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Abstract: The primary focus of this article is on applying specific generalized Jacobi polynomials
(GJPs) as basis functions to obtain the solution of linear and non-linear even-order two-point BVPs.
These GJPs are orthogonal polynomials that are expressed as Legendre polynomial combinations.
The linear even-order BVPs are treated using the Petrov–Galerkin method. In addition, a formula
for the first-order derivative of these polynomials is expressed in terms of their original ones. This
relation is the key to constructing an operational matrix of the GJPs that can be used to treat the
non-linear two-point BVPs. In fact, a numerical approach is proposed using this operational matrix
of derivatives to convert the non-linear differential equations into effectively solvable non-linear
systems of equations. The convergence of the proposed generalized Jacobi expansion is investigated.
To show the precision and viability of our suggested algorithms, some examples are given.

Keywords: Legendre polynomials; generalized Jacobi polynomials; operational matrix; Petrov–
Galerkin method; collocation method

MSC: 65M70; 11B83; 35L02

1. Introduction

The numerous applications of special functions and orthogonal polynomials in a vari-
ety of fields have made studying these polynomials more crucial. They occur in the study of
differential and integral equations; for an illustration, see for example [1–4]. Furthermore,
orthogonal polynomials have been shown to be significant in both mathematical statistics
and quantum physics. Many theoretical investigations regarding special functions were
performed, see for example [5–8]. The classical orthogonal polynomials, which involve
the Hermite, Laguerre, and Jacobi polynomials, are the orthogonal polynomials that are
the most utilized polynomials, see for example [9–11]. The Jacobi polynomials are among
the most significant orthogonal polynomials used in numerical analysis. The most signif-
icant class of Jacobi polynomials is known as the Gegenbauer polynomials class, which
also includes the classes of Legendre and Chebyshev polynomials of the first and second
kinds as special classes. The four kinds of Chebyshev polynomials are all special Jacobi
polynomials. The first and second kinds of Chebyshev polynomials are ultraspherical poly-
nomials, whereas the third and fourth-kind Chebyshev polynomials are not ultraspherical
polynomials since they are special cases of certain non-symmetric Jacobi polynomials, see
for example [12,13].
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BVPs play important roles since they may be found everywhere in the field of ap-
plied sciences, from engineering to fluid mechanics to optimization theory. For some
applications, one can consult [14]. High-order BVPs can be used to describe a variety of
real-world phenomena. The even-order two-point BVPs appear in a variety of problems. A
fourth-order ordinary differential equation [15] governs the free vibration analysis of beam
structures. An ordinary differential equation of sixth-order controls the vibrational activity
of rings, see [16]. For some other applications to even-order BVPs, one can refer to [17].
From a numerical perspective, there are several numerical algorithms utilized to solve
different types of even-order BVPs. For example, the authors in [18] treated both linear
and non-linear two-point BVPs of any even order using the generalized third-kind Cheby-
shev polynomials. The linear equations were solved via the Galerkin approach, while the
non-linear even-order BVPs were treated by applying the standard collocation technique,
based on a matrix of derivatives of the generalized third-kind Chebyshev polynomials.
Some other algorithms in the literature were developed to treat such types of polynomials.
Among these methods are the differential transform methods in [19], perturbation and
homotopy perturbation methods in [20], and the matrix method in [21].

The numerical analysis relies heavily on spectral methods. Numerical solutions to
differential and integral equations have been obtained successfully using these methods.
The required approximate solution can be expressed in terms of certain combinations of
orthogonal polynomials that can serve as basis functions by using spectral methods. Tau,
collocation, and Galerkin methods are three well-known spectral methods. The Galerkin
approach relies on selecting orthogonal polynomial combinations that meet the underlying
conditions and after that enforcing the residual of the equation to be orthogonal to the set
of test functions that coincide with the set of trial functions, see for example [10,22–25]. The
“Petrov–Galerkin” method is a variation of the Galerkin method. The primary distinction
between the Galerkin and Petrov–Galerkin techniques is that, in contrast to the Galerkin
method, the two sets of trial and test functions in the Petrov–Galerkin approach are not
the same. Therefore, the Galerkin approach is less adaptable than the Petrov–Galerkin
method. In comparison to the Galerkin and Petrov–Galerkin techniques, the tau method
is more widely used, for an example, see [26,27]. This is because of the flexibility with
which the basis and trial functions can be chosen. The collocation method, which can
handle all different types of differential equations, is the most popular approach, see for
instance, [28–31]. A survey of spectral techniques and their uses can be found in [2,32].

Two papers written by Shen [33,34] addressed the issue of combining orthogonal
polynomials in order to deal with different types of differential equations. In [33], using the
spectral Galerkin method, the author numerically treated the second and fourth-order two-
point BVPs by using orthogonal combinations of Legendre polynomials. The fundamental
benefit of choosing such combinations is that it allows one to transform the differential
equations governed by their underlying conditions into sets of algebraic systems that are
specially structured. Additionally, it has been demonstrated that some types of differential
equations can be transformed into diagonal systems, which naturally considerably reduces
the computational effort needed to solve these particular types of differential equations,
see for example [24].

In the context of numerical analysis, the utilization of operational matrices of deriva-
tives and integrals is beneficial. They are used to numerically solve almost all types of
differential equations. For example, in [35], Napoli and Abd-Elhameed used harmonic
numbers operational matrices of derivatives to treat the non-linear high-order initial value
problems. A wide range of fractional differential equations can be solved using operational
derivative matrices, see for example [36,37].

The principal objective of the current article is to employ the GJPs as basis functions
to obtain spectral solutions of the linear and non-linear even-order BVPs. Two different
approaches are utilized for proposing spectral solutions for these equations. The Petrov–
Galerkin method is applied to treat the linear even-order BVPs. For the non-linear BVPs,
the operational matrix of derivatives of such polynomials is first introduced, and after
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that, it is used to transform the differential equations governed by its governing boundary
conditions (BCs) into systems of algebraic equations that can be efficiently solved.

The paper is organized as follows. The next section presents some preliminary infor-
mation and some fundamental properties concerning the Legendre and GJPs. Section 3
develops new formulas concerned with the GJPs and their shifted ones. In Section 4, a
numerical algorithm built on the application of the Petrov–Galerkin method is designed to
solve the even-order two-point BVPs. Section 5 is devoted to presenting a matrix approach
for handling the non-linear two-point BVPs. This algorithm is basically built on the appli-
cation of the spectral collocation method. The convergence analysis of the proposed shifted
generalized Jacobi polynomials is investigated in Section 6. Some illustrative examples are
displayed in Section 7. Some concluding remarks are given in Section 8.

2. Preliminaries and Some Interesting Formulas

In this section, we discuss the basic characteristics of Legendre polynomials, their
shifted polynomials, and a special class of polynomials called GJPs, which are represented
as specific combinations of Legendre polynomials. We also introduce the shifted generalized
Jacobi polynomials that are used later on.

