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Spectral Signature of Relaxation Oscillations in 
Semiconductor Lasers 

M. P. van Exter, W .  A. Hamel, J .  P .  Woerdman, and B. R. P. Zeijlmans 

Abstract-A new and relatively simple expression is given for 
the optical spectrum of a single-mode semiconductor laser 
which, due to the presence of relaxation oscillations, consists 
of a strong central line with a broad weak sideband at each 
side. The coupling between phase and amplitude fluctuations is 
included in this derivation and is shown to result in an asym- 
metry between the relaxation oscillation sidebands. This asym- 
metry can be used to determine the linewidth enhancement fac- 
tor a.  Using optical heterodyne detection we have accurately 
measured the spectrum of a Fahry-Perot-type AlGaAs laser as 
a function of output power. Information on the dynamics of the 
relaxation oscillations was thus obtained. The power depen- 
dence of the frequency and damping of the relaxation oscilla- 
tions allowed us to separately determine the spontaneous life- 
time and the dependence of the gain on both carrier density 
(differential gain) and intensity (gain saturation). 

I. INTRODUCTION 

AHALA, Harder, and Yariv (VHY) [ 11 were the first V to link the broad weak sidebands observed around the 
central frequency of a semiconductor laser with the pres- 
ence of relaxation oscillations, which result from the in- 
terplay between the intracavity optical intensity and the 
population inversion [1]-[8]. Up to now a simple expres- 
sion for the optical spectrum in the presence of relaxation 
oscillations has been lacking. It is common practice to 
neglect the amplitude fluctuations and include only the 
phase fluctuations, as they give the strongest contribution 
to the spectrum [6]. In our treatment both fluctuations are 
taken into account. Especially the coupling between phase 
and amplitude is seen to influence the spectrum, it leads 
to an asymmetry, as already noticed by VHY. 

Starting from the linearized laser equations [9] we eval- 
uate in this paper the time auto-correlation and cross-cor- 
relation functions of the phase and amplitude fluctuations 
of the intracavity optical field. These are Fourier related 
to the optical spectrum of the laser light for which we give 
an approximate expression. From this expression we draw 
several conclusions about, e.g., the relative intensity of 
the relaxation oscillation sidebands and their non-Lorent- 
zian component. 

The laser spectrum with relaxation oscillation side- 
bands shown by VHY was measured with a Fabry-Perot 
etalon and had therefore a limited spectral resolution, 
which made precise quantitative analysis of the data dif- 
ficult. Heterodyne detection, based on coherent mixing, 
is a superior technique for spectral measurements [lo]. 
We have used heterodyne detection to measure the optical 
field spectrum of a Hitachi HLP1400 laser as a function 
of output power. The excellent fit between theory and ex- 
periment has allowed us to study the power dependence 
of both the relaxation oscillation frequency and damping 
rate. Hereby we could separate the damping rate in the 
lifetime-related part and the contributions due to the dif- 
ferential gain and gain saturation. Also, we introduce a 
new technique to determine the linewidth enhancement 
factor a, based on the asymmetry between the low- and 
high-frequency sideband. Here again we profit from the 
excellent fit between theory and experiment. 

11. BASIC EQUATIONS 

In this section the basic variables and equations needed 
to describe the laser operation are introduced. We con- 
sider a single-mode laser and introduce the slowly varying 
amplitude E ( t )  of the intracavity optical field Re 
[E(t)e‘”“], where wI is the central frequency. According to 
the Wiener-Khintchine theorem the (shifted) optical spec- 
trum is Fourier-related to the normalized time-autocorre- 
lation function of the optical field [7] 

GEM = ( E ( t ’  + t )E*( t ’ ) ) / ( lE( t ’ ) l ’ )  (1) 

where ( ) denotes time averaging over t ’ .  It is our aim 
to evaluate this autocorrelation function from the standard 
laser equations [7] 

d I N ( 0  
- N ( t )  = - - - - G,S(t). 
d t  e v  Tsp 

Here rc is the cavity loss rate, Gef = r G is the effective 
gain rate, the confinement factor (being the fraction of 

+ iGi 1 the (complex) bulk amplitude gain rate, Fsp ( t )  the 
spontaneous-emission noise, N ( t )  the carrier density, I is 
the injected current, e is the electron charge, I/ is the ac- 
tive volume, Tsp is the carrier-recombination time, and S 
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the photon density, i.e., the average number of photons 
in the laser mode divided by the optical mode volume 
( V / I ' ) .  The photon density is proportional to the square 
of the optical field inside the cavity. 

