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Abstract—Hyperspectral remote sensing technology allows one
to acquire a sequence of possibly hundreds of contiguous spectral
images from ultraviolet to infrared. Conventional spectral classi-
fiers treat hyperspectral images as a list of spectral measurements
and do not consider spatial dependencies, which leads to a
dramatic decrease in classification accuracies. In this work, a
new automatic framework for the classification of hyperspectral
images is proposed. The new method is based on combining
Hidden Markov Random Field segmentation with Support Vector
Machine (SVM) classifier. In order to preserve edges in the final
classification map, a gradient step is taken into account. Exper-
iments confirm that the new spectral and spatial classification
approach is able to improve results significantly in terms of
classification accuracies compared to the standard SVM method
and also outperforms other studied methods.

Index Terms—Hyperspectral Image Analysis, Image Segmen-
tation, Hidden Markov Random Field, Support Vector Machine
Classifier.

I. INTRODUCTION

DUE to recent advances in hyperspectral sensor tech-

nology, it is possible to capture hundreds of spectral

channels for each image pixel from ultraviolet to infrared. By

increasing the amount of spectral information, the accurate

discrimination of different materials of interest is possible. In

addition, the fine spatial resolution of the sensors enables the

analysis of small spatial structures in the image. Furthermore,

the high spectral resolution allows detailed physical analysis

of the structures [1].

Classification plays a key role in the analysis of hyperspec-

tral images. Examples of applications where it plays a key role

are land-use and land-cover mapping, crop monitoring, forest

applications, urban development, mapping, tracking and risk

management.

For hyperspectral images, several hundreds of spectral bands

of the same scene are typically available, while for multispec-

tral images up to ten bands are usually available. By increasing

the dimensionality of the images in the spectral domain,

theoretical and practical problems arise. For instance, with a

limited training set, beyond a certain limit, the classification

accuracy actually decreases as the number of features increases

[2]. For the purpose of classification, these problems are

related to the curse of dimensionality.
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Conventional spectral classifiers treat hyperspectal images

as a list of spectral measurements [3]. For instance, Support

Vector Machine (SVM) classifiers have received significant

attention lately because of their remarkable generalization

capability for the classification of high dimensional data sets

[4] and their considerable capability for handling big data

sets with few number of training samples. The efficiency of

SVM classifiers have been shown in terms of achieving very

accurate results in a wide variety of applications [5], [6].

However, SVM classifiers do not consider spatial dependencies

and classify images only based on their spectral information.

Therefore, this approach discards information associated with

the correlations among distinct pixels in the image and is

considered as the most vital limitation of SVM classifiers

for the analysis of remote sensing images in which pixel

neighborhoods provide important information [7].

To address the above-mentioned problem, joint spectral and

spatial classification techniques have recently received consid-

erable attention. Consideration of spatial information helps to

overcome the salt and pepper appearance of the classification.

More importantly, other relevant information can be extracted

from the spatial domain: for a given pixel it is possible to

extract the size and the shape of the structure to which it

belongs. Therefore, the combination of spectral and spatial

information can improve the result of the classification stage.

The goal of considering spatial context in the classification

step can partially be achieved by using methods such as

morphological filters (e.g., [1]), morphological leveling (e.g.,

[8]) and Markov random fields (MRFs) (e.g., [9]).

MRFs are a family of probabilistic models that can be

described as 2-D stochastic processes over discrete pixels

lattices [10]. They can be considered as a powerful tool

for incorporating spatial and contextual information into the

classification framework [11]. More recently [12], Hidden

MRF (HMRF) was introduced as a special case of the Hidden

Markov Model (HMM). In HMRF, the underlying stochastic

process is MRF, instead of Markov Chains in HMM. There-

fore, HMRF is not restricted to 1D and can be used in order

to extract spatial information from 2D and 3D images.

