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Abstract—A new spectral–spatial classification scheme for hy-
perspectral images is proposed. The method combines the re-
sults of a pixel wise support vector machine classification and
the segmentation map obtained by partitional clustering using
majority voting. The ISODATA algorithm and Gaussian mixture
resolving techniques are used for image clustering. Experimental
results are presented for two hyperspectral airborne images. The
developed classification scheme improves the classification accu-
racies and provides classification maps with more homogeneous
regions, when compared to pixel wise classification. The proposed
method performs particularly well for classification of images with
large spatial structures and when different classes have dissimilar
spectral responses and a comparable number of pixels.

Index Terms—Clustering, hyperspectral images, majority vote,
segmentation, spectral–spatial classification.

I. INTRODUCTION

THE ACCURATE classification of remote sensing images

is an important task for many practical applications, such

as precision agriculture, monitoring and management of the

environment, and security and defense issues. The advent and

growing availability of hyperspectral imagery, which records

hundreds of spectral bands, has opened new possibilities in

image analysis and classification. Examples of hyperspectral

imaging systems are Airborne Visible/Infrared Imaging Spec-

trometer (AVIRIS) [1], HYDICE [2], ARCHER [3], HyMap

[4], and Hyperion [5]. They cover a range of 126–512 spectral

channels, with the spatial resolution of 3–30 m per pixel.

Thus, every pixel in a hyperspectral image contains values that

correspond to the detailed spectrum of reflected light [6]. This

rich spectral information in every spatial location increases

the capability to distinguish different physical materials and

objects, leading to the potential of a more accurate image

classification.
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An extensive literature is available on the classification of hy-

perspectral images where a wide range of pixel-level processing

techniques is proposed, i.e., techniques that assign each pixel

to one of the classes based on its spectral values. Maximum-

likelihood or Bayesian estimation methods [7], decision trees

[8], [9], neural networks [10]–[12], genetic algorithms [13],

and kernel-based techniques [14], [15] have been investi-

gated for this purpose. In particular, support vector machines

(SVMs) have shown a good performance for classifying high-

dimensional data when a limited number of training samples

are available [14], [16], [17].

To improve classification results, the contextual information

should be considered for incorporation into the classifiers.

Spectral–spatial classification aims at assigning each image

pixel to one class using a feature vector based on the following:

1) its own spectral value (the spectral information) and 2) infor-

mation extracted from its neighborhood (referred to as the

spatial information in the following). One of the approaches

of spectral–spatial classification consists in including the infor-

mation from the closest neighborhood to classify each pixel.

These fixed-window-based methods that use morphological

filtering [15], morphological leveling [18], [19], or Markov

random fields [20] have shown improvements in classification

accuracies compared to the pixel wise methods, when applied

to hyperspectral images. However, the use of these methods

raises the problem of scale selection, particularly when small

or complex structures are present in the image.

Another approach to include spatial information in classifica-

tion consists in performing image segmentation. Segmentation

can be defined as an exhaustive partitioning of the input image

into regions, each of which is considered to be homogeneous

with respect to some criterion of interest (homogeneity cri-

terion, e.g., intensity or texture) [21]. These regions form a

segmentation map that can be used as spatial structures for a

spectral–spatial classification.

In this paper, we propose a new spectral–spatial classifi-

cation scheme for hyperspectral data. The proposed method

combines the results of a pixel wise spectral classification and a

segmentation map, aiming to improve classification accuracies,

when compared to pixel wise classification only.

Fu and Mui [22] identified three classes of image segmen-

tation techniques: edge-based, region-based, and characteristic

feature thresholding or clustering. Lambert and Macaire [23]

have split the last class into two: histogram-based and cluster-

based methods. Edge-based techniques search for discontinu-

ities in the image, while region-based techniques search for

similarities between image regions. Methods from these two
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classes operate in the spatial domain. Their adaptation to the

multidimensional images is a challenging task.

The other two, histogram-based and cluster-based tech-

niques, work in the spectral domain. They search for similarities

between image pixels and clusters of pixels, not taking into con-

sideration the spatial location of these pixels. The histogram-

based methods relate the modes of a spectral histogram to

homogeneous regions in the image [24], [25]. With a high

dimensionality, these methods become memory consuming and

produce less accurate results. The cluster-based segmentation

techniques aim at finding distinct structures in the spectral

feature space. Thus, clustering is an exhaustive partitioning

of a set of pixels from the input image into homogeneous

groups of pixels. In this paper, the cluster-based segmentation

of hyperspectral images will be explored.

A taxonomy and survey of clustering techniques can be

found in [26]. Two principal groups of clustering methods

can be distinguished: hierarchical and partitional approaches.

Hierarchical methods usually produce a dendrogram, where

at the lowest level, each cluster contains only one pixel (i.e.,

each pixel forms a cluster), and with the increase of levels, the

most similar clusters are merged (and the number of clusters

decreases). Then, the result with the desired number of clus-

ters can be chosen. Lee and Crawford [27] have applied the

hierarchical clustering approach for unsupervised classification

of hyperspectral images. Although hierarchical clustering is a

versatile technique for image segmentation that can produce a

series of segmentation results, it requires a lot of computational

time. Its application to high-dimensional data leads to signif-

icant time and memory requirements, and it becomes more

difficult to cope with large dendrograms.

In this paper, the use of partitional clustering for hyperspec-

tral image segmentation is investigated. Two algorithms are

considered for this purpose: ISODATA (squared-error cluster-

ing method) [28] and expectation maximization (EM) for the

Gaussian mixture resolving [29]. These algorithms produce a

single partition of the data, and the number of desired clusters

must be chosen. The other problem accompanying the use of

these techniques is that the clustering results depend on the ini-

tialization (it will be discussed in the next sections). However,

the computational complexity of these algorithms is lower than

that in the case of hierarchical clustering. Moreover, efficient

implementations are possible. Venkateswarlu and Raju [30]

proposed an algorithm to speed up the ISODATA algorithm.

Tarabalka et al. [31] have shown that the parallel implemen-

tation of the EM algorithm on the graphical processing unit is

feasible and efficient.