The standard laser equations are linearized by expand- 
ing the optical field, the population inversion and the 
complex gain G,, around their stationary values, 

(3a) 

(3b) 

E ( t )  = E, e -U(Oei+(r)  

N(t)  = No + n( t )  

Geff = rc + - 

Notice that the dependence of the gain on both the car- 
rier density and the intensity is taken into account. In the 
literature the intensity dependence of the optical gain, 
which we denote here by gain saturation, is also referred 
to as nonlinear gain. Gain saturation is generally ascribed 
to spatial and spectral redistribution of the carriers (hole 
burning), dynamic carrier heating, population pulsations 
or combinations thereof [ 121-[ 151. Gain saturation being 
small, it is often removed from the laser equations 191, 
[ 171. However, our experiments show gain saturation to 
be of crucial importance in describing the dynamics of the 
relaxation oscillations far above threshold. At large out- 
put powers it even dominates the damping of the relaxa- 
tion oscillations. 

The intensity dependence of the gain is usually quan- 
tified by the gain-saturation coefficient K~ as 

(4) 

where G(N,  0) is the small-signal gain (for S = 0). If one 
considers spectral hole burning as the prime source of gain 
saturation (4) would have a different form [16] 

(5)  

However, as discussed in section V, we find that, under 
our experimental conditions (output power Po,, I 20 
mW), the product K ~ S  is very small ( K ~ S  I 0.01) so that 
the difference between (4) and ( 5 )  is negligible. As a con- 
sequence, (3c) can be rewritten in the following form 

G,, = rc + f ( l  + ia)n(t) + ~ F , K S S O U ( ~ )  (6) 

where t is the effective differential gain, a is the line- 
width-enhancement factor [ l l ] ,  A S  ( t )  = -2u ( t ) S o ,  and 
So is the average photon density. Note that for InGaAsP 
lasers K~ is generally much larger than for AlGaAs lasers, 
so that a first-order expansion is in practice not always 
valid. 

The linearized laser equations are 

where rSp is the spontaneous lifetime, defined as rSi1 = 
a ( N /  Tsp) / a N  [ 181 and wo is defined below. The so-called 
Langevin noise sources f l ,  sp (t) and f2, sp ( t )  are propor- 
tional to Fsp (t)  and denote the contribution of spontaneous 
emission to the optical field [4]. They are Gaussian-dis- 
tributed random variables assumed to have a white fre- 
quency spectrum and completely characterized by the cor- 
relation 

(8) (f; ,sp(t '  + t)f:Sp(t')) = D 6, S(0 .  
D is the phase diffusion coefficient in [rad2 s-l] given by 

(9) 

where nsp = N2/(N2 - N,) is the so-called excess spon- 
taneous emission factor [4], [7], So ( V / r  ) is recognized 
as the average number of photons in the laser mode and 
K is the excess-noise factor [ 191. 

The linearized laser equations (7a)-(7c) can be solved 
by Fourier analysis [4]. Transformed into the frequency 
domain this set of equations shows a resonance at w = 0, 
which corresponds to phase diffusion, and resonances at 
w = fw, + iy,, where [7], [17] 

The resonances at w = fw, + iy, correspond to relaxa- 
tion oscillations, which physically result from the cou- 
pling between the intensity and the population inversion, 
via stimulated emission. Equation (lOc) shows the damp- 
ing rate yr  of the relaxation oscillations to arise from three 
sources, namely the finite spontaneous lifetime and the 
influence of the differential gain and gain saturation. The 
symbol y n  has been introduced to denote the damping rate 
arising from the first two processes only. Close to thresh- 
old only the lifetime-related damping is important. Far 
above threshold both power-dependent contributions be- 
come significant. The difference between w, and wo is usu- 
ally negligible (e.g., < 2% for the measurements plotted 
in Figs. 6 and 7 below). 

111. TIME-CORRELATION FUNCTIONS AND SPECTRUM 
The linearized laser equations can be solved by Fourier 

analysis as was demonstrated by Henry [4] for the phase- 
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phase correlation function. Below, expressions are given 
for all three relevant correlation functions [17]. In many 
practical situations the relaxation oscillations are well re- 
solved ( y r  << wo).  We simplify the algebra by discarding 
terms smaller by a factor ( yr /wo)2  than the leading term. 
Via Fourier analysis one finds (for t > 0) 

( [ 4 ( t ’  + t)  - 4(t’)I2> 

( [ u ( t ’  + t)  + u(t’)I2) 

where ( ) denotes time-averaging over t ’. Notice that the 
correlation functions contain either the phase difference 
[4(t + t ‘ )  - $(t’)] or the amplitude sum [u ( t  + t ’ )  + 
u(t’)I. 