2.1. An Account on Legendre Polynomials and the GJPs

Legendre polynomials are well-known to form an orthogonal set of polynomials on
[−1, 1] with regard to the unit weight function. Its orthogonality relation is given as

1∫
−1

Pm(x) Pn(x) dx =


2

2 n + 1
, m = n,

0, m 6= n.

These polynomials can be represented as ([38]):

Pn(x) =
1
2n

b n
2 c

∑
m=0

(−1)m (2n− 2m)!
m! (n− 2m)! (n−m)!

xn−2m,

and the formula for its inversion takes the form

x` = 2−`
√

π `!
b `2c
∑

m=0

1
2 + `− 2m

m! Γ
( 3

2 + `−m
)P`−2m(x), ` ≥ 0,

where bzc represents the largest number that is less than or equal to z.
The shifted Legendre polynomials on [a, b] can be defined as follows:

P∗n (x) = Pn

(
2x− a− b

b− a

)
.

It is obvious that P∗n (x) are orthogonal to [a, b] in the following way:

b∫
a

P∗m(x) P∗n (x) dx =


b− a

2 n + 1
, m = n,

0, m 6= n.
(1)

Guo et al. in [39] constructed kinds of orthogonal polynomials that are considered
the natural basis of certain even-order two-point BVPs. He called them generalized Jacobi
polynomials—“GJPs”. It was shown in [39] that these polynomials are combinations of
the Legendre polynomials. Doha et al. in [24] found an explicit expression for these
polynomials in terms of Legendre polynomials. More recently, Abd-Elhameed in [40]
studied these polynomials from a theoretical point of view, and he established several
formulas concerned with these polynomials and their connections with different orthogonal
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polynomials. In this paper, we employ these polynomials to treat the linear and non-linear
even-order two-point BVPs numerically.

Let ` and m be any two integers and define the SGJPs as follows (see [39]):

G(`,m)
r (x) =


(1− x)−` (1 + x)−m R(−`,−m)

r−r0
(x), r0 = −(`+ m), `, m ≤ −1,

(1− x)−` R(−`,m)
`−r0

(x), r0 = −`, ` ≤ −1, m > −1,

(1 + x)−m R(`,−m)
`−r0

(x), r0 = −m, ` > −1, m ≤ −1,

R(`,m)
`−r0

(x), r0 = 0, `, m > −1,

(2)

where R(δ,µ)
m (x) are the normalized Jacobi polynomials defined as ([40]):

R(δ,µ)
m (x) =

m!
(δ + 1)m

P(δ,µ)
m (x),

where P(δ,µ)
m (x) represents the well-known classical Jacobi polynomials.

From the definition in (2), it is clear that the polynomials defined as

Gn
k (x) = G(−n,−n)

k (x) = (1− x2)n R(n,n)
k (x), (3)

fulfill the (2n) BCs:

DqGn
k (±1) = 0, q = 0, 1, . . . , n− 1.

Remark 1. The polynomials defined in (3) are those defined in [40], but they differ only in a factor.

In terms of Legendre polynomials, the following lemma shows how the GJPs can
be written.

Lemma 1. The GJPs defined in (3) can be expressed in terms of Legendre polynomials as ([24])

Gn
k (x) =

1
2

n!
n

∑
j=0

(−1)j(1 + 4j + 2k)(n
j)Γ
(

1
2 + j + k

)
Γ
( 3

2 + j + k + n
) Pk+2j(x). (4)

Now, from the orthogonality relation of the normalized symmetric Jacobi polynomials
(ultraspherical polynomials) ([40]), it is clear that the orthogonality relation of the polyno-
mials Gn

k (x) over [−1, 1] with regard to the weight function w(x) = (1− x2)−n is given by

1∫
−1

w(x) Gn
j (x) Gn

k (x) dx =


22n+1k!(n!)2

(2k + 2n + 1)(k + 2n)!
, j = k,

0, j 6= k.

2.2. The Shifted Generalized Jacobi Polynomials

The GJPs that are defined in (3) can be extended to be defined on a general interval
[a, b]. In this respect, the shifted generalized Jacobi polynomials (SGJPs) on [a, b] can be
defined as follows:

SGn
j (x) = (b− x)n (x− a)n R̃(n,n)

j (x), (5)

where R̃(n,n)
j (x) are the shifted normalized symmetric Jacobi polynomials on [a, b], de-

fined as

R̃(n,n)
j (x) = R(n,n)

j

(
2x− a− b

b− a

)
.
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The orthogonality relation of the GJPs on [−1, 1] can be easily transformed to give the
corresponding orthogonality relation for the SGJPs on [a, b]. More definitely, the following
orthogonality relation holds for the shifted polynomials SGn

j (x):

∫ b

a
w̃(x) SGn

j (x) SGn
k (x) dx =


(b− a)2n+1 k! (n!)2

(2k + 2n + 1)(k + 2n)!
, j = k,

0, j 6= k,
(6)

where w̃(x) is given by w̃(x) = (b− x)−n (x− a)−n.

The following corollary exhibits the expression of the SGJPs in terms of the shifted
Legendre polynomials.

Corollary 1. In terms of shifted Legendre polynomials, the SGJPs can be represented as

SGn
k (x) =

n!(b− a)2n

22n+1

n

∑
j=0

(−1)j(4j + 2k + 1)(n
j)Γ
(

j + k + 1
2

)
Γ
(

j + k + n + 3
2
) P∗k+2j(x). (7)

Proof. Formula (7) can be deduced from Formula (4) only by replacing x by
2x− a− b

b− a
.

3. Some New Formulas Concerned With the GJPs and Their Shifted Ones

This section is devoted to establishing some new formulas concerned with the GJPs
and their shifted polynomials, which will be very useful to derive our two proposed
algorithms to handle even-order linear and non-linear two-point BVPs.

In the first theorem, we state and prove an expression of the power form representation
of the GJPs.

Theorem 1. The analytic form of Gn
j (x) is given by

Gn
j (x) =

(2n + 1)!
Γ
( 3

2 + n
)
⌊

j
2

⌋
+n

∑
p=0

(−1)n−p 2j−2p−1 Γ
(

1
2 + j + n− p

)
p! (j + 2n− 2p)!

xj+2n−2p, j ≥ 0.

Proof. The analytic form of R(n,n)
j (x) (see [40]) allows one to write

R(n,n)
j (x) =

j! (2n + 1)!
(j + 2n)! Γ

( 3
2 + n

)
⌊

j
2

⌋
∑
r=0

(−1)r 2j−2r−1 Γ
(

1
2 + j + n− r

)
(j− 2r)!r!

xj−2r,

and therefore, we have

Gn
j (x) =

j! (2n + 1)!
(j + 2n)! Γ

( 3
2 + n

)
⌊

j
2

⌋
∑
r=0

(−1)r 2j−2r−1 Γ
(

1
2 + j + n− r

)
(j− 2r)! r!

(
1− x2

)n
xj−2r.

