination of the relationship between measured re-
sponses and finite-dimensional models of reflectance and
illumination. Certainly for the reference patches them-
selves the data-based sharpening method will outper-
form Novak's supervised color constancy since, for these
patches, data-based sharpening finds the optimal least-
squares transform. However, further study is required
for comparing overall color-constancy performance. In
the limiting case, where k = 3, data-based sharpening
reduces to the volumetric theory.

Volumetric theory requires three reference patches
in order to recover the nine parameters of [e]-1 and
thereby achieve color constancy. As shown by the per-
formance tests of the preceding section, however, after
a fixed sharpening transformation of DMT models illu-
mination change almost as well as does a nondiagonal
matrix. Since only three parameters instead of nine
need to be determined for specification of the diagonal
matrix when sharpened sensors are being used, only one
reference patch is required instead of three for achieving
color constancy. This follows because a single response
vector seen under a test illuminant Ee(A) can be mapped
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to its canonical appearance by a single diagonal matrix:

pC = Depe,

Pic

(20)

(21)

If we choose our reference patch to be a white re-
flectance, then, through sharpening, volumetric theory re-
duces to Land's white-patch retinex.1 Similarly, West
and Brill2 consider white-patch normalization to be con-
sistent with von Kries adaptation.

We performed a simulation, called transformed white-
patch normalization, to evaluate the quality of color con-
stancy obtainable with use of a single reference patch.
For each illumination (CIE A, D48, D55, D65, D75, and
D100) we

1. generated a matrix We of observations of Munsell
patches for VW sensors;

2. transformed observations to the (sensor-based)
sharpened sensors, T'we;

3. calculated DeT'We, where Diie = l/pW (the re-
ciprocal of the ith sharpened sensor's response to the
white patch; the Munsell reflectance closest to the uni-
form white, in the least-squares sense, was chosen as the
white reference patch);

4. transformed white-patch normalized observations-
back to VW sensors, 9`1DegWe. 

Again D55 was the canonical light. Thus we evalu-
ated constancy by calculating the NFD between the
white-patch-corrected observations seen under D55 (the
descriptors) and the white-patch-corrected observations
under each other illuminant. In Fig. 6 we contrast the
cumulative NFD histograms for white-patch normaliza-
tion (dotted curves) with those for the optimal fitting
performance (solid curves). White-patch normalization
yields very good constancy results that are generally
comparable with the optimal fitting performance.

6. SHARPENING RELATIVE TO
MULTIPLE ILLUMINANTS

Data-based sharpening was introduced primarily to vali-
date the idea of sensor-based sharpening and to ensure
that our particular choice of sharpening parameters led
to reasonable results. Figure 2 shows that the optimal
sensors, as determined by means of data-based sharpen-
ing for each illuminant, closely resemble one another and
furthermore that they resemble the unique set of sensor-
based sharpened sensors as well. Although all the sen-
sors are similar, the question remains regarding whether
there might be an optimal sharpening transform for the
entire illuminant set.

In Ref. 23 we derive conditions for perfect DMT color

constancy, using sharpened sensors. Because the sharp-
ening transform applies to a whole space of illuminants,
it is in essence a type of global data-based sharpening.

The theoretical result is based on finite-dimensional
approximations of surface reflectance and illumination,
and what is shown is -that, if surface reflectances- are
well modeled by three basis functions and illuminants
by two basis functions, then there exists a set of new
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tions of Ac and N AC, as a result of Eq. (24). Conse-
quently an observation vector obtained for any surface
under an illuminant EL(A) = aEC(A) + ,BE2(A) can be ex-
pressed as a linear transform of its descriptor vector:

pe = [al + I3.M]ACo = [al + /3IpC, (25)

where I is the identity matrix. Calculating the eigen-
vector decomposition of N,

(26)a M = aix ie f

and expressing the identity matrix in terms of C,

100

80

_60

40

20

100

80

; 60
2 0

40

20

100

80
o

-60

40

0. it I 0 o -J . I o i

0 2 4 6 810 0 2 4 6 a 10 0 2 4 6 810
%error %error %error

Fig. 6. Cumulative NFD histogram obtained with each test
illuminant (CIE A, D48, D65, D75, and D100) for optimal fitting
of VW observations (solid curves) and transformed white-patch
normalization of VW observations (dotted curves). The sixth
cumulative NFD histogram shows average color constancy
performance.

sensors for which a DMT can yield perfect color con-
stancy. These restrictions are quite strong; nonetheless,
statistical studies have shown that a three-dimensional
basis set provides a fair approximation to real surface
reflectance2 ' and that a two-dimensional basis set de-
scribes daylight illumination 9 reasonably well. More-
over, Marimont and Wandell2 4 have developed a method
for deriving basis functions that is dependent on how re-
flectance, illuminant, and sensors interact to form sen-
sor responses [i.e., Eq. (2) above is at the heart of their
method]. A three-dimensional model of reflectance and
a two-dimensional model of illumination is shown to pro-

vide a good model of actual response vectors.