The above functions are sufficient to evaluate the cor- 
relation function of the optical field GE(t) and to obtain 
the optical spectrum by Fourier transformation. This pro- 
cedure is made easier by the fact that the fluctuating var- 
iables d 4 ( t ) / d t  and u( t )  result from a normally distrib- 
uted ergodic stationary process [6]. In [17] it is shown 
how, for a bivariate Gaussian probability function, the 
brackets ( ) can be moved into the exponent 

GE(t) = ( E ( t ’  + t ) E * ( t ’ ) ) / ( E 2 ( t ’ ) )  

= (exp {-[U@’ + t )  + ~ ( t ’ ) ] }  

= exp (-: { ([4( t ’  + t> - 4(t’)12) 
exp {i[4(t’ + t )  - ~( t ’ ) l ) ) / (e”“’ ’ )  

- ( [u( t ’  + t )  + u(t’)I2)  + 4 (U(t’)l2))) 

* [4@’  + 0 - +(t’)I)l .  

exp { - i ( [u( t ’  + t)  + u( t ’ ) ]  

(12) 
The real part of GE(t) is symmetric in time and corre- 
sponds with the symmetric part of the spectrum, i.e., the 
part that is even in (w - U / ) .  The imaginary part of GE(t),  
reflecting the coupling between the amplitude and phase 
fluctuations, is antisymmetric in time and corresponds to 

the antisymmetric part of the spectrum, i.e., the part that 
is odd in (w - U / ) .  

In many practical cases the central laser line is narrow 
compared to the relaxation oscillation sidebands, i.e., 
D(a2 + 1) << y r ,  and the above expression for GE(t )  
can be expanded in D ( a 2  + l ) /y r .  By substituting the 
three correlation functions (1 la)-( 1 IC) into (12) and ex- 
panding to first order we thus find (for t > 0) 

(13) 
where we have introduced the effective damping rate [6] 

(14) 

A Fourier transformation of this expression directly 
yields the optical spectrum of the (single-mode) laser. The 
first term in (13) describes the (long-term) diffusion of the 
optical phase and leads to a fundamental lower limit for 
the width of the central laser line [4]. The other terms in 
(13) oscillate in time as cos ( w r t )  and sin (art)  and result 
in the formation of sidebands around the central laser line. 
Only the phase fluctuations contribute to the fundamental 
linewidth. They also dominate the relaxation oscillation 
sidebands if we assume, as usual, that a 2  >> 1. In fact 
the relative importance of the correlation functions listed 
in (1 1) follows the hierarchy a2, a, 1. This explains why 
often only the phase fluctuations are taken into account 
[6], an approach that intrinsically leads to a symmetric 
spectrum. 

When (13) is Fourier transformed the following expres- 
sion for the spectrum is found, if again terms smaller by 
a factor ( y , . / ~ ~ ) ~  are discarded, 

- ___ 4a  (3) 
CY2 + 1 WO 

+ (%)(?)I 
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In the considered limit the factor (1 - D ( a 2  + 1)/4y,) 
in (15) is almost unity. Notice that GE(w) is the shifted 
optical spectrum, i.e., the actual spectrum is found by 
substituting w + w - wI . The above equation for the op- 
tical spectrum is new and is the most important theoretical 
result from this paper. It is valid under the quite general 
assumption that D ( a 2  + 1) << y, << w,. From this 
equation the following conclusions can be drawn 

1)  The spectrum consists of two broad bands centered 
around a (narrow) central line at a frequency distance A U 
= wo/(27r). The width of the central line reflects the ef- 
fect of phase diffusion and is often called the (modified) 
Schawlow-Townes linewidth of the laser. Its full width 
at half maximum (FWHM) is given by D ( a 2  + 1)/(27r), 
which is via D inversely proportional to the optical output 
power of the laser [4]. The FWHM of the sidebands is 
1 / T  times the effective damping rate yeff. It thus reflects 
the damping of the relaxation oscillations, but is addition- 
ally broadened by phase diffusion. 

2) The relative intensity of the sidebands with respect 
to the central laserline is (for a >> 1) given by 

GE(w = wo) - D ( a 2  + 1) * 
(16) 

which is the square of half the ratio of the width of the 
central laser line and that of the sidebands. Thus the spec- 
tral intensity and the width of the sidebands are not in- 
dependent parameters, but are directly related: the 
stronger the damping, the weaker the sidebands [see (16)]. 