The previous formula is transformed into the following form by using the binomial
theorem:

Gn
j (x) =

j! (2n + 1)!
(j + 2n)! Γ

( 3
2 + n

)
⌊

j
2

⌋
∑
r=0

(−1)r 2j−2r−1 Γ
(

1
2 + j + n− r

)
(j− 2r)! r!

n

∑
`=0

(−1)`
(

n
`

)
xj+2`−2r. (8)

Some algebraic computations on (8) lead to the following formula:
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Gn
j (x) =

j! (2n + 1)!
(j + 2n)! Γ

( 3
2 + n

)
⌊

j
2

⌋
+n

∑
p=0

(−1)n−p
p

∑
`=0

2j−2`−1 ( n
`+n−p)Γ

(
1
2 + j− `+ n

)
(j− 2`)! `!

xj+2n−2p.

The second right-hand sum in the previous formula can now be written as

p

∑
`=0

2j−2`−1 ( n
`+n−p) Γ

(
1
2 + j− `+ n

)
(j− 2`)! `!

=
2j−1 ( n

n−p) Γ
(

j + n + 1
2

)
j! 3F2

(
−p, 1

2 −
j
2 ,− j

2
1
2 − j− n, 1 + n− p

∣∣∣∣∣1
)

. (9)

The 3F2(1) that appears in (9) can be reduced using the identity of Pfaff–Saalschutz
(see, [41]) to give

3F2

(
−p, 1

2 −
j
2 ,− j

2
1
2 − j− n, 1 + n− p

∣∣∣∣∣1
)

=
(2n + j− 2p + 1)2p

22p
(

j + n− p + 1
2

)
p
(n− p + 1)p

,

and as a result, the power form representation of Gn
j (x) shown below can be obtained:

Gn
j (x) =

(2n + 1)!
Γ
( 3

2 + n
)
⌊

j
2

⌋
+n

∑
p=0

(−1)n−p 2j−2p−1 Γ
(

1
2 + j + n− p

)
p! (j + 2n− 2p)!

xj+2n−2p.

Theorem 1 is now proved.

Our next objective is to present and prove a significant theorem that gives a Legendre-
based expression for the high-order derivatives of Gn

j (x).

Theorem 2. Let j and q be two non-negative integers with j + 2n ≥ q. The qth-derivative of the
GJPs has the following Legendre expression:

DqGn
j (x) =(−1)n 2q n! Γ

(
1
2
+ j + n

)
×

⌊
j−q

2

⌋
+n

∑
r=0

(−1)r
(

1
2 + j + 2n− 2r− q

)
(1 + n− r− q)r

r! Γ
( 3

2 + j + 2n− r− q
)( 1

2 + j + n− r
)

r

Pj+2n−q−2r(x).
(10)

Proof. The analytic form of Gn
j (x) in Theorem 1 allows one to write

DqGn
j (x) =

n!√
π

⌊
j
2

⌋
+n

∑
m=0

(−1)n−m 2j−2m+2n Γ
(

1
2 + j−m + n

)
m! (j− 2m + 2n− q)!

xj−2m+2n−q. (11)

The application of the inversion formula of the Legendre polynomials turns Formula (11)
into the following formula:

DqGn
j (x) =2q n!

⌊
j
2

⌋
+n

∑
m=0

(−1)n−m Γ
(

1
2 + j−m + n

)
m!

×
⌊

j−q
2

⌋
+n−m

∑
r=0

( 1
2 + j− 2m + 2n− q− 2r)

r! Γ
( 3

2 + j− 2m + 2n− q− r
) Pj−2m+2n−q−2r(x),
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which can be rewritten as follows:

DqGn
j (x) =2q−1 n!

⌊
j−q

2

⌋
+n

∑
r=0

(1 + 2j + 4n− 4r− 2q)×

r

∑
`=0

(−1)−`+n Γ
(

1
2 + j− `+ n

)
`! (r− `)! Γ

( 3
2 + j− `+ 2n− r− q

) Pj−q−2r+2n(x).

Now, noting the identity

r

∑
`=0

(−1)−`+n Γ
(

1
2 + j− `+ n

)
`! (r− `)! Γ

( 3
2 + j− `+ 2n− r− q

) =

(−1)n Γ
(

j + n + 1
2

)
r! Γ
(

1
2 (3 + 2j + 4n− 2r− 2q)

) 2F1

(
−r,− 1

2 − j− 2n + r + q
1
2 − j− n

∣∣∣∣1),

then it is easy using the Chu–Vandermonde identity ([41]) to express DqGn
j (x) as

DqGn
j (x) =(−1)n2q n! Γ

(
1
2
+ j + n

)
×

⌊
j−q

2

⌋
+n

∑
r=0

(−1)r
(

1
2 + j + 2n− 2r− q

)
(1 + n− r− q)r

r! Γ
( 3

2 + j + 2n− r− q
) ( 1

2 + j + n− r
)

r

Pj+2n−q−2r(x).

This proves Theorem 2.

Now, the shifted Legendre polynomials can be used to represent the high-order
derivatives of the SGn

j (x) as in the next corollary.

Corollary 2. Let j and q be two non-negative integers with j + 2n ≥ q. The qth-derivative of the
SGn

j (x) can be represented in terms of the shifted Legendre polynomials as

Dq SGn
j (x) =22q−2n(b− a)2n−q n! Γ

(
j + n +

1
2

)
×

⌊
j−q

2

⌋
+n

∑
r=0

(−1)n+r
(

j + 2n− q− 2r + 1
2

)
(n− q− r + 1)r

r! Γ
(

j + 2n− q− r + 3
2
) (

j + n− r + 1
2

)
r

P∗j+2n−q−2r(x).
(12)

Proof. Formula (12) can be deduced as a direct consequence of Formula (10) by replacing

x by
2x− a− b

b− a
.

4. Treating Linear High Even-Order Differential Equations via the
Petrov–Galerkin Method

The focus of this section is on thoroughly analyzing a spectral solution to the high-even
order BVPs presented below:

(−1)n D2nu(x) +
2n−1

∑
q=1

ξq dq Dqu(x) + d0 u(x) = g(x), x ∈ I = [a, b], n ≥ 1, (13)
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governed by the BCs:

Dku(a) = Dku(b) = 0, k = 0, 1, . . . , n− 1, (14)

where {dq, q = 0, 1, . . . , 2n− 1} are arbitrary real constants and ξq are defined as

ξq =

{
(−1)

q
2 , q even,

(−1)
q+1

2 , q odd.

Now, we are willing to solve (13)–(14) utilizing the SGJPs that are defined in (5) as
basis functions. So, we select the following basis functions:

ψj,n(x) = SGn
j (x) = (b− x)n (x− a)n R̃(n,n)

j (x), j = 0, 1, 2, . . . . (15)

It should be noticed that {ψj,n(x) : j = 0, 1, 2, . . . } are linearly independent and
orthogonal with respect to the weight function w̃(x) = (b− x)−n (x− a)−n.