Given these dimensionality restrictions on reflectance
and illumination, cone response vectors of surfaces viewed
under a canonical illuminant, that is descriptors, can be
written as

pC = A r, (22)

(27)

enables us to rewrite the relationship between an obser-
vation and a descriptor, Eq. (25), as a diagonal transform:

T'pe = [a I + D ]Tpc. (28)

Writing pC in terms of pe leads directly to

tpc = [al +D] *Tpe. (29)

The import of Eq. (29) is that when the appropriate
initial sharpening transformation T is applied, a diago-
nal transform supports perfect color constancy, subject of
course to the restrictions imposed on illumination and
reflectance.

These restrictions compare favorably with those
employed by D'Zmura,2 5 who showed that, given three-
dimensional reflectances and three-dimensional illumi-
nants, one can obtain perfect color constancy, given two
images of three color patches under two different illumi-
nants and using a nondiagonal transform.

From the Munsell reflectance spectra and our six test
illuminants, we used principal-component analysis to de-
rive the basis vectors for reflectance and illumination.
Using these vectors, we constructed lighting matrices and
then calculated the sharpening transform by means of
Eq. (26). The formulas for the perfect sharpened sensors
are given in Eqs. (30)-(32), where they are contrasted
with the corresponding formulas obtained with respect to
sensor-based and data-based sharpening. The symbols
R, G, and B denote the VW red, green, and blue cone
mechanisms, respectively, scaled to have unit norms, and
the superscripts p, s, and d denote perfect, sensor-based,
and data-based sharpening, respectively:

RP = 2.44R - 1.93G + 0.110B,

where the superscript c denotes the canonical illuminant.
Since illumination is two dimensional, there is necessarily
a second illuminant E2 (A) linearly independent with EC(A)
(together they form the span). Associated with this sec-
ond illuminant is a second linearly independent lighting
matrix A2. It follows immediately that A2 is some linear
transform NM away from AC:

A2 = MAC,

NM =A2[AC]-

(23)

(24)

Since every illuminant is a linear combination of EC(A)
and E2(A), lighting matrices in turn' are linear combina-

Rs = 2.46R - 1.97G + 0.075B,

Rd = 2.46R - 1.98G + 0.100B,

GP = 1.55G - 0.63R - 0.16B,

Gs = 1.58G - 0.66R - 0.12B,

Gd = 1.52G - 0.58R - 0.14B,

BP 1.OB - 0.13G + 0.081,

Bs = 1.OB - 0.14G + 0.09R,

Bd = 1.OB - 0.13G + 0.07R. (32)

CIE A D48

100

80

.- 60

N40

20

100

80

fl 60

aC 40

20

100

80

60

a 40

20

D65

0 2 4 6 8 10
%error

Average

0 2 4 6 8 10
%error

D75

0 2 4 6 8 10
%error

D100

(30)

(31)

Finlayson et al.

= TgriTe



Vol. 11, No. 5/May 1994/J. Opt. Soc. Am. A 1561

It is reassuring that the perfect sharpened sensors are
almost identical to those derived through sensor-based
and data-based sharpening. Therefore, even though nei-
ther the sensor-based sharpened sensors nor the data-
based sharpened ones are optimized relative to a whole
set of illuminants, sharpening in all cases generates sen-
sors that are similar to those that work perfectly for a
large, although restricted, class of illuminants. This the-
oretical result provides strong support for the hypothe-
sis, already confirmed in part by the consistency of the
data-based sharpening results, that a single sharpening
transformation will work well for a reasonable range of
illuminants.

7. SPECTRAL SHARPENING AN])
THE HUMAN VISUAL SYSTEM

If the human visual system employs a DMT for color
constancy, our results show that we should expect it to
use sharpened sensors, since doing so would optimize its
performance. In this section we briefly examine some of
the psychophysical evidence for sharpened sensitivities.

Sharpened sensitivities have been detected in both field
and test spectral sensitivity experiments (for a review
of these terms see Foster2 6). Sperling and Harwerth' 3

measured the test spectral sensitivities of human subjects
conditioned to a large white background and found, con-
sistent with our findings for sharpened sensors, sharp-
ened peaks at 530 and 610 nm, with no sharpening of the
blue mechanism.