3) The Lorentzian wing of the central line still has an 
intensity D ( a 2  + l ) / w i  at the sidebands, which occur at 
A V  = +oO/(27r), while the superimposed maxima are 
roughly D a 2 / 4 y & .  The original assumption y, << wo 
corresponds with the situation that the Lorentzian wing of 
the central laserline is much weaker than the sideband 
maxima. Equation (15) also shows that the sidebands do 
not have a perfect Lorentzian shape. They contain a weak 
asymmetric part that leads to a shift of the maxima and to 
additional “filling” of the spectrum between the side- 
bands and the central laserline. 
4) The coupling between the amplitude and phase-fluc- 

tuations of the electric field, as was expressed in the func- 
tion ( [ u ( t ’  + t )  + u( t r ) ] [4( t r  + t )  - 4(tr)]) and de- 
scribed by the a parameter, leads to an asymmetry 
between the sidebands. When the sidebands are well re- 
solved the amount of asymmetry can be found by using 
( 1  5) .  For the ratio of the spectral intensity of both side- 
bands we find 

GE(w = - W O )  = 1 + [L][2]. C Y 2  + 1 (17) 

Since a is positive [ l  11, the low-frequency sideband is 
stronger than the high-frequency one. The measured spec- 
tral asymmetry can thus be used to determine the CY pa- 
rameter of a semiconductor laser. In the limiting cases 
where CY is zero or very large, the spectrum will be sym- 
metric. The spectral asymmetry will be relatively large if 

GE(w = 0) - i 4Yeff 1 

= WO) 

the relaxation oscillations are heavily damped; in that 
case, however, the sidebands will also be relatively weak. 
The appearance of y n  instead of y r  in (17) shows that even 
when D ,  a ,  y,, and U, are kept the same, and the width 
of the central laser line as well as the symmetric part of 
the relaxation oscillation sidebands remain unchanged, the 
spectral asymmetry is affected by nonlinear gain. The 
spectral asymmetry is reduced when damping due to non- 
linear gain becomes relatively more important [see (10) 
and (17)]. 

IV. HETERODYNE DETECTION 

We have used heterodyne detection to accurately mea- 
sure the spectrum of light from a Hitachi HLP1400 (CSP- 
type) AlGaAs laser, operating around 830 nm. The ex- 
perimental setup is sketched as Fig. 1. With a beamsplit- 
ter light from the laser under study is mixed with light 
from a narrow-band tunable reference laser, acting as lo- 
cal oscillator. Optical isolators are placed in both beams 
to prevent feedback. After spatial filtering with a short 
piece of single-mode fiber the combined intensity of the 
two beams is measured with a low-noise photodiode. The 
photodiode signal is routed through a bandpass filter (Q 
= 5 )  centered around 50 kHz, after which the root-mean- 
square (rms) amplitude of the filtered signal is detected 
with an ac voltmeter. Filter and ac voltmeter are com- 
bined in a lock-in amplifier. Part of the light from the 
reference laser is directed through a Fabry-Perot etalon 
with a free-spectral range of 250 MHz thus providing ref- 
erence markers to calibrate the frequency scan. 

The total intensity detected by the photodiode, being 
proportional to the square of the sum of the optical fields, 
contains a term oscillating at the frequency difference be- 
tween both lasers. By observing the rms amplitude of the 
filtered photodiode signal as a function of the frequency 
of the scanning reference laser one probes the spectral 
amplitude of the laser under investigation. 

As a reference laser we use a home-built external cavity 
diode laser based on a standard design of a single-sided 
antireflection-coated solitary laser and a grating for fre- 
quency tuning [20]. With the grating, which can be ro- 
tated manually or by means of a piezoelement, our laser 
is tunable from 820 to 868 nm. Fine tuning of the cavity 
length is done with a glass plate, mounted on a galvo 
scanner. Suitably combining the rotation of the glass plate 
with that of the grating leads to a linear scan of the laser 
frequency over typically 15 GHz in a few seconds. Via 
self-heterodyne detection [2 11 we have measured the line- 
width of the external cavity laser to be typically 50 kHz. 