Consider the Sobolev spaces to be Hn(I)(n = 0, 1, 2, . . .), where the inner product is
denoted by (., .)n, and the norm by ‖.‖n (see, [42]), and consider the following space

Hn
0 (I) = {u ∈ Hn(I) : u(q)(a) = u(q)(b) = 0, 0 ≤ q ≤ n− 1}, (16)

where u(q)(x) =
dqu
dxq . Now, define the following subspace of Hn

0 (I)

VN = span{ψ0,n(x), ψ1,n(x), . . . , ψN,n(x)}.

4.1. Function Approximation

Assume now that the function u(x) ∈ Hn
0 (I) (defined in (16)) can be expanded in

terms of the polynomials ψj,n(x) as

u(x) =
∞

∑
j=0

cj ψj,n(x),

where

cj =
(2j + 2n + 1)(j + 2n)!
(b− a)2n+1 j!(n!)2

∫ b

a

u(x)ψj,n(x)
(x− a)n (b− x)n dx.

Additionally, assume an approximate solution uN(x) ∈ VN(x) to (13)–(14) that can be
expanded as

uN(x) =
N

∑
j=0

cj ψj,n(x). (17)

In the following subsection, we present how to obtain the proposed numerical solution
uN(x) using a suitable spectral method.

4.2. Petrov–Galerkin Approximation to (13)–(14)

In this section, we are interested in applying the shifted generalized Jacobi Petrov–
Galerkin method (SGJPGM) to solve (13)–(14). One should follow the concept of picking
two distinct sets of trial and test functions. The test functions are selected at random, while
the trial functions are selected to fulfill the BCs (14) and after that make the residual of
(13) orthogonal to the selected test functions. It is appropriate to select the set of shifted
Legendre polynomials as the test functions since it is evident from Formula (7) that the
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basis functions are given in terms of the shifted Legendre polynomials. In this regard, we
pick the following test functions:

χk(x) = P∗k (x). (18)

To apply the SGJPGM to solve (13)–(14), we have to find uN(x) ∈ VN(x) such that

(
(−1)n D2nuN(x), P∗k (x)

)
+

2n−1

∑
q=1

ξq dq (DquN(x), P∗k (x)) + d0(uN(x), P∗k (x)) = (g(x), P∗k (x)), (19)

where (u(x), F(x)) =
b∫

a

u(x) F(x) dx is the scalar inner product in the space L2[a, b].

Now, if we denote

gk = (g(x), P∗k (x)), g = (g0, g1, . . . , gN),

B(2n) = (b2n
kj )0≤k,j≤N , B(q) = (b(q)kj )0≤k,j≤N , 1 ≤ q ≤ 2n− 1,

B(0) = (b0
kj)0≤k,j≤N ,

then the matrix form corresponding to (19) is(
B(2n) +

2n−1

∑
q=1

dq B(q) + d0 B(0)

)
c = g, (20)

where the nonzero elements of the matrices B(2n), B(q), 1 ≤ q ≤ 2n− 1 and B(0) are given
explicitly in the following theorem.

Theorem 3. If the trial and test basis functions ψj,n(x) and χk(x) are as selected in (15) and (18),

and if we denote b(2n)
kj = (−1)n (D2n ψj,n(x), P∗k (x)

)
, b(q)kj = ξq

(
Dq ψj,n(x), P∗k (x)

)
, 1 ≤ q ≤

2n− 1, b(0)kj =
(
ψj,n(x), P∗k (x)

)
, then the nonzero elements of the matrices B(2n), B(q), 1 ≤ q ≤

2n− 1 and B(0) are given explicitly as follows:

b(2n)
kj =

22n−1 n (b− a)
(

j−k
2 + n− 1

)
! Γ
(

1
2 (j + k + 1) + n

)
(

j−k
2

)
! Γ
(

1
2 (j + k + 3)

) , j ≥ k, (j + k) even, (21)

b(q)kj =ξq

(−1)n 2q n!
(

b−a
2

)2n−q+1( 1
2 (j− k + q)− 1

)
! Γ
(

1
2 (1 + j + k + q)

)
(

1
2 (j− k + 2n− q)

)
! Γ
(

1
2 (3 + j + k + 2n− q)

)
(q− n− 1)!

,

(j + k + q) even, (j− 2n + q) ≥ k, 1 ≤ q ≤ 2n− 1, (22)

b0
kj =

(−1)
k−j

2

(
b−a

2

)2n+1
(

n
k−j

2

)
n! Γ

(
1
2
(1 + j + k)

)
Γ
(

1
2 (3 + j + k) + n

) , 0 ≤ k− j ≤ 2n. (23)

Proof. To compute the elements of the matrices B(2n), B(q), 1 ≤ q ≤ 2n − 1 and B(0),
it is required to compute

(
Dqψj,n(x), P∗k (x)

)
. Based on Formula (12), Dqψj,n(x) has the

following expression:

Dqψj,n(x) =

⌊
j−q

2

⌋
+n

∑
r=0

Ar,j,q P∗j+2n−q−2r(x), (24)
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where Ar,j,q take the form

Ar,j,q =
(−1)n+r 2q n!

(
b−a

2

)2n−q
Γ
(

1
2 + j + n

) (
1
2 + j + 2n− 2r− q

)
(1 + n− r− q)r

r! Γ
( 3

2 + j + 2n− r− q
)( 1

2 + j + n− r
)

r

.

Now, Formula (24) along with the well-known orthogonality property of the shifted
Legendre polynomials in (1) will yield

(
Dqψj,n(x), P∗k (x)

)
=

⌊
j−q

2

⌋
+n

∑
r=0

Ar,j,q δj+2n−q−2r,k hk, (25)

where hk =
b− a

2k + 1
and δj,k is the well-known Kronecker delta function.

It is easy to see that Formula (25) reduces to the following formula:

(
Dqψj,n(x), P∗k (x)

)
=

(−1)n 2q n!
(

b−a
2

)2n−q+1( 1
2 (j− k + q)− 1

)
! Γ
(

1
2 (1 + j + k + q)

)
(

1
2 (j− k + 2n− q)

)
! Γ
(

1
2 (3 + j + k + 2n− q)

)
(q− n− 1)!

, (j− k + q) even, j− 2n + q ≥ k,

0, otherwise.

(26)

Now, regarding the entries of the matrix B(2n), it is clear from Formula (26) that

b(2n)
kj =(−1)n

(
D2nψj,n(x), P∗k (x)

)

=


22n−1 n (b− a)

(
j−k

2 + n− 1
)

! Γ
(

1
2 (j + k + 1) + n

)
(

j−k
2

)
! Γ
(

1
2 (j + k + 3)

) , j ≥ k, (j + k) even,

0, otherwise,

and this proves Formula (21).
Now, it can be seen that Formula (22) is an immediate consequence of Formula (26).

Formula (23) is an immediate result of Formula (7) together with the orthogonality rela-
tion (6).

Remark 2. Equation (13) governed by the non-homogeneous BCs turns into homogeneous ones
using a suitable transformation, see [18].

Remark 3. Some of the characteristics and advantages of the SGJPGM that are used to solve
(13)–(14) can be listed as follows:

• The Petrov–Galerkin method is used to turn the linear even-order BVPs in (13)–(14) into
linear systems of equations (20) that can be efficiently solved.