The results of hyperspectral image segmentation are further

incorporated into a spectral–spatial classifier. The SVM clas-

sifier is used in the proposed method. In previous studies, the

integration of spectral and spatial information into classifier

with the use of SVM was achieved in different ways: Within the

framework of composite kernels, spectral and contextual infor-

mation was combined using composite kernels and then each

pixel was classified [19], [32]–[35]. Van der Linden et al. [36]

used another approach which consisted of computing a vector

mean for each region (such that the value in each spectral

channel represented the average spectral information of the

pixels in this region in the respective channel) and then using

this vector as a feature vector to classify each region by an SVM

classifier. The use of composite kernels led to the improvement

of the classification accuracies when compared to an SVM

classification using spectral information only; however, the

approach of classifying regions using their vector means did

not show any improvement over results obtained by using only

a spectral-based pixel wise SVM classification.

Here, we propose a new spectral–spatial classification

scheme, where pixel wise SVM classification and segmentation

by clustering are performed independently, and then, the results

are combined using the majority vote approach [37]. Thus,

the segmentation defines an adaptive neighborhood for each

pixel. These neighborhoods are then used for the contextual

regularization following a spectral pixel wise classification.

Finally, a spatial postregularization (PR) of the classification

map is performed.

Although the proposed scheme has been designed for hyper-

spectral images, the method is general and can be applied for

other types of data as well.

Two hyperspectral airborne images were used to demonstrate

experimental results: a 103-band Reflective Optics System

Imaging Spectrometer (ROSIS) image of the University of

Pavia, Italy, and a 220-band AVIRIS image taken over the

Northwestern Indiana’s Indian Pine site [38].

The outline of this paper is as follows. In Section II, seg-

mentation of hyperspectral data using partitional clustering

techniques is discussed. Section III describes the proposed

spectral–spatial classification scheme. Experimental results are

discussed in Section IV. Finally, conclusions are drawn in

Section V.

II. SEGMENTATION OF HYPERSPECTRAL DATA

BY PARTITIONAL CLUSTERING

In this section, we first describe two techniques for parti-

tional clustering of hyperspectral data. Then, the segmentation

scheme based on the partitional clustering is presented.

A. Clustering by ISODATA and EM

As was mentioned earlier, clustering implies a grouping

of pixels in the spectral space. Let us consider the input

hyperspectral image as a set of n pixel vectors X = {xj ∈
RB , j = 1, 2, . . . , n}, where B is the number of spectral bands.

Each pixel in the image is characterized by its spatial location

(coordinates) and vector of spectral values. The information

about spatial positions of pixels is not used in the clustering

algorithms. However, it is taken into consideration during the

second stage of the segmentation procedure (as will be ex-

plained in the next section).

The three principal stages of the clustering technique are as

follows.
1) Feature selection/extraction: Feature selection consists

in identifying a subset of the original features. Feature

extraction consists in applying one or more transforma-

tions of the input features to produce new salient features.

Either or both of these techniques can be applied to obtain

the most effective set of features to be used in clustering.
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As a pixel vector from hyperspectral image contains

hundreds of spectral values, feature extraction/selection

is often a required step to reduce the dimensionality of

the clustering/classification problem. The most common

transformations applied to these images are principal

component analysis (PCA) [39], minimum noise frac-

tion [40], and independent component analysis (ICA)

[41]–[43]. Furthermore, when describing clustering algo-

rithms, we consider, for the sake of simplicity, that X is

already a set of feature vectors (we also call it a set of

patterns).

2) Similarity measure: Clustering aims at grouping pixels,

so that pixels belonging to the same cluster are spec-

trally similar. To quantify this relationship, a similarity

measure must be chosen. Proximity between pixels is

usually measured by a distance function defined on pairs

of spectral values. A simple distance measure like the

Euclidean distance is often used to measure similarity

between vectors. For some cases, other measures can be

more relevant. Description of various distance measures

can be found in [26], [44], and [45].

3) Grouping: In this step, pixels are grouped into clusters.

Partitional clustering algorithms identify the partition

that optimizes a clustering criterion (deducted from the

similarity measure step).

Both ISODATA and EM are iterative optimization tech-

niques. Thus, on each iteration i, a partition Qi
1,Q

i
2, . . . ,Q

i
C

of the set X into C clusters is computed, so that Qi
c = {xi

j,c ∈

RB, j = 1, 2, . . . , mi
c} contains the pixels belonging to the

component c on the iteration i, where mi
c is the number of pixels

in Qi
c.

1) ISODATA Algorithm: As described in [26], the simplest

and most frequently used criterion in partitional clustering is the

squared-error criterion, which is the most suitable in the case of

isolated and compact clusters. The squared error for a clustering

Υ of a set X into C clusters is defined as

e2(X,Υ) =

C
∑

c=1

mc
∑

j=1

‖xj,c − µc‖
2 (1)

where µc is the centroid of the cluster c.

ISODATA clustering is a well-known algorithm introduced

by Ball and Hall [28] which uses the squared-error criterion. It

starts with a random initial partition of the pixel vectors into

candidate clusters and then reassigns these vectors to clusters

in such a way that the squared error (1) is reduced at each

iteration, until a convergence criterion is achieved [39]. The

algorithm permits splitting, merging, and deleting of clusters

at each iteration in order to produce more accurate results and

to mitigate dependence of results on the initialization.

The ISODATA algorithm is implemented in the ENVI soft-

ware [46], where its application for hyperspectral images is

straightforward. A vector of spectral values can be used as a fea-

ture vector for every pixel. When we have a reference map for

the images, we can define a minimum number of clusters Cmin

equal to the number of classes in the reference map and choose

a maximum number of clusters Cmax superior to this value.

Several methods have used the ISODATA algorithm in re-

mote sensing analysis. Kamagata et al. [47] applied the al-

gorithm to classify multispectral IKONOS data. It was also

used by Liew et al. [48] to classify hyperspectral Hyperion

images.

2) EM Algorithm: While ISODATA is a deterministic clus-

tering approach, the EM algorithm belongs to the group of

statistical algorithms that assume a statistical model that char-

acterizes the data.

The underlying assumption for the mixture resolving ap-

proach to cluster analysis (that includes the EM algorithm) is

that the patterns are drawn from one or several distributions.

The objective is to identify the parameters of each distribution.