One should realize that the spectrum determined with 
heterodyne detection differs from spectra taken with, e.g., 
a spectrometer or a Fabry-Perot etalon in the sense that 
the spectral amplitude (E(w)I is measured, instead of the 
spectral intensity I E (w)  1 2 .  This partially explains the ex- 
treme sensitivity of heterodyne detection. For easy com- 
parison of our data with other experiments we will sys- 
tematically plot the square of the measured rms amplitude. 
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,-. Isolator Lens Fiber 

Fig. 1. Experimental setup used for heterodyne detection of the spectrum 

V. EXPERIMENTAL RESULTS 
A typical result of a heterodyne experiment is shown as 

Fig. 2, where the square of the rms amplitude of the fil- 
tered photodiode signal is plotted versus the frequency dif- 
ference between the reference laser and the Hitachi laser 
under study. The latter was operating 6.5 mA above its 
53.5 mA threshold and produced 1.6 mW output power 
per facet. The central peak is fitted by a Lorentzian curve 
with a HWHM of 34 MHz as shown in Fig. 2(a). The fit 
is excellent in the wings, but seems a bit narrow around 
the top. 

Additional features are visible in Fig. 2(b), which 
shows the same spectrum with different horizontal and 
vertical scales. The vertical scale has been expanded by 
more than a factor 100 as compared to Fig. 2(a). The sharp 
features near f 1 . 4  and k 2 . 8  GHz are “ghosts” from the 
central laser line, which appear because the external cav- 
ity laser, used as local oscillator, is not truly operating 
single mode, having a small fraction of its intensity in 
other longitudinal modes. The 1.41 GHz mode spacing of 
the external-cavity laser can be nicely observed. The 
strengths of these ghosts changes with the alignment of 
the external-cavity laser. Interesting physics is contained 
in the broad sidebands near & 1.9 GHz, denoting the pres- 
ence of relaxation oscillations. The quality of this mea- 
surement, which took less then one minute, is evident: 
although the spectral intensity of the sidebands is less than 
1 % of that of the central peak, the sidebands are well re- 
solved and even features with a spectral intensity as low 
as lop4 of that of central line are observable. 

The data points are excellently fit by the theory pre- 
sented earlier if we use the following parameters: D (CY 

+ 1)/(27r) = 68 MHz, vo = 1.94 GHz, and yeR/(27r) = 
225 MHz. The fitting procedure worked as follows. First, 
the combination D ( a 2  -t- 1)/(27r), which can be recog- 
nized as the FWHM laser linewidth, was adjusted to fit 
the strong central laser line. Then, the frequency and ef- 
fective damping rate of the relaxation oscillations vo and 
yeff were adjusted to fit the symmetric part of the relaxa- 
tion oscillation sidebands. Both parameters could be de- 
duced from the fit with an accuracy better than 5 %.  We 
stress that the height and width of the observed sidebands 
can not be independently fitted, but are intimately linked 
in the theory presented above. Our measurement is thus 
an accurate check of that theory. 

The two other parameters that appear in (15) are y n  and 
CY separately. The values of these parameters is mainly 
reflected in the spectral asymmetry between the low- and 
high-frequency sideband. If the nonlinear gain would be 

6000 

.* 4 0 0 0  
C 

C 
1 - 
;; 2000 
L 
U 

Q v, 

.., 
0 

7 

-500 0 500 

Frequency [MHz] 

(a) 

-2000 0 2000 

Frequency [MHz] 

(b) 
Fig. 2 .  Typical spectrum of a Hitachi HLP1400 (CSP) AlGaAs laser op- 
erating at a total output power of 3.2 mW. Plotted is the spectral intensity. 
i .e. ,  the square of the signal measured by the ac voltmeter in Fig. 1 versus 
the frequency of the reference laser. In (a) the central line is fitted to a 
Lorentzian curve with a HWHM of 34 MHz. (b) is a different representa- 
tion of the same data showing the sidebands resulting from relaxation os- 
cillations. 

weak, yn  could be set equal to y r  and the measured asym- 
metry could be directly used to determine CY. For the ex- 
periment displayed in Fig. 2 we measure the spectral in- 
tensity of the low-frequency sideband to be 18 t- 3% 
larger than that of the high-frequency sideband. The fit 
shown in Fig. 2(b) has been obtained using y n  = yr and 
CY = 5.0 [see also (17)]. 