• For some particular two-point BVPs (13), and in particular for dq = 0, the system in (20)
reduces to an upper triangular system that can be easily solved. This, of course, gives an
advantage when applying this method to these types of equations.

Remark 4. In the following Algorithm 1, we write the steps required to obtain the solution of
(13)–(14) using SGJPGM.
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Algorithm 1: Required steps to solve (13)–(14) by the SGJPGM

Step 1. Choose the basis functions ψj,n(x) and χk(x) as in (15) and (18).
Step 2. Apply the Pertrov-Galerkin method to (13)–(14) to obtain the variational
formulation in (19).
Step 3. Convert (19) into its corresponding matrix system (20).
Step 4. Compute the unknown vector c in (20) by a suitable numerical solver.

Step 5. Obtain the numerical solution: uN(x) =
N

∑
j=0

cj ψj,n(x).

5. Treatment of the Non-Linear Differential Equations via a Matrix Approach

This section is devoted to analyzing and implementing in detail the algorithm designed
to solve the non-linear even-order two-point BVPs. Now, consider the following non-linear,
2nth-order BVPs:

Z(2n)(x) = F
(

x, Z(x), Z(1)(x), Z(2)(x), . . . , Z(2n−1)(x)
)

, x ∈ I, (27)

governed by the homogenous BCs:

Z(i)(a) = Z(i)(b) = 0, i = 0, 1, . . . , n− 1. (28)

We consider an approximation to the solution Z(x) in Equation (27) in the form:

Z(x) ' ZN(x) =
N

∑
i=0

ci ψi(x) = CT Ψ(x), (29)

where
CT = [c0, c1, . . . , cN ], Ψ(x) = [ψ0,n(x), ψ1,n(x), . . . , ψN,n(x)]T .

We tackle (27)–(28) by expressing the derivatives in terms of their original ones. This
can be done via the operational matrix method. Thus, the main idea behind the derivation
of our algorithm is based on utilizing the operational matrix of the SGJPs that will be
employed as basis functions. In the following subsection, we derive this new operational
matrix of derivatives.

5.1. New Operational Matrix of Derivatives Based on the SGJPs

This section is devoted to introducing a new operational matrix of derivatives of the
SGJPs. This matrix serves to solve the linear and non-linear even-order two-point BVPs
using a unified approach.

We now present and demonstrate the fundamental theorem, which enables the intro-
duction of a new operational derivative matrix.

Theorem 4. If the polynomials ψi,n(x) are selected as in (15), then the following relation holds for
all i ≥ 1,

Dψi,n(x) =
2

b− a

i−1

∑
j=0

(i+j) odd

(2n + 2j + 1)ψj,n(x) + ρi(x), (30)

with

ρi(x) = n (b− x)n−1 (x− a)n−1

{
a + b− 2x, i even,
a− b, i odd.

(31)
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Proof. Without any loss of generality, we consider the case corresponds to I ≡ [−1, 1]. In
this case, Formula (30) turns into the following formula:

Dφi,n(x) =
i−1

∑
j=0

(i+j) odd

(2n + 2j + 1) φj,n(x) + θi(x), (32)

where φi,n(x) is given by

φi,n(x) = (1− x2)n R(n,n)
i (x),

and θi(x) is given by

θi(x) = 2n(−1)n
(

x2 − 1
)n−1

{
x, i even,
1, i odd.

This formula was stated and proved in [40], but by taking Remark 1 into consideration.

Now, replacing x by
(

2x− a− b
b− a

)
in Formula (32) yields the desired result.

Now, and with the aid of Theorem 4, one can deduce that
dΨ(x)

dx
has the following

expression:
dΨ(x)

dx
= S Ψ(x) + ρ(x), (33)

where ρ(x) = (ρ0(x), ρ1(x), . . . , ρN(x))T , and S =
(
sij
)

0≤i,j≤N , is a (N + 1) × (N + 1)
matrix whose nonzero entries can be explicitly determined from relation (30) as

sij =


2

b− a
(2 n + 2 j + 1), i > j, (i + j) odd,

0, otherwise.
(34)

As an example, for N = 6 and n = 4, we have

S =
2

b− a



0 0 0 0 0 0 0
9 0 0 0 0 0 0
0 11 0 0 0 0 0
9 0 13 0 0 0 0
0 11 0 15 0 0 0
9 0 13 0 17 0 0
0 11 0 15 0 19 0


7×7

.

Corollary 3. The qth-derivative of the vector Ψ(x) is given by

dqΨ(x)
dxq = Sq Ψ(x) +

q−1

∑
m=0

Sq−m−1 dmρ(x)
dxm . (35)

Proof. The repeated application of Formula (33) yields the expression in (35).

5.2. Our Proposed Matrix Method for Treating (27)–(28)

This section is confined to presenting a matrix approach for treating (27)–(28). The key
of our proposed approach is based on employing the operational matrix of derivatives of
the SGJPs that are derived in Section 5.1. More definitely, the shifted generalized Jacobi
operational matrix method (SGJOMM) is employed to treat (27)–(28).
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Now, if Z(x) is approximated as in (29), then based on Formula (33), the derivatives
of the approximate solution ZN(x) given by (29) can be represented as

Z′N(x) =CT(S Ψ(x) + ρ(x)),

Z′′N(x) =CT
(

S2 Ψ(x) + ρ2(x)
)

,

...

Z(2n−1)
N (x) =CT

(
S2n−1 Ψ(x) + ρ2n−1(x)

)
,

Z(2n)
N (x) =CT

(
S2n Ψ(x) + ρ2n(x)

)
,


(36)

where S is the operational matrix of derivatives whose elements are given explicitly in (34),
and the vector ρq(x) is given by the following formula:

ρq(x) =
q−1

∑
m=0

Sq−m−1 dmρ(x)
dxm , 2 ≤ q ≤ 2n,

where (31) provides the components of the vector ρ(x).
To find the residual of Equation (27), we use the representations in (36) to give

R(x) =CT
(

S2n Ψ(x) + ρ2n(x)
)

− F
(

x, CT Ψ(x), CT(S Ψ(x) + ρ(x)), CT
(

S2 Ψ(x) + ρ2(x)
)

, . . . , CT
(

S2n−1 Ψ(x) + ρ2n−1(x)
))

.

The philosophy behind the application of the typical collocation method to obtain
the desired numerical solution ZN(x) is to enforce the residual vanish at suitably selected
(N + 1) points, say xi, 0 ≤ i ≤ N; that is, we get

CT
(

S2nΨ(xi) + ρ2n(xi)
)
=

F
(

xi, CT Ψ(xi), CT(S Ψ(xi) + ρ(xi)), CT
(

S2 Ψ(xi) + ρ2(xi)
)

, . . . , CT
(

S2n−1 Ψ(xi) + ρ2(xi)
))

.
(37)

There are numerous ways to choose these collocation points. A numerical approximation
ZN(x) is generated for each option. These are some options for these collocation points:

1. The (N + 1) zeros of the shifted Legendre polynomials P∗N+1(x).
2. The (N + 1) zeros of the shifted Chebyshev polynomial of the first kind T∗N+1(x).
3. The (N + 1) zeros of the shifted Chebyshev polynomial of the second kind U∗N+1(x).