Most often, the individual components of the mixture density

are assumed to be Gaussian. In this case, the parameters of a

Gaussian mixture model have to be estimated.

The EM algorithm was proposed by Dempster et al. [29]

to obtain iteratively a maximum likelihood estimate of the

parameters of component densities from the patterns.

To cluster a hyperspectral image by the EM technique, we

assume that pixels belonging to the same cluster are drawn from

a multivariate Gaussian probability distribution. Each image

pixel can be statistically modeled by the following probability

density function:

p(x) =

C
∑

c=1

ωcφc(x;µc,Σc) (2)

where ωc ∈ [0, 1] is the mixing proportion (weight) of cluster c

with
∑C

c=1 ωc = 1 and φ(µ,Σ) is the multivariate Gaussian

density with mean µ and covariance matrix Σ

φc(x;µc,Σc) =
1

(2π)B/2

1

|Σc|1/2

× exp

{

−
1

2
(x − µc)

TΣ−1
c (x − µc)

}

. (3)

The parameters of the distributions ψ = {C,ωc,µc,Σc; c =
1, 2, . . . , C} are estimated by an iterative method similar to the

classification EM algorithm [49], as outlined in Algorithm 1

[31]. During the procedure of parameter estimation, pixels

are assigned to the C clusters. Therefore, when the algorithm

converges, the partitioning of the set of pixel vectors into C
clusters is obtained.

Algorithm 1 EM clustering

Require:

• a set of n feature vectors (patterns) X

• an upper bound Cmax on the number of clusters

Initialization (Iteration 0):

Let C = Cmax. Determine the first partition Q0
c , c =

1, 2, . . . , C of X:

1. Choose randomly C patterns from the set X to serve as

cluster centers.

2. Assign the remaining patterns to the clusters on the basis

of the nearest Euclidean distance to the cluster center.
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For every iteration i > 0 (I iterations in total):

Parameter estimation step:

Estimate µi
c, Σi

c, and ωi
c for c = 1, 2, . . . , C using the

component-wise Maximum Likelihood estimates

µi
c =

1

mi−1
c

mi−1

c
∑

j=1

xi−1
j,c (4)

Σi
c =

1

mi−1
c

mi−1

c
∑

j=1

(

xi−1
j,c − µi

c

) (

xi−1
j,c − µi

c

)T
(5)

ωi
c =

mi−1
c

n
. (6)

Cluster assignment step:

1. Assign each pattern in X to one of the clusters according

to the maximum a posteriori probability criteria

xj ∈ Qi
c : Pr(c|xj) = max

l
Pr(l|xj) (7)

where

Pr(c|xj) =
ωi

cφc

(

xj ;µ
i
c,Σ

i
c

)

∑C
c=1 ωi

cφc

(

xj ;µi
c,Σ

i
c

) . (8)

2. Eliminate cluster c if mi
c is less than the dimensionality

of patterns, c = 1, 2, . . . , C. The patterns that belonged to the

deleted clusters will be reassigned to the other clusters in the

next iteration.

3. If the convergence criterion is not achieved, return to the

parameter estimation step.

The total number of parameters to be estimated is P =
(B(B + 1)/2 + B + 1)C + 1, where B is a dimensionality of

feature vectors. If the value of B is large, P may be quite a

large number. This may cause the problem of the covariance

matrix singularity or inaccurate parameter estimation results.

To avoid these problems, we reduce the spectral dimension

of pixel vectors in hyperspectral data by averaging every AW
neighboring bands, so that

xav
j,b =

∑AW
i=1 xj,[(b−1)AW+i]

AW
(9)

where xj,i is a value of pixel xj in the input band i and xav
j,b

is a value of pixel xj in the output band b; j = 1, . . . , n, b =
1, . . . , Bav, where Bav = n/AW .

This is a simple way of feature extraction. In previous

studies, the feature extraction methods appropriate for hy-

perspectral image analysis, such as the PCA, the ICA, the

ISOMAP and clustering-based band selection were considered

[39], [42], [50], [51]. The research question to find the most

effective features for the proposed method is a subject for future

investigations.

Numerous authors have applied clustering using multivariate

Gaussian distributions for segmentation and classification of

multispectral [52]–[55] and hyperspectral images [56], [57]. In

particular, Acito et al. [57] segmented each of the first six PCA

components of the 92-band MIVIS image using 1-D Gaussian

mixture models and then fused partial segmentation results.

Fig. 1. Flowchart of the proposed spectral–spatial classification scheme.

Good segmentation results are reported in [57], although only

visual results are presented, with no quantitative assessment.

An oversegmentation effect was noted in these results, where

different clusters corresponded to the same class in the ground

scene.

B. Segmentation Using Clustering

The partitional clustering algorithm produces an exhaustive

partitioning of the set of image pixels X into C clusters. Thus,

each pixel has a numerical label of the cluster it belongs to.

However, as no spatial information is used during the clustering

procedure, pixels with the same cluster label can be connected

in the image plane, thus forming a spatial region, or they

can belong to disjoint regions within the spatial coordinates.

Therefore, in order to obtain a segmentation map (where each

connected spatial region has a unique label), a connected-

component-labeling algorithm must be applied to the output im-

age partitioning obtained by the clustering algorithm [26], [55].

This algorithm allocates different labels for disjoint regions in

the image plane that were placed in the same cluster.

If the spatial dimensions of an image are not large, a classi-

cal connected-component algorithm using the union-find data

structure can be used [58]. In the case of large-sized images,

such algorithms as in [59] and [60] can be applied, as well

as other sequential and parallel algorithms (references can

be found for example in [60]). The Segmentation block in

Fig. 1 thus consists of two stages: Clustering and Labeling of

connected components.

The obtained segmentation map can be oversegmented, as

reported, for example, in [57]. However, for the research pre-

sented in this paper, oversegmentation is not a crucial problem,

since the final goal is not to obtain the segmentation result but to

classify the image. Thus, we are searching for spatial regions of

pixels that belong to the same physical object in order to incor-

porate this information into a spectral–spatial classifier. From

this discussion, it is evident that undersegmentation is not de-

sired. As oversegmentation is preferable to undersegmentation,
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a four-neighborhood connectivity is preferable to use while

performing the labeling of connected components.