The effect of CY on the spectral shape is demonstrated in 
Fig. 3, where theoretical spectra have been calculated for 
CY = 0, 5 ,  and 10, respectively. From this plot the con- 
tribution of the non-Lorentzian part to the sidebands { see 
(15)) is evident: for CY = 5 and 10 the non-Lorentzian 
components lead to an increase of the spectral intensity 
between the sidebands and the central line, in addition to 
the underlying Lorentzian wings of the central line, and 
to a reduction of the spectral intensity outside the side- 
bands. Unfortunately neither the spectral asymmetry of 
the sidebands nor their individual shapes depend critically 
on CY for large values of this parameter. The difference 
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- 
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bY 

-2000 0 2000 

Frequency [MHz] 

Fig. 3.  The effect o f  the a-parameter on the relaxation oscillation side- 
hands is calculated for D ( a 2  + 1)/(27r) = 68 MHz, vo = 1.94 GHz, 
y , , , / ( 2 ~ )  = 225 MHz, y,r = T~ and for CY = 0 (long-dashed), a = 5 (short- 
dashed). and a = 10 (solid). 

between the short-dashed curve (a  = 5 )  and the solid 
curve (a = 10) is not at all drastic: only a small reduction 
in asymmetry is observable. Therefore, a very precise 
measurement of the asymmetry of the sidebands is nec- 
essary to determine the a parameter of a semiconductor 
laser. Furthermore the equation that describes the spectral 
asymmetry [(17)] actually contains a factor yn  instead of 
y r  and, whereas yr can be relatively easily determined 
from the width and relative strength of the relaxation os- 
cillation sidebands, yn is more difficult to determine. In 
the next section we will discuss how this quantity can be 
estimated from a study of the power dependence of both 
vo and y r  [see Figs. 6 and 71. Based on that analysis we 
estimate that at 3.2 mW output power the ratio y n / y r  = 
0.6. When this value, together with the measured 18 + 
3% asymmetry, is inserted into (17) one finds a = 3 
1 .  Measurements at different output power gave similar 
results. 

Accurate measurement of the spectral asymmetry of the 
relaxation oscillation sidebands is a new technique to de- 
termine the a parameter of a semiconductor laser. Several 
other techniques have been reviewed by Osinski and Buus 
[23]. Our value falls well within the spread of values cited 
in [23]. Compared to techniques based on FM-AM mod- 
ulation [24] or providing feedback [25] our method has 
the advantage that the measurements are performed on an 
unperturbed laser [26]. In this case spontaneous emission 
is the only, internal driving force that keeps pushing the 
laser out of its equilibrium. Clearly the technique will 
work for any semiconductor laser with reasonably pro- 
nounced relaxation oscillations. The technique is most 
sensitive for lasers with a small a. 

We have measured the spectrum of our Hitachi laser by 
heterodyne detection for many other currents than that 
used in Fig. 2. In Fig. 4 the inverse of the measured 
FWHM width of the central line AV is plotted versus the 
total output power of the laser. The measurements are fit- 
ted by a straight line as theory predicts the linewidth of a 

2 0.03 
E 

3 2 0.01 
Q, 

L? P 
- 0  

0 2 4 6 

Power [mw] 

Fig. 4. The inverse of the measured linewidth plotted as a function of the 
total output from both facets. 

single-mode laser to be inversely proportional to the out- 
put power. We interpret the 0.4 * 0.1 mW crossing with 
the x axis as the (spontaneous emission) power present in 
the other nonlasing longitudinal modes. The slope of the 
straight line in Fig. 4 can be used to obtain an additional 
rough estimate of the a parameter, since AV = D ( a 2  + 
1) /(2n). Combining the measured ' 'linewidth-power 
product" of 204 + 12 MHz - mW with a reasonable guess 
of the laser parameters appearing in (9), for which we use 
nsp = 1.5, rc = 8.6 x 10" s-', and K = 1.13, we find 
a = 5 L- 1 [22]. The average number of photons in the 
laser mode, appearing in (9), was calculated from the out- 
put power, using (19) listed below. The large uncertainty 
in some of these parameters make this estimate of a less 
reliable than the value extracted from the asymmetry of 
the relaxation oscillation sidebands. For our laser both es- 
timates are consistent. 

A close study of the position and shape of the spectral 
sidebands of our Hitachi laser as a function of the output 
power yields a wealth of information on the dynamics of 
the relaxation oscillations. When the output power in- 
creases the central line narrows down and the sidebands 
recede from the central line and become less pronounced. 
The spectra plotted in Fig. 5 illustrates this trend. The 
solid curves are fits through the measured points. The to- 
tal output power from both facets is marked in the upper 
right-hand comer for each spectrum. At 2.7 mW total out- 
put power the spectral intensity in the sidebands is about 
one percent of that in the central line. This relative 
strength grows quickly when the output power is reduced, 
while the sidebands move towards a central line of in- 
creasing width. The theory gives a reasonable fit down to 
1.5 mW. At the lowest powers the theory presented above, 
which was based on a first-order expansion in D ( a 2  + 
l ) /yr ,  is no longer valid. The sidebands seem to merge 
with the central line when they become overdamped. The 
combined line can then be well fitted with a simple Lor- 
entzian line as is demonstrated in Fig. 5(d). 