It is evident that a set of non-linear equations in the expansion coefficients, ci, are
produced for every choice of collocation points, with (N + 1) being the number of non-
linear equations. Newton’s iterative approach, widely used to solve non-linear systems,
can be applied here, and the associated approximate solution ZN(x) can then be acquired.

Remark 5. We mention here the advantages of the SGJOMM derived in Section 5 to solve (27)–(28).
They can be listed as follows:

• The simplicity of the SGJOMM as well as its high efficiency.
• Multiple solutions can be obtained using different collocation points.
• The derived operational matrix approach can be used to solve both linear and non-linear

two-point even-order BVPs.

Remark 6. In Algorithm 2, We list the required steps to obtain the solution of the non-linear
equation using SGJOMM.
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Algorithm 2: Required steps to solve (27)–(28) by the SGJOMM

Step 1. Choose the basis functions ψj,n as in (15).

Step 2. Consider an approximate solution to (27) as: ZN(x) =
N

∑
i=0

ci ψi,n(x).

Step 3. Represnet ZN(x) and DqZN(x), 1 ≤ q ≤ 2n as in (29) and (36), respectively.
Step 4. Apply the collocation method to obtain the system in (37).
Step 5. Solve the system (37) by using Newton’s iterative method.
Step 6. Obtain the approximate solution ZN(x).

6. Discussion on the Convergence Analysis

Here, we provide an extensive analysis of the proposed generalized Jacobi expansion,
including a study of its convergence and examining the resulting global error. Two theorems
are given and proved in this context. The first shows that the generalized Jacobi expansion
of a function uN(x) = ∑N

j=0 cj ψj,n(x) converges uniformly to u(x). In addition, a global
error estimate upper bound is found in the second theorem. The following four lemmas
are useful in the sequel.

Lemma 2 ([43]). The shifted Legendre polynomials P∗j (x), x ∈ I satisfy the inequality

√
sin ϑ

∣∣∣P∗j (cos ϑ)
∣∣∣ < √ 2

π j
, ϑ ∈ [0, π].

Lemma 3 ([38]). For a non-zero real number α and any non-negative integers j, one has

Γ(j + α) = O(jα−1 j!).

Lemma 4 ([38]). The shifted polynomials R̃(n,n)
j (x) satisfy the following inequality:∣∣∣R̃(n,n)

j (x)
∣∣∣ ≤ 1, x ∈ I.

Lemma 5 ([18]). If the m times repeated integrations of P∗j (x) are denoted by

I(m)
j (x) =

m times︷ ︸︸ ︷∫ ∫
· · ·

∫
P∗j (x)

m times︷ ︸︸ ︷
dx dx · · · dx,

then, I(m)
j (x) can be expressed as

I(m)
j (x) =

m

∑
k=0

(−1)k4−m(b− a)m(m
k )
(

j + m− 2k + 1
2

)
(

j− k + 1
2

)
m+1

P∗j+m−2k(x) + π̄m−1(x),

where π̄m−1(x) is a polynomial of degree at most (m− 1).

Theorem 5. If u(x) = (b− x)n(x− a)n g(x) is expanded in infinite series of the basis functions
ψj,n(x) defined in (15), i.e.,

u(x) =
∞

∑
j=0

cj ψj,n(x), x ∈ I. (38)
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Then this series converges uniformly to u(x), and the expansion coefficients cj satisfy the following
inequality:

|cj| <
M

j2m−4n−2 (j!)2 , ∀ j > m, m > 2n + 1,

with |g(m)(x)| ≤ M, where M is a positive constant.

Proof. The assumption (38) and the orthogonality relation (6) allow one to write

cj =
1
hj

∫ b

a
w̃(x) u(x)ψj,n(x) dx.

Now, if we assume that u(x) = (b− x)n(x− a)n g(x), and using (15), then we have

cj =
1
hj

∫ b

a
g(x) (b− x)n(x− a)n R̃(n,n)

j (x) dx,

In virtue of Formula (7), we can write

cj =
1
hj

n

∑
i=0

ηi,j,n

∫ b

a
g(x) P∗2i+j(x) dx, (39)

where ηi,j,n take the following form:

ηi,j,n =
(−1)i n!(b− a)2n(4i + 2j + 1) (n

i )Γ
(

i + j + 1
2

)
22n+1 Γ

(
i + j + n + 3

2
) .

The properties of the shifted Legendre polynomials are used with Lemma 5 to enable
us to rewrite (39), after integrating m times by parts, in the form

cj =
1
hj

n

∑
i=0

ηi,j,n

∫ b

a
g(m)(x) P∗(m)

2i+j (x) dx.

If we use the change of variable x =
(b− a)

2
cos ϑ +

(b + a)
2

, ϑ = cos−1
(

2x−a−b
b−a

)
,

then we have

cj = −
1
hj

n

∑
i=0

ηi,j,n

∫ π

0
g(m)

(π

2
(1− cos ϑ)

)
I(m)
2i+j

(π

2
(1− cos ϑ)

)
sin ϑ dϑ.

Taking into consideration the assumption
∣∣∣g(m)

(
π
2 (1− cos ϑ)

)∣∣∣ ≤ M, we get

|cj| <
M
hj

n

∑
i=0
|ηi,j,n|

∫ π

0

∣∣∣I(m)
2i+j

(π

2
(1− cos ϑ)

)∣∣∣ | sin ϑ|dϑ.

After some manipulation, the following inequality can be produced from Lemmas 2,
3, and 5:

|cj| <
M

j2m−4n−2 (j!)2 , ∀ j > m, m > 2n + 1,

which proves the theorem.

Theorem 6. Let u(x) satisfy the same assumptions of Theorem 5, and consider the approximate
solution uN(x) as in (17). The following error estimate holds:

‖u(x)− uN(x)‖∞ <
M(b− a)2n

N2m−4n−1 (N!)2 .
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Proof. From relation (17), we have ∀x ∈ I

|u(x)− uN(x)| =
∣∣∣∣∣ ∞

∑
j=0

cj ψj,n(x)−
N

∑
j=0

cj ψj,n(x)

∣∣∣∣∣,
and hence

|u(x)− uN(x)| =
∣∣∣∣∣ ∞

∑
j=N+1

cj ψj,n(x)

∣∣∣∣∣,
by virtue of Formula (15), we can write

|u(x)− uN(x)| ≤
∞

∑
j=N+1

∣∣cj
∣∣ |(x− a)n (b− x)n|

∣∣∣R̃(n,n)
j (x)

∣∣∣.
With the aid of Lemma 4 and Theorem 5, the following inequality can be obtained:

|u(x)− uN(x)| < M(b− a)2n

N2m−4n−1 (N!)2 ,

and accordingly, we have

‖u(x)− uN(x)‖∞ <
M(b− a)2n

N2m−4n−1 (N!)2 .