III. SPECTRAL–SPATIAL CLASSIFICATION SCHEME

The flowchart of the proposed spectral–spatial classification

scheme for hyperspectral data is shown in Fig. 1.

At the input, we have a B-band hyperspectral image X =
{xj ∈ RB, j = 1, 2, . . . , n} and a training set map.

The proposed spectral–spatial classifier is based on the ma-

jority vote rule. In previous studies, this approach was applied

in a similar way in [61] for multispectral (four-band IKONOS)

images and in [37] for hyperspectral data, giving a good perfor-

mance. The approach is principally the combination of unsu-

pervised segmentation and pixel wise classification results. The

proposed method consists of the following steps (see Figs. 1

and 2).

1) Segmentation: A hyperspectral image is segmented into

homogeneous regions using partitional clustering, as de-

scribed in the previous section. The number of clusters

(Cmin/Cmax for the ISODATA and Cmax for the EM) can

be chosen based on the information about the considered

image (i.e., how many groups of materials with similar

spectra are present). Cmin must be chosen not to be less

than the number of classes. The upper bound of classes

Cmax can be chosen slightly superior to the number of

classes. If less than Cmax clusters are present in the image,

both algorithms have the possibility to merge clusters.

2) Pixel wise classification: Independently of the segmenta-

tion procedure, a pixel wise classification of the image is

performed. We propose to use an SVM classifier with the

Gaussian radial basis function (RBF) kernel for this pur-

pose, which has given good accuracies in classification

of hyperspectral data [14], [15], [17]. Parameters of the

classifier can be tuned by m-fold cross validation.

3) Spectral–spatial classification: Then, for every region in

the segmentation map, all the pixels are assigned to the

most frequent class within this region (we call this the

majority vote rule).

Please note that unlike in the fixed-window-based ap-

proach, the majority voting is not performed using a fixed

neighborhood but using an adaptive neighborhood. For

each pixel, the region it belongs to, as defined by the

segmentation step, is used as its neighborhood for the

majority voting on the spectral classification algorithm.

4) PR: Finally, spatial PR of the classification map is per-

formed. The aim of this postprocessing step is to reduce

the noise in the classification map after the majority vote

procedure. For this purpose, the classification map is

filtered, using the masks shown in Fig. 3 (that are 8- and

16-neighborhoods of a pixel, called Chamfer neighbor-

hoods [62]). The PR is performed as follows.

a) For every pixel in the classification map: If more than

T1 neighbors in the eight-neighborhood [see Fig. 3(a)]

have the class label L that is different from that of the

considered pixel, assign this label L to the considered

pixel. Perform this filtering until stability is reached

(none of the pixels changes its label).

Fig. 2. Example of spectral–spatial classification.

Fig. 3. Chamfer neighborhoods (in gray) for a black pixel: (a) 8 neighbors
and (b) 16 neighbors.

b) For every pixel: If more than T2 neighbors in the

16-neighborhood [see Fig. 3(b)] have the label L
different from that of the considered pixel, assign the

label L to the considered pixel. Perform this step until

stability is reached.
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c) Repeat regularization on the eight-neighborhood (with

threshold T3).
The threshold values T1−T3 must be chosen to be equal or

superior to a half of the number of pixels in the considered

neighborhood in order to ensure the unique solution of the

algorithm. The PR step results in more homogeneous regions

in the classification map. However, the filtering of the classi-

fication map does not use any spectral pixel wise information.

The effectiveness of this procedure depends on the sizes of the

structures in the image. If the image resolution is not very high,

the object in the image scene can be of the size of one or a

few pixels. In this case, this object is in danger to be removed

from the classification map by the PR. The filtering conditions

can be restricted or relaxed by varying the threshold values

T1−T3. If Tj(j = 1, . . . , 3) decreases, the regularization has a

stronger effect. Hence, the results become more homogeneous.

However, the risk to remove small but significant features

increases.

Fig. 2 shows an example of the combination of spatial

and spectral information using the proposed spectral–spatial

classification method.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

A. Hyperspectral Image Data Set

Two different data sets were used for the experiments, with

different contexts (one urban area and one agricultural area),

different spatial resolutions (1.3 and 20 m per pixel, respec-

tively), and different number of bands (103 and 220 bands,

respectively). These two data sets and the corresponding results

are presented in the next two sections.

B. Spectral–Spatial Classification of the University of

Pavia Image

The University of Pavia image is of an urban area that was

acquired by the ROSIS-03 optical sensor over the University

of Pavia, Italy (provided by Deutsches Zentrum für Luft- und

Raumfahrt). The image is 610 × 340 pixels, with a spatial

resolution of 1.3 m per pixel. The number of data channels

in the original recorded image is 115 (with a spectral range

from 0.43 to 0.86 µm). The 12 most noisy channels have

been removed, and the remaining 103 bands were used for the

experiments. The reference data contain nine classes of interest.

Table II details these classes, with the number of test and

training samples for each class. Fig. 4(a) shows a three-band

false color image. The reference data are shown in Fig. 4(b).

First, partitional clustering of the University of Pavia image

was performed using the two techniques described in Section II.

For the ISODATA algorithm, considering that image pixels

belong to one of the nine classes, we chose the number of

clusters as Cmin = 9 and Cmax = 10. The algorithm resulted

in splitting all the pixels into nine clusters. A higher upper

bound of the number of clusters was also tested, but in that

case, the algorithm merged clusters. Furthermore, the number

of regions in the resulting segmentation map increased, and

the segmentation results were not improved as compared to the

original initialization.

Fig. 4. University of Pavia image. (a) Three-band color composite.
(b) Reference data: Asphalt, meadows, gravel, trees, metal sheets, bare soil,
bitumen, bricks, and shadow.

The EM clustering algorithm was performed with the maxi-

mum number of clusters Cmax = 10. As explained in Section II,

the spectral dimension needs to be reduced before applying the

EM algorithm. For feature reduction, a ten-band image was

obtained by averaging over every ten neighboring bands.1 At

the output of the EM algorithm, the grouping of the image

pixels into ten clusters was obtained. As for the ISODATA

algorithm, the increase of the upper bound of the number of

classes leads to the increase of the number of regions in the

segmentation map, i.e., a more severe oversegmentation.

Fig. 5(a) and (b) shows the unsupervised classification maps

obtained by the ISODATA and the EM algorithms, respectively.