In Fig. 6 the square of the measured relaxation oscil- 
lation frequency vo is plotted versus the total output power 
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Fig. 5. Spectra of a Hitachi HLP1400 laser taken at decreasing output 
powers. The upper three spectra are fitted with the linearized theory dis- 
cussed in this article. The lower spectrum (d) is fitted by a simple Loren- 
tzian line. 
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Fig. 6 .  The square of the measured relaxation oscillation frequency plot- 
ted versus the total output power of the laser. The linear behavior repre- 
sents the prediction by theory. The crossing with the x axis at 0.5 mW I S  

due to the power present in the other (nonlasing) longitudinal modes. 

from both facets. The linear dependence predicted by 
(lO.b) fits the data well. The 0.5 mW crossing with the x 
axis reflects the (spontaneous emission) power present in 
the other nonlasing longitudinal modes. This value is 
comparable to the crossing which we found when plotting 
the inverse of the measured width of the central line ver- 
sus the total output power (Fig. 4). 
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Fig. 7 .  The measured damping of the relaxation oscillation sidebands plot- 
ted versus the total output power of the laser. The open circles denote the 
etiective damping rate, while the filled circles are corrected for the width 
of the central line. The linear fit gives the spontaneous lifetime T , ~  as well 
as the additional damping resulting from the differential gain and the gain 
saturation. 

In Fig. 7 the open circles denote the fitted effective 
damping y,,/(2a), which is plotted versus the total out- 
put power. By subtracting the HWHM of the central line 
one finds the actual damping yr/(2a) of the relaxation 
oscillations [see (14)] indicated by filled circles. The ex- 
perimental accuracy of the data points is typically 5 %, as 
denoted by the error bar, degrading to 10% for the lowest 
power. Theory predicts a linear dependence of the damp- 
ing rate on the output power as indicated by the drawn 
straight line [see (~OC)] .  At low powers ( < 4  mW) the 
measurements deviate from the theoretical model, but this 
could be expected on account of two reasons. First, the 
assumption that the laser line is narrow as compared to 
the width of the sidebands does not hold at the lowest 
powers. Second, laser operation becomes multimode close 
to threshold. At 1.5 mW total output power the intensity 
of the second-strongest mode is already 10% of that of 
the main mode and this ratio increases strongly below 1.5 
mW. Also notice that for all plotted points the frequency 
vo is at least a factor of 5 larger than the damping yr / (27r)  
thus validating the assumption (yr /w0) '  << 1. 

Notice that the deviation of the theoretically calculated 
damping rate and the experimentally measured value al- 
ready occurs at an output power below 4 mW, whereas 
the quality of the calculated fit still matches very well at 
this output power (see Figs. 2 and 5 ) .  Apparently the de- 
viations from the theoretical model first occur in the value 
of the fitted relaxation oscillation damping rate; only at 
very low power deviations in the shape of the spectrum 
are observable [see Fig. 5(c)]. 

Combination of the power dependence of the relaxation 
oscillation frequency and damping rate as presented in 
Figs. 6 and 7 allowed us to separately determine the spon- 
taneous lifetime T , ~  and the dependence of the gain on 
both carrier density ( 4 )  and optical intensity ( K ~ ) .  The 
spontaneous lifetime is related to the intensity-indepen- 
dent contribution to the damping rate, which is found by 
extrapolating the linear dependence of the damping rate 
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versus the total output power, which fits nicely above 4 
mW, to 0.4 mW, being the power in the nonlasing lon- 
gitudinal modes. The obtained power-independent damp- 
ing of Y , . / ( ~ T )  = 75 + 15 MHz yields a spontaneous 
lifetime T , ~  = 1.1 + 0.3 ns. 