Theorem 6 is now proved.

7. Illustrative Problems and Comparisons

Examples of both linear and non-linear BVPs are presented here to demonstrate the
usefulness and precision of our two suggested techniques. The shifted generalized Jacobi
Petrov–Galerkin method (SGJPGM) is used to solve the linear differential equations, while
the shifted generalized Jacobi operational matrix method (SGJOMM) is used to solve the
non-linear differential equations in the examples below. First, we define the maximum
absolute errors (MAEs) and the errors resulting from the least squares method (LSM), i.e.,
L∞- and L2-errors for the function u(x) defined on I. They can be defined, respectively, by

MAEs(L∞ − errors) = max
x∈I
|u(x)− uN(x)|,

LSM(L2 − errors) =

√∫ b

a
|u(x)− uN(x)|2 dx,

where uN(x) is the approximate solution of u(x).

Example 1. Consider the following eighth-order BVP [44–47]:

u(8)(x)− u(x) = −8(2x cos x + 7 sin x), x ∈ [0, 1], (40)

u(0) = 0, u′(0) = 1, u′′(0) = 0, u′′′(0) = −3,

u(1) = 0, u′(1) = −e, u′′(1) = −4e, u′′′(1) = −9e,

with the exact solution: u(x) = x(1− x)ex.

We apply our algorithm—namely, SGJPGM—to solve problem (40). Table 1 illustrates
a comparison of L∞- and L2-errors resulting from our algorithm with distinct N. Table 2
compares L∞-errors resulting from our algorithm with those resulting from the application
of the following methods:
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• The spline method (SM) in [44].
• The non-polynomial spline method (NPSM) in [45].
• The reproducing kernel method (RKM) in [46].
• The Legendre matrix method (LMM) in [47].

Furthermore, Figure 1 shows the MAEs of our algorithm at N = 7, while Figure 2
shows the Log10(L∞-errors) and Log10(L2-errors) of our algorithm with distinct N.

Table 1. Comparison of L∞- and L2-errors of our algorithm with distinct N for Example 1.

N L∞-Errors L2-Errors

1 4.48011 · 10−7 2.44031 · 10−7

2 4.30610 · 10−9 2.13197 · 10−9

3 1.65350 · 10−9 8.88121 · 10−10

4 1.02447 · 10−11 5.64667 · 10−12

5 1.35607 · 10−12 7.03195 · 10−13

6 7.02861 · 10−15 3.89473 · 10−15

7 8.40090 · 10−16 3.46545 · 10−16

Table 2. Comparison of L∞-errors of our algorithm with those of methods in [44–47] for Example 1.

Error SM in [44] NPSM in [45] RKM in [46] LMM in [47] SGJPGM

N = 8 N = 10 N = 7

E 1.20 · 10−5 1.02 · 10−8 4.90 · 10−9 8.95 · 10−14 2.85 · 10−16 8.40 · 10−16

0.0 0.2 0.4 0.6 0.8 1.0

0

2.×10-16

4.×10-16

6.×10-16

Figure 1. MAEs of our algorithm at N = 7 for Example 1.
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Figure 2. Log10(L∞-errors) and Log10(L2-errors) of our algorithm with distinct N for Example 1.
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Example 2. Consider the following BVP: [44–46]:

u(8)(x)− u(x) = −8(2x cos x + 7 sin x), x ∈ [−1, 1], (41)

u(−1) = 0, u′(−1) = 2 sin(1), u′′(−1) = −4 cos(1)− 2 sin(1), u′′′(−1) = 6 cos(1)− 6 sin(1),

u(1) = 0, u′(1) = 2 sin(1), u′′(1) = 4 cos(1) + 2 sin(1), u′′′(1) = 6 cos(1)− 6 sin(1),

with the exact solution: u(x) = (x2 − 1) sin x.

Our proposed method (SGJPGM) is applied to solve problem (41). Table 3 illustrates
a comparison of L∞- and L2-errors of SGJPGM for various values of N. Table 4 compares
the L∞-errors resulting from our algorithm with those obtained if the methods in [44–46]
are applied. In addition, Figure 3 displays the MAEs of our algorithm for N = 9, while
Figure 4 shows the Log10(L∞-errors) and Log10(L2-errors) of our algorithm with distinct N.

Table 3. Comparison of L∞ and L2-errors of our algorithm with distinct N for Example 2.

N L∞-Errors L2-Errors

1 3.72783 · 10−6 3.16549 · 10−6

3 4.44508 · 10−8 3.73237 · 10−8

5 1.28602 · 10−10 1.05002 · 10−10

7 1.10634 · 10−13 8.23261 · 10−14

9 5.00745 · 10−14 3.73238 · 10−14

Table 4. Comparison of L∞-errors of our algorithm with those of methods in [44–46] for Example 2.

Error SM in [44] NPSM in [45] RKM in [46] SGJPGM

h = 1/32 h = 1/32 N = 10 N = 9

E 1.20 · 10−5 1.02 · 10−8 4.90 · 10−9 5.01 · 10−14
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0

1.×10-14

2.×10-14
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Figure 3. MAEs of our algorithm at N = 9 for Example 2.
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Figure 4. Log10(L∞ − errors) and Log10(L2 − errors) of our algorithm with distinct N for Example 2.

Example 3. Consider the BVP [48,49]:

Z(8)(x) = 7!
(

e−8Z(x) − 2
(x + 1)8

)
, x ∈ [0, e1/2 − 1], (42)

subject to the BCs

Z(0) = 0, Z′(0) = 1, Z′′(0) = −1, Z′′′(0) = 2,

Z(e1/2 − 1) =
1
2

, Z′(e1/2 − 1) = e−1/2, Z′′(e1/2 − 1) = −e−1, Z′′′(e1/2 − 1) = 2e−3/2,

with the exact solution: Z(x) = ln(x + 1).
Our proposed method—namely, SGJOMM—is applied to solve problem (42). Table 5 illustrates

a comparison of L∞- and L2-errors of SGJOMM for various values of N. Table 6 compares the
L∞-errors resulting from our algorithm with those obtained by the following two methods:

• The Galerkin septic B-splines method (GSBSM) in [48].
• The Sinc–Galerkin method (SGM) in [49].

In addition, Figure 5 displays the MAEs of our algorithm at N = 11, while Figure 6 shows
the Log10(L∞-errors) and Log10(L2-errors) of our algorithm with distinct N.

Table 5. Comparison of L∞- and L2-errors of our algorithm with distinct N for Example 3.

N L∞-Errors L2-Errors

1 6.49854 · 10−7 2.84248 · 10−7

2 6.84114 · 10−8 2.77812 · 10−8

3 3.70217 · 10−8 1.58289 · 10−8

4 3.01981 · 10−9 1.17252 · 10−9

5 6.13366 · 10−10 2.45326 · 10−10

6 4.58591 · 10−11 1.65191 · 10−11

7 2.76063 · 10−12 9.38161 · 10−13

8 2.24598 · 10−13 6.82216 · 10−14

9 1.78746 · 10−14 5.54010 · 10−15

10 1.27676 · 10−15 4.29149 · 10−16

11 5.55112 · 10−16 7.43891 · 10−17
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Table 6. Comparison of L∞-errors of our algorithm with those of methods in [48,49] for Example 3.