In each of these figures, different colors correspond to different

clusters (which are not associated with any physical structures,

as the maps are obtained by unsupervised techniques). As

shown from the figures, the main spatial structures in the

scene are well defined. Based on a visual inspection, the two

obtained segmentation results are of comparable accuracies.

The obtained unsupervised maps are clearly oversegmented,

i.e., there are cases where the regions of pixels belonging to the

same object were classified to different clusters (for instance,

pixels from the region of bare soil in the center of the image

were classified into several clusters).

The classical connected-component algorithm using the

union-find data structure [58] was applied to these two unsu-

pervised classification maps (using a four-neighborhood con-

nectivity). The resulting segmentation maps contained 20 952

and 21 450 regions for the ISODATA and the EM techniques,

respectively. In both cases, some regions contain a whole single

physical object. For instance, a big structure belonging to

the metal sheets class in the center of the image is mostly

represented by one region. At the same time, a lot of small,

1The 103-band image was split into ten groups of ten bands; the three
remaining bands were omitted.
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Fig. 5. Unsupervised classification maps for the University of Pavia image obtained by (a) ISODATA and (b) EM. (c) Supervised SVM classification map.

TABLE I
ASSESSMENT OF THE UNDERSEGMENTATION FOR THE University of Pavia

IMAGE (FOR REGIONS CONTAINING PIXELS OF TWO DIFFERENT

CLASSES; NUMBER OF PIXELS BELONGING TO EACH CLASS)

up to one pixel, regions are present, which explains the large

number of regions in the obtained segmentation maps.

To assess quantitatively the accuracy of segmentation results,

the analysis of undersegmentation/oversegmentation level was

conducted. Two resulting segmentation maps and the image of

the reference data [see Fig. 4(b)] were used for this purpose.

In order to conclude if any undersegmentation is present in the

considered segmentation results, images of a segmentation map

and a reference data were superposed so that the reference data

were partitioned into regions defined by the segmentation map.

Then, the number of different classes within each region was

computed. Nonlabeled pixels in the reference data were not

taken into account (thus, if none of the pixels from a particular

region was labeled, this region did not participate into the

procedure of undersegmentation assessment).

For the undersegmentation assessment of the ISODATA seg-

mentation map, 1560 regions were considered. Among them,

1554 regions only contained labeled pixels of the same class.

Only six regions contained labeled pixels belonging to two dif-

ferent classes. For the EM segmentation map, among the 2029

considered regions, only 5 regions contained pixels from 2 dif-

ferent classes; other regions were not undersegmented. Table I

gives the detailed information about undersegmented regions.

As shown from the table, the undersegmentation occurs mostly

between classes meadows and trees. From this analysis, it can

be concluded that the undersegmentation is almost not present

in the obtained results. Therefore, the segmentation maps can,

as a matter of fact, be used in the proposed spectral–spatial

classification scheme.

Furthermore, in order to investigate the level of oversegmen-

tation, we computed how many regions from the segmentation

map each connected component in the reference data contained

(if only a part of the region is present within the considered

connected component, it was also counted as one region with

this component). The reference data contained 265 connected

components. Fig. 6 shows results for both ISODATA and EM

segmentation maps (in a logarithmic scale). For the ISODATA

(EM) segmentation results, 120 (163), 70 (56), and 25 (12)

connected components from the reference data contained 1,

2, and 3 regions from the segmentation map, respectively.

Thus, for both segmentation results, more that 81% of the

connected components contained no more than 3 regions from

the segmentation map. For several connected components, the

number of regions that they contain is somewhat larger. In most

cases, these components contain a large number of pixels (in

Fig. 6, the total number of pixels for each connected component

in reference data is also visualized). The average ratio of the

number of pixels in the connected component and the number

of regions within the component is equal to 16.78 and 21.46 for

the ISODATA and the EM segmentation results, respectively.

Based on this, it can be concluded that the oversegmentation

is present in the obtained segmentation results. However, as

explained in Section II, oversegmented maps of spatial regions

can be used in the proposed spectral–spatial classification

scheme without the risk to worsen classification accuracies

obtained by the pixel wise classification.

After the initial segmentation step, the pixel wise classifi-

cation step was performed using the multiclass pairwise (one

versus one) SVM classifier, with the Gaussian RBF kernel
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Fig. 6. Assessment of oversegmentation: Number of regions from the segmentation map contained in the connected components from the reference data and
total number of pixels in each connected component from the reference data. Results are shown in a logarithmic scale.

TABLE II
INFORMATION CLASSES, TRAINING-TEST SAMPLES, AND CLASS-SPECIFIC ACCURACIES IN PERCENTAGE

FOR THE University of Pavia IMAGE (“PR” MEANS THE INCLUSION OF A PR STEP)

(by means of the LIBSVM library [63]). The optimal parame-

ters C and γ were chosen by fivefold cross validation: C = 128
and γ = 0.125. The resulting classification map is shown in

Fig. 5(c). The results of pixel wise classification were combined

with the segmentation results using a majority vote approach (as

explained in Section III).

The concluding PR step was performed on the pixel

wise classification map and on two maps obtained by the

spectral–spatial classification. Based on experimental results,

we have chosen the threshold values T1=T3=5 and T2=12.

These values are considered as being a good tradeoff for

filtering the noise while minimizing the risk of losing small but

significant objects in the classification map.

Table III gives the global classification accuracies for the

pixel wise SVM and the combined spectral–spatial classifica-

tion before and after PR. The following measures of accuracy

were used: overall accuracy (OA is the percentage of correctly

classified pixels), average accuracy (AA is the mean of class-

specific accuracies, i.e., the percentage of correctly classified

pixels for each class), and kappa coefficient (κ, formula can be

found in [39]). The class-specific accuracies are presented in

Table II. Fig. 7 shows the classification maps for the pixel wise

SVM and the spectral–spatial classification after the PR step.

In order to compare the obtained results with previous works

that used an SVM and spatial information for hyperspectral

image classification, we have included in Tables II and III accu-

racies of mathematical morphology-based classification of the

University of Pavia image using SVM, principal components,

and extended morphological profiles (EMPs); results are taken

from the work of Plaza et al. [64], where the same training and

testing samples were used for classification. This method was

recently proposed by Benediktsson et al. [65] and has given

good classification accuracies. Other results of spectral–spatial

classification of the considered image can be found in [15],

[19], and [66].