These authors propose that a linear combination of
the cone responses accounts for the sharpening. They
found that the sharpened red sensor can be modeled as
the red cone minus a fraction of the green and that the
sharpened green sensor can be modeled as the green cone
minus a fraction of the red. This finding corresponds
well with our theoretical results in that our sharpening
transformations, Eqs. (30) and (31), basically involve red
minus green and green minus red, with only a slight
contribution from the blue.

More recently, Foster' 2 observed that field and test
spectral sensitivities show sharpened peaks when they
are derived in the presence of a small monochromatic
auxiliary field coincident with the test field. Foster and
Snelgar27 extended this work by performing a hybrid ex-
periment with a white, spatially coincident auxiliary field,
and sharpened sensitivities again were found. In both
cases these experimentally determined, sharpened sen-
sitivities agree with our theoretical results. Foster and
Snelgar28 verified, as did Sperling and Harwerth,13 that
the sharpened sensitivities were a linear combination of
the cone sensitivities.

Krastel and Braun2 9 measured spectral field sensitivi-
ties under changing illumination when, as in the experi-
ments by Sperling and Harwerth,' 3 a white conditioning
field is employed. Illumination color was changed by
placement of colored filters in front of the eye. The
same test spectral-sensitivity curve results under both
a reddish and a bluish illuminant, suggesting that the
eye's sharpened mechanisms are unaffected by illumi-
nation. More recently Kalloniatis and Harwerth14 mea-
sured cone spectral sensitivities under white adapting
fields of different intensity and found the sharpened sensi-

tivities to be independent of the intensity of the adapting
field.

Poirson and Wandell'6 developed techniques for mea-
suring the spectral sensitivity of the eye with respect to
the task of color discrimination. For color discrimination
among briefly presented targets, the spectral sensitivity
curve has relatively sharp peaks at 530 and 610 nm.

Although the general correspondence between our
sharpened sensors and the above psychophysical results
does not imply that sharpening in humans exists for the
purpose of color constancy, at least the evidence that
a linear combination of the cone responses is employed
somewhere in the visual system lends plausibility to the
idea that sharpening might be used in human color-
constancy processing. On the other hand, our finding
that sharpening could improve the performance of some
color-constancy methods suggests an explanation for the
existence of spectral sharpening in humans.

8. CONCLUSION

Spectral sharpening generates sensors that improve the
performance of methods based on color constancy theo-
ries (e.g., von Kries adaptation, Land's retinex) that use
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diagonal-matrix transformations. Data-based sharpen-
ing finds sensors that are optimal with respect to a given
set of surface reflectances and illuminants. Sensor-
based sharpening finds the most-narrow-band sensors
that can be created as a linear combination of a given
set of sensors. Finally, for restricted classes of illumi-
nants and reflectance (they are constrained to be two and
three dimensional, respectively) we have shown that there
exists a sharpening transform with respect to which a di-
agonal matrix will support perfect color constancy. The
sharpening transform derived by means of this analysis is
in close agreement with the sensor-based sharpening and
data-based sharpening transforms. In all three cases
sharpened sensors substantially improve the accuracy
with which a DMT can model changes in illumination.
The sensor-based and the data-based sharpening tech-
niques are quite general and can be applied to visual
systems that have more than three sensors.

As with the cone sensitivities, sharpening of a color
camera's sensitivities can also have a significant effect.
Use of overlapping, broadband filters such as Wratten
#66, #52, and #38 (Ref. 30) could be advantageous, since
from an exposure standpoint they filter out less light, but
their use could be disadvantageous from a color-constancy
standpoint. Sharpening such filters, as shown in Fig. 7,
can provide a good compromise among the competing
requirements.

Spectral sharpening is not, in itself, a theory of color
constancy, in that it makes no statement about how to
choose the coefficients of the diagonal matrix. Instead,
we propose sharpening as a mechanism for improving the
theoretical performance of DMT algorithms of color con-
stancy regardless of how any particular algorithm might
calculate the diagonal-matrix coefficients to be used in
adjustment for an illumination change.

Since the performance of DMT algorithms improves
significantly when sharpened sensitivities are employed,
and, furthermore, since it then compares favorably with
the performance of the best possible nondiagonal trans-
form, our results suggest that if a linear transform is a
central mechanism of human color constancy, then after
an appropriate, fixed sharpening transformation of the
sensors there is little to be gained through the use of any-
thing more general than a DMT.

In general, our results lend support to DMT-based
theories of color constancy. In addition, since spectral
sharpening aids color constancy, we have advanced the
hypothesis that sharpening might provide an explanation
for the psychophysical finding of sharpening in the hu-
man visual system.
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