Error GSBSM in [48] SGM in [49] SGJOMM

N = 11

E 8.508563 · 10−5 1.2303 · 10−11 5.55112 · 10−16
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0
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Figure 5. MAEs of our algorithm at N = 11 for Example 3.
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Figure 6. Log10(L∞-errors) and Log10(L2-errors) of our algorithm with distinct N for Example 3.

Example 4. Consider the following non-linear two-point BVP [50,51]:

Z(4)(x) + (Z′′(x))2 = sin x + sin2 x, x ∈ [0, 1], (43)

subject to the BCs:

Z(0) = 0, Z′(0) = 1,

Z(1) = sin(1), Z′(1) = cos(1),

with the following exact solution: Z(x) = sin x.

SGJOMM is applied to solve problem (43). Table 7 illustrates a comparison of L∞- and
L2-errors of SGJOMM for various values of N using the following three types of collocation
points:

• The zeros of the shifted Legendre polynomials.
• The zeros of the shifted Chebyshev polynomials of the first kind.

• The zeros of the shifted symmetric Jacobi polynomials R̃(2,2)
j (x).

Table 8 compares the L∞-errors resulting from our algorithm with those obtained by
the following two methods:
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• The variational iteration method (VIM) in [50].
• The double decomposition method (DDM) in [51].

In addition, Figure 7 shows a comparison of Log10(L∞-errors) of our algorithm by
using Legendre, Chebyshev, and symmetric Jacobi polynomials with distinct N, while
Figure 8 shows a comparison of Log10(L2-errors) of our algorithm by using (Legendre,
Chebyshev, and symmetric Jacobi) with distinct N. using the same zeros.

Table 7. Comparison of L∞- and L2-errors of our algorithm by using Legendre, Chebyshev, and

R̃(2,2)
j (x) with distinct N for Example 4.

Legendre Chebyshev R̃(2,2)
j (x)

N L∞-Errors L2-Errors L∞-Errors L2-Errors L∞-Errors L2-Errors

1 3.099 · 10−5 1.917 · 10−5 1.814 · 10−5 1.099 · 10−5 1.594 · 10−6 8.994 · 10−7

2 8.634 · 10−7 5.173 · 10−7 5.665 · 10−7 3.354 · 10−7 8.568 · 10−8 4.853 · 10−8

3 4.630 · 10−8 2.536 · 10−8 1.747 · 10−8 8.598 · 10−9 1.416 · 10−9 7.770 · 10−10

4 1.040 · 10−9 5.920 · 10−10 4.779 · 10−10 2.553 · 10−10 6.677 · 10−11 3.720 · 10−11

5 1.177 · 10−11 5.603 · 10−12 5.177 · 10−12 2.726 · 10−12 9.008 · 10−13 4.917 · 10−13

6 3.471 · 10−13 1.820 · 10−13 1.712 · 10−13 9.264 · 10−14 3.603 · 10−14 1.983 · 10−14

7 3.886 · 10−15 1.757 · 10−15 2.442 · 10−15 9.810 · 10−16 4.996 · 10−16 2.212 · 10−16

8 2.220 · 10−16 5.449 · 10−17 2.220 · 10−16 3.080 · 10−17 2.220 · 10−16 7.638 · 10−18

9 2.220 · 10−16 4.844 · 10−19 2.220 · 10−16 3.224 · 10−19 2.220 · 10−16 8.795 · 10−20

10 2.220 · 10−16 3.847 · 10−20 2.220 · 10−16 3.685 · 10−20 2.220 · 10−16 4.775 · 10−20

Table 8. Comparison of L∞-errors of our algorithm by using Legendre, Chebyshev, and R̃(2,2)
j (x) at

N = 7 with those of methods in [50,51] for Example 4.

VIM in [50] DDM in [51] Our Method

x Legendre Chebyshev R̃(2,2)
j (x)

0.0 9.5923 · 10−14 1.6490 · 10−25 0.0000 · 10−00 0.0000 · 10−00 0.0000 · 10−00

0.1 7.7856 · 10−8 1.2030 · 10−10 6.1932 · 10−16 3.2266 · 10−16 1.7019 · 10−16

0.2 2.7231 · 10−7 4.0080 · 10−10 5.2855 · 10−17 6.7811 · 10−16 2.5175 · 10−16

0.3 5.2489 · 10−7 7.3035 · 10−10 2.6620 · 10−15 1.1722 · 10−15 2.0676 · 10−16

0.4 7.7730 · 10−7 1.0007 · 10−9 3.8641 · 10−16 2.2400 · 10−16 1.8735 · 10−16

0.5 9.7145 · 10−7 1.1173 · 10−9 3.7557 · 10−15 2.3187 · 10−15 4.1785 · 10−16

0.6 1.0502 · 10−6 1.0304 · 10−9 2.0600 · 10−17 2.7539 · 10−17 2.4112 · 10−16

0.7 9.6286 · 10−7 7.6427 · 10−10 2.8821 · 10−15 1.1441 · 10−15 8.8471 · 10−17

0.8 6.8407 · 10−7 4.1663 · 10−10 1.9657 · 10−16 9.5746 · 10−16 3.7036 · 10−16

0.9 2.7069 · 10−7 1.2106 · 10−10 6.6153 · 10−16 2.7111 · 10−16 3.0602 · 10−16

1.0 1.5676 · 10−13 1.4649 · 10−23 0.0000 · 10−00 0.0000 · 10−00 0.0000 · 10−00
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Figure 7. Comparison of Log10(L∞-errors) of our algorithm by using Legendre, Chebyshev, and

R̃(2,2)
j (x) with distinct N for Example 4.

2 4 6 8 10
-20

-15

-10

-5

0

N

L
o
g
1
0
(E
rr
o
r)

◆ Gegenbauer
■ Chebyshev
● Legendre

Figure 8. Comparison of Log10(L2-errors) of our algorithm by using Legendre, Chebyshev, and

R̃(2,2)
j (x) with distinct N for Example 4.

8. Conclusions

A kind of orthogonal polynomial—namely, SGJPs—was utilized to treat both linear
and non-linear BVPs. The linear ones were handled by applying the Petrov–Galerkin spec-
tral method, while the non-linear ones were treated with the aid of the typical collocation
method. To treat the linear BVPs, the expression for the derivatives of the SGJPs in terms
of the shifted Legendre polynomials was established and utilized, while the algorithm
designed for treating the non-linear BVPs was built on the utilization of the operational
matrix of derivatives of the SGJPs. The two proposed numerical algorithms were tested
via illustrative examples. These examples show the high performance and accuracy of the
suggested algorithms. We also mention that the codes were written and debugged using
Mathematica version 12 software using a PC machine, with Intel(R) Core(TM) i5-8500 CPU
@ 3.00 GHz, 12.00 GB of RAM.
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