As can be seen from Table III, the SVM classifier gives high

classification accuracies. The incorporation of the segmentation

map obtained by clustering techniques into spectral–spatial

classifier significantly improves the classification accuracies.

The best global accuracies are achieved when using the

spectral–spatial classifier based on the clustering by the EM

algorithm with the PR step. In this case, the OA is improved

by 13.7% and the AA improved by 7.0% compared to the pixel-

wise SVM classification. The accuracies were substantially

improved after spatial PR, with the improvement being more

significant when this step is performed after a pixel wise

SVM classification. This result meets expectations as the

spectral–spatial classification already removes noise in the clas-

sification map, leading to more homogeneous regions. There-

fore, less noise is left to be removed by means of the PR step.

The spectral–spatial classification improves the classification

accuracies for almost all the classes (see Table II), except for

the class shadows. For this class, the PR of the pixel wise

SVM classification map improves the classification accuracy

slightly. However, when performing the spectral–spatial classi-

fication, the classification accuracy is nonsignificantly reduced

(two more pixels are misclassified compared to the results of

the pixel wise classification). For the other classes, classifica-

tion accuracies are improved in a range of 0.5%–23.0%. The

spectral–spatial classification based on the ISODATA clustering

gives the best classification accuracies for the classes bare soil,

bitumen, and bricks, while for the classes meadows, trees, and
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Fig. 7. Classification maps for the University of Pavia image after PR: (a) Pixel wise SVM classification, (b) SVM + ISODATA, and (c) SVM + EM.

TABLE III
GLOBAL CLASSIFICATION ACCURACIES IN PERCENTAGE

FOR THE University of Pavia IMAGE (“after PR”
MEANS THE INCLUSION OF A PR STEP)

metal sheets, the EM clustering algorithms led to the best re-

sults. In particular, the class meadows is much more accurately

classified when the spatial information is used (improvement

of the classification accuracy by 23.0% when using the EM

clustering). This class describes mostly large regions in the im-

age. Furthermore, the incorporation of the information from the

segmentation map results in much more homogeneous regions.

The classes bitumen and metal sheets were identified with a

100% accuracy by the spectral–spatial classification using the

ISODATA and the EM, respectively.

The use of spatial information in a classifier, by incorporating

a segmentation map and performing PR, significantly reduces

noise in the classification map (see Figs. 5(c) and 7). The

classification maps obtained by the spectral–spatial classifi-

cation before the PR are not shown as these maps are very

similar to those after the PR. That is explained by the fact that

majority voting within regions of the segmentation map has

already removed most of the noise in the classification map,

as previously mentioned. In Fig. 7(b), it can be noted that one

object belonging to the class gravel (marked by the black ellipse

in the figure) was wrongly assigned to the class bricks. In that

case, the segmentation by ISODATA helped in identifying this

object as one homogeneous object (the ISODATA identified

two big regions within this object). However, as the pixel wise

SVM classifier has assigned most of the pixels to the class

bricks, the whole object was assigned to this class by the

majority vote rule. Another approach for combination of spatial

and spectral information in classification could be more suitable

in this case.

These results have shown that the proposed spectral–spatial

classification scheme, using majority voting within the regions

in the segmentation map obtained by partitional clustering

techniques, leads to improved classification accuracies and

more homogeneous objects in the resulting classification maps

when compared to the pixel wise classification. The approach is

particularly suitable for classification of large spatial structures

in the image. However, when including the spatial information

from the segmentation map or from the closest neighborhoods,

we risk to assimilate small structures in the image with the

larger structures in their neighborhood (particularly if their

spectral responses are not very different). Therefore, small

structures are in danger of disappearing in the final classifica-

tion map when performing the spectral–spatial classification.

Accurate segmentation results help to overcome this problem.

The classification accuracies shown in this paper are higher

than all previous results that we have found in the literature

for this particular data set [15], [19], [64], [66]. In particular,

when we compare the obtained results with the recent results

of spectral–spatial classification using the SVM and EMPs (see

Tables II and III), the proposed approach leads to significantly

higher global accuracies and to higher class-specific accuracies

for most of the classes. Thus, the segmentation using clustering,

enabling the inclusion of the spatial information in a classifier,

appears to be an appropriate technique for finding homoge-

neous objects in a hyperspectral image of an urban area.

C. Spectral–Spatial Classification of the Indiana Image

The proposed spectral–spatial classification scheme was

tested on the Indiana image of an agricultural area, with more

bands (number of bands B = 220) and a lower spatial resolu-

tion, as compared to the University of Pavia image.
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TABLE IV
INFORMATION CLASSES, NUMBER OF LABELED SAMPLES, AND CLASS-SPECIFIC ACCURACIES

IN PERCENTAGE FOR THE Indiana IMAGE (“PR” MEANS THE INCLUSION OF A PR STEP)

Fig. 8. Indiana image. (a) Three-band color composite (bands 50, 27, and 17).
(b) Reference data: Corn-no till, corn-min till, corn, soybeans-no till, soybeans-
min till, soybeans-clean till, alfalfa, grass/pasture, grass/trees, grass/pasture-
mowed, hay-windrowed, oats, wheat, woods, bldg-grass-tree-drives, and
stone-steel towers.

The Indiana image was recorded by the AVIRIS sensor over

the Indian Pines test site in Northwestern Indiana [38]. The

image has a spatial dimension of 145 × 145 pixels, and the

spatial resolution is 20 m per pixel. The full spectral range of

220 channels was used for the experiments. Sixteen classes of

interest are considered, which represent mostly different types

of crops and are detailed in Table IV, with a number of samples

for each class in the reference data. A three-band false color

image and the reference data are shown in Fig. 8. We have

chosen randomly 10% of the samples for each class from the

reference data as training samples, and the remaining samples

composed the test set.

Both the ISODATA and the EM algorithm were applied to

perform a partitional clustering of the image. The ISODATA

was performed with Cmin =16 and Cmax =19. The EM clus-

tering was applied to the 22-band image (obtained by averaging

over every 10 neighboring bands of the original data) with

Cmax =17. Both algorithms grouped the image pixels into

17 clusters.