From the slopes of Figs. 6 and 7 the increase in relax- 
ation oscillation frequency and damping as a function of 
output power is found to be dv;/dP,,,, = 1.39 
(GHz)'/mW and d(y,/2a)/dPoU, = 27 MHz/mW, re- 
spectively. These values are obtained directly from the 
data and are limited only by experimental error. Combi- 
nation of these two values allows one to quantitatively 
determine the differential gain E as well as the gain satu- 
ration coefficient K ~ .  Using (lob) and (1Oc) one finds 

I n  order to compare the slopes of the straight lines in Figs. 
6 and 7 with the above equations we express the total out- 
put power of the laser in the photon density So, using the 
relation 

Here qext is the outcoupling efficiency, being the fraction 
of generated photons emitted by the laser, the rest being 
dissipated through internal losses. Unfortunately this re- 
lation contains several laser parameters, like the active 
volume V and the confinement factor r, that are only 
roughly known for our Hitachi HLP1400 laser. We could 
determine the outcoupling efficiency vex, = 0.35 from the 
relation between output power and current, assumihg the 
internal efficiency, i.e. , the conversion of electrons into 
photons, to be close to unity. The cavity loss rate I?, = 
8.6 x 10" s- '  is found from gain spectra below threshold 
[22]. These values could be determined with better ac- 
curacy ( + 5 %) than the parameters V and r that also ap- 
pear in (19). Thus we have decided to first substitute the 
values of qext and rc into the equations and postpone sub- 
stitution of V and r. This yields 

Comparing these values we conclude that the differential 
gain contributes only about 20% of the increase in damp- 
ing rate towards higher powers, the rest being due to gain 
saturation. In our AlGaAs laser gain saturation apparently 
dominates the damping at high output powers. 

Finally, we insert the two laser parameters we know 
least accurate, I/ and r. Studies using the Hitachi 
HLP1400 have been reported by many authors, but the 

specified dimensions of the active volume amazingly dif- 
fer from paper to paper [ 11, [4], [27], [28]. For this reason 
we decided to measure the optical mode volume; in fact, 
the optical mode volume V/I'  is more important for the 
dynamics of the relaxation oscillations than the active vol- 
ume I/. The optical near field is intimately linked with the 
far field, which has the familiar elliptical Gaussian profile 
with (HWHM) opening angles of 0.25 rad perpendicular 
and 0.10 rad parallel to the active layer. For the optical 
field inside the laser we thus find an effective cross section 
(based on a rectangular intensity profile) of 0.78 pm x 
2.1 pm. The length of the laser is measured to be 309 pm. 
From the so obtained optical mode volume V/T = 5.1 x 
lo-'' cm3 we find that at 1 mW total output power the 
photon density is approximately So = 2.7 X l O I 3  cm-3 
[see (19)]. Knowledge of the confinement factor or the 
related thickness of the active layer is needed to calculate 
I/ from I//r and determine froin (20a). The bulk dif- 
ferential gain t/I' is, however, simply found by multi- 
plying both sides of (20a) by the optical mode volume 
V / r .  We thus find ,$/I' = 2.3 x lop6 cm3/s, which is 
comparable to both the value of 2.2 x cm3/s men- 
tioned by Petermann [29] and the value of 2.5 x 
mentioned by Vahala et al. [ 11. Combining (20b) with the 
above data we estimate the saturation gain coefficient to 
be K~ = 1.2 X cm3. For our laser this corresponds 
to a saturation coefficient (referring to the total output 
power) of up = 0.32 W - I .  Our values are smaller than 
the value of 0.65 W-' mentioned in [30], but comparable 
to the value K~ = 1.7 X cm3 mentioned in [31] and 
almost a factor 2 larger than the value K~ = 0.7 X 
cm3 mentioned in [32]. The spread in these values is pos- 
sibly due to the fact that gain saturation is not a pure bulk 
parameter, but depends also on the device architecture 
[321. 

VI. CONCLUSION 

Starting from the linearized laser equations, an expres- 
sion was obtained for the spectral lineshape of a single- 
mode semiconductor lasef, which consists of a central line 
and two sidebands resulting from relaxation oscillations. 
The theoretical expressions provide an accurate fit for 
spectra of a Hitachi HLP1400 AlGaAs laser measured 
with optical heterodyne detection. From the asymmetry 
in the sidebands we were able td derive the a parameter 
of the laser. The relative contribdtion of nonlinear gain to 
the relaxation-oscillation dampirig has to be known to per- 
form this calculation. We find a = 3 k 1. 

The spectra yield a wealth of information on the dy- 
namics of the relaxation oscillations. A study of the re- 
laxation oscillation frequency versus output power yielded 
a bulk differential gain of i / r  = 2.3 X lop6 cm3/s. The 
damping rate was seen to increase almost linearly with the 
output power. From this relation we could extract the 
spontaneous lifetime T , ~  = 1.1 k 0.3 ns as well as the 
gain saturation coefficient K~ = 1.2 x 1 0 - l ~  cm3 or K~ = 
0.32 W-'. We found that at high output powers gain sat- 
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uration dominates the damping of the relaxation oscilla- 
tions. 
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