The unsupervised classification maps obtained by the ISO-

DATA and the EM algorithm are shown in Fig. 9(a) and (b),

respectively (different colors correspond to different clusters).

As in the previous experiment, the images are oversegmented,

but here, the spatial structures, corresponding to the crop fields,

can be recognized. We can also see [when comparing these

classification maps with the reference data in Fig. 8(b)] that

some pixels belonging to different classes are classified by

the clustering techniques to the same cluster. For instance, in

Fig. 9(a), at the center of the image, there are two large light-

green regions of pixels that belong to the same cluster. These

regions represent different crop fields: soybeans-no till (class 4,

violet color in the reference data) and soybeans-min till (class 5,

light-blue color in the reference data). The spectral responses of

the pixels from these two classes are similar, and the clustering

algorithms group them to the same cluster. However, as we are

interested in obtaining a segmentation map, where the image

is partitioned into regions, without any additional information

about the region, it is important that these two regions of pixels

belonging to the same cluster are disconnected in space.

To obtain segmentation maps, connected-component label-

ing of the unsupervised classification maps was performed

using the same algorithm as for the previous data set and four-

neighborhood connectivity. The resulting segmentation maps

for the ISODATA and the EM techniques contained 3977 and

3728 regions, respectively. As explained for the University of

Pavia image, the segmentation using clustering produces a map

with comparatively large regions along with a lot of very small

and one-pixel regions.

Multiclass, one versus one, SVM classification was per-

formed on the original image using the Gaussian RBF kernel.

The parameters C and γ were determined by fivefold cross

validation, which gave C = 1024 and γ = 2−7. Fig. 9(c) shows

the obtained classification map. After the pixel wise SVM

classification, majority voting within the regions from each of

the segmentation maps was performed. Then, PR was applied

to the two classification maps obtained by the spectral–spatial

classification and to the pixel wise classification map (with

T1 = T3 = 5 and T2 = 12).

Tables IV and V give the class-specific and the global

classification accuracies, respectively, for the pixel wise and

the spectral–spatial classification, without and with the PR

step. The classification maps for the pixel wise and the

spectral–spatial classification after the PR are shown in Fig. 10.
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Fig. 9. Unsupervised classification maps for the Indiana image obtained by (a) ISODATA and (b) EM. (c) Supervised SVM classification map.

TABLE V
GLOBAL CLASSIFICATION ACCURACIES IN PERCENTAGE FOR THE Indiana

IMAGE (“after PR” MEANS THE INCLUSION OF A PR STEP)

Here, it is worth mentioning that the low spatial resolution of

the Indiana image leads to the presence of highly mixed pixels.

This makes the tasks of the unsupervised segmentation by clus-

tering and the supervised SVM classification more complicated.

We previously discussed an example where pixels belonging

to different classes were grouped to the same cluster. One of

the reasons of this inaccuracy in the unsupervised classification

could be the presence of spectrally mixed pixels in the image.

Another complication of the segmentation and classification

tasks is caused by a significant difference in the number of

pixels in the image and in the reference data for different

classes, which varies in the reference data from 20 to 2468

pixels per class. Some classes represent big crop fields, while

others represent very small fields.

The 10% of samples for each class were chosen randomly

from the reference data as a training set for the SVM classifier.

Therefore, some classes were represented by a few samples in the

training set (two samples only for the class oats), which proba-

bly do not provide a fair-enough representation of the class.

Despite these complications, the SVM classifier correctly

classified 78.76% of pixels from the test set. The classification

accuracies for the classes alfalfa, grass/pasture-mowed, and

oats, which were represented by only a few samples in the

training set (further called as small classes), are low (less

than 33%). Consequently, the average classification accuracy is

only 69.66%.

As can be seen from Tables IV and V, the simple filtering

(PR) improves the classification accuracies significantly. The

OA and AA are improved by 9.8% and 7.6%, respectively, after

the PR step of the pixel wise SVM classification. Accuracies of

almost all classes are significantly improved, except for some

small classes (for them, the accuracies are not changed, but for

the class alfalfa, the accuracy is improved). This is explained

by the fact that most of the classes in the image represent large

crop fields, and the simple filtering makes these regions of fields

homogeneous, thereby improving the classification accuracies.

The best global accuracies are obtained when performing

the spectral–spatial classification using ISODATA clustering

and the PR. In that case, the OA and AA are improved by

11.9% and 10.9%, respectively, compared to the pixel wise

SVM classification. Almost all the class-specific accuracies are

improved. When looking at the results for the small classes, the

classification accuracy was significantly improved for the class

grass/pasture-mowed (from 29.17% to 91.67%), while for the

classes alfalfa and oats, accuracies are reduced (the problem of

the spectral–spatial classification for the small classes will be

discussed hereinafter).

The OA for the spectral–spatial classification using the EM

clustering is slightly lower than that when using the ISODATA

clustering technique. The EM clustering approach led to the

best classification results for some classes (six classes, as

can be seen from Table IV). However, for the small classes

(alfalfa, grass/pasture-mowed, and oats), none of the pixels

from the test set was identified correctly by this classifier, and

that reduced the average classification accuracy. The potential

misclassification of small classes is actually caused by the low

spatial resolution of image, the presence of classes with similar

spectral responses, and the small number of samples per class

in the image/training set. The two main reasons for the problem

of the classification of these classes can be defined.

1) Very small crop fields of grass/pasture-mowed and

oats were assimilated with their neighboring regions

(which represented the big fields of grass/pasture and

grass/trees, respectively) when performing the segmen-

tation and the majority voting.

2) For the class alfalfa, the EM clustering grouped the pixels

from the alfalfa and the hay-windrowed (a big light-green

field in the right part of the image) fields into the same

cluster. And the pixel wise SVM classifier assigned the

majority of the alfalfa pixels from the test set to the

class hay-windrowed, as the spectral responses of these

two classes were similar [see Figs. 9(b) and (c) and

10(c)]. The segmentation map contains a separate region

that corresponds to the alfalfa field, but according to the

majority vote rule, all the pixels were assigned to hay-

windrowed, which is an incorrect class.

As mentioned before, one of the problems with the partitional

clustering techniques concerns the dependence of the results on
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Fig. 10. Classification maps for the Indiana image after PR. (a) Pixel wise SVM classification, (b) SVM + ISODATA, and (c) SVM + EM.

TABLE VI
PROCESSING TIME IN SECONDS FOR CLUSTERING ALGORITHMS AND

SVM CLASSIFICATION FOR THE University of Pavia IMAGE

(B—DIMENSIONALITY OF PATTERNS;
I—NUMBER OF ITERATIONS)

the initialization. For the two considered algorithms, C cluster

centers are initially chosen randomly from a set of pixels, and

the remaining pixels are assigned to the cluster with the closest

center. If one class contains very few pixels compared to the

other classes, the probability is low that one of its pixels will be

chosen at the start as a cluster center. Then, when centers are

recomputed and pixels are reassigned, pixels from this small

class can compose a separate class only if their spectral re-

sponse is very different from that of the other classes. However,

otherwise, if there is a class with a large number of pixels that

have a similar spectral response, pixels from the small class

will probably be grouped to the same cluster with the large

class. Furthermore, the considered clustering algorithms have

mechanisms to delete clusters, based on the number of pixels

in the cluster. For instance, the EM algorithm eliminates a

cluster if the number of pixels in this cluster is less than the

dimensionality of the pixels (as the covariance matrix of every

cluster must be computed at every iteration). It can also be an

obstacle to identify the pixels from a small class to a separate

cluster (if this cluster is very small, it can be eliminated). All

these reasons led to either 0% or low classification accuracies

for the small classes when classifying the Indiana image.

The experimental results on the Indiana image (see Figs. 9(c)

and 10) have confirmed that the proposed spectral–spatial clas-

sification method based on the partitional clustering results in

a classification map with more homogeneous regions when

compared to pixel wise classification. The proposed scheme

is particularly suitable for classification of images with large

spatial structures. Furthermore, it is also suitable if different

classes have dissimilar spectral responses and a comparable

number of pixels (of the same order).

More classification results for the Indiana image can be

found in [64] and [67] for comparison. The accuracies in the

referenced works are not directly compared with those given in

this paper because different training–testing sets are used. How-

ever, it can be concluded that our approach performs well com-

pared to other previously proposed classification approaches.

D. Consideration of Computational Complexity for the

Spectral–Spatial Classification Method

When comparing the results of two classifiers, an important

issue is the computational complexity and the processing time

of each classifier. Although the pixel wise SVM classifier

gives good classification accuracies, it is a computationally

demanding algorithm for high-dimensional data and/or when

the number of training samples is large [19], [68]. The training

part of the SVM classification is the most time-consuming, in

particular the tuning of parameters by cross validation. We con-

ducted experiences on an Intel Core 2 Duo 2.40-GHz processor

with 3.5-GB RAM. The processing times for the training and

classification parts of the University of Pavia image by means of

the LIBSVM library were 3240 and 99 s, respectively. However,

in recent works, methods and parallel implementations to speed

up the SVM training and classification have been proposed [64],

[69], [70], [71].

When we perform a segmentation of an image by clustering

and combine spatial information with the results of pixel wise

classification, the processing time obviously increases, when

compared to pixel wise classification only. However, the par-

titional clustering algorithms are much less time-consuming

than the SVM classification algorithm. The computational com-

plexity of both the ISODATA and EM clustering algorithms

is O(nCB2I), where I is the number of iterations (until the

convergence of algorithm). Therefore, we can say that the

processing time depends mainly on the dimensions of the

image. Table VI summarizes the processing time for clustering

algorithms versus SVM classification for the University of

Pavia image as a function of dimensionality of patterns and

number of iterations. These results are not directly comparable,

as different software packages were used (ENVI software to

apply ISODATA and the C++ implementation for the EM algo-

rithm). However, it can be seen that the EM algorithm ran much

faster than the ISODATA algorithm mainly because of a lower

spectral dimensionality. Furthermore, the processing time for

the used clustering techniques is significantly smaller than the

time for the SVM classification (although, in general, this ratio

depends on the number of training samples and the clustering

algorithm). In addition, as was mentioned before, efficient

implementations of the clustering algorithms are possible.
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In addition, it must be mentioned that the segmentation and

pixel wise classification of an image can be executed at the

same time on different processing units (since none of these

tasks depends on the results of another task). In that case, after

the pixel wise classification is completed, majority voting and

PR are applied, which are both very fast algorithms. Further-

more, as shown earlier, the incorporation of spatial information

significantly improves accuracies. When the spatial information

is incorporated, the classification in the pixel wise classification

step can be speeded up by sacrificing some percentage of

the classification accuracy. That can be achieved either by

decreasing the number of pixels in the training set or by using

another less time-consuming classifier than the SVM for pixel

wise classification.

V. CONCLUSION

A new spectral–spatial classification scheme for hyperspec-

tral images was presented. The proposed method combines the

results of a pixel wise SVM classification and a segmentation

map obtained by partitional clustering. This is achieved by per-

forming a majority voting on the pixel wise spectral classifica-

tion using adaptive neighborhoods defined by the segmentation

map. The use of both the ISODATA and the Gaussian mixture

resolving techniques for hyperspectral image segmentation was

investigated. The incorporation of spatial information from the

segmentation in the classifier produces a classification map

with more homogeneous regions, as compared to only pixel

wise classification of hyperspectral data. Here, the remaining

noise in the classification map was further reduced by a fixed-

window-based postfiltering.

Experimental results have shown that the proposed method

improves the classification accuracies and provides classifica-

tion maps with more homogeneous regions when compared to

pixel wise classification.

The developed scheme is particularly suitable for classifi-

cation of images with large spatial structures, when spectral

responses of the different classes are dissimilar and the classes

contain a comparable number of pixels. The drawback of the

proposed method is that when including spatial information

from the segmentation map or from the closest neighborhoods

in a classifier, small spatial structures face a risk of being

assimilated with larger neighboring structures if the spectral

responses are not significantly different.

In the future, we will investigate the use of feature extraction

to find the most effective features to be used in the cluster-

ing. In particular, applying feature reduction transformations

enables the reduction of the spectral dimension while the most

important information for classification is preserved. That may

lead to a better distinction between classes and thus to better

segmentation results.
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