There is extensive literature on the use of MRFs for in-

creasing the accuracy of classification. For instance, in [13],

the result of the Probabilistic SVM was regularized by a

MRF. In [9] the mean field based SVM regression was used

for image classification. Also, in [14], [15], [11], [7] and

[16], MRFs were taken into consideration for modeling spatial

and contextual information for improving the accuracy of the

classification. Furthermore, a generalization of MRF, called
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Fig. 1. A flowchart of the proposed method.

conditional MRF, was investigated in [17] for the spectral

and spatial classification of remote sensing images. In [18],

the concept of HMM was used for incorporating spectral

and contextual information into a framework for performing

unsupervised classification of remote sensing multispectral

images. In addition, Gaussian MRF was employed in [19] for

the purpose of segmentation and anomaly detection.

Based on the above, the integration of SVM classifiers and

MRFs for the accurate classification of remote sensing images

by considering both spectral and spatial information into the

same framework is completely obvious. In this work, a novel

fully automatic spectral and spatial approach is introduced for

the classification of hyperspectral images. The new approach

is based on the HMRF and SVM. In order to preserve the

edges in the classification map, a gradient step based on the

Sobel edge detector is taken into account. In addition, to our

knowledge, this is the first time that HMRF is used in the field

of remote sensing.

The paper is organized as follows: the proposed method-

ology is discussed in Section II. Then, Section III is devoted

to experimental results. Finally, Section IV outlines the main

conclusions.

II. METHODOLOGY

Fig. 1 illustrates the flowchart of the proposed method. In

the following, specific parts of the proposed framework will

be discussed in detail.

A. Notation

In the following we let y = (y1, ..., yN )T denote the first

principal component map where N is the number of pixels

and S = {1, 2, ..., N} is the set of pixel indices. Associated

with pixel i is a class label xi. A vector containing these labels

is denoted by x = (x1, ..., xN )T .

B. HMRF-EM segmentation by preserving edges

B. 1. Finite Gaussian Mixture

For better understanding the concept of HMRF, we begin with

the Finite Gaussian Mixture (FGM) model. For a pixel i we

have:

q(l) = q(xi = l)

p(yi|l) = g(yi; θl)

where p(yi|l) is a conditional probability of the intensity yi
given the class label l (l ∈ L and L is regarded as the set of all

possible labels). q(l) is probability mass function of the class

label and g(yi; θl) is a Gaussian probability density function

(pdf) with parameter θl = (µl, σ
2
l ). The marginal distribution

of y = yi dependent on the parameter set θ = {θl, l ∈ L} can

be written as:

p(y;θ) =
∑

l∈L

g(y; θl)q(l)· (1)

Although the FGM model is mathematically simple, it is

not able to take the spatial information into consideration

since all the data points are considered individually and

are independent from the other neighborhood points. To

overcome this limitation the HMRF was proposed in [12].

B. 2. HMRF Model

HMRF is a generalization of HMM. While HMM is based

on 1D Markov chains, HMRF are based on hidden random

fields. Due to its ability to handle 2D structure HMRF is

more suitable for image segmentation than HMM.

The Gaussian HMRF is given by:

p(x,y;θ) = f(x)

N
∏

i=1

p(yi|xi)

p(yi|xNi
;θ) =

∑

l∈L

g(yi; θl)q(l|xNi
) (2)

where f(x) is a pdf for x which follows the so-called Gibbs

densities [20] and q(l|xNi
) is a conditional probability mass

function (pmf) for the class label l given xNi
denotes a neigh-

borhood for each pixel xi. The difference between HMRF

and FGM is the term q(l|xNi
) in (2) and the term q(l) in (1).

If we do not consider the relationship between pixels in the

neighboring system, HMRF and FGM are the same. In other

words, spatial dependencies can be modeled in HMRF which

are discarded in FGM. Therefore, the FGM model is a special

case of HMRF. As a result, it can be concluded that HMRF

is more flexible than FGM since it is able to model both the

statistical and spatial properties of the image.

The model fitting procedure [12] involves an initialization

and an iteration between two steps: Maximum a Posteriori

(MAP) estimation of the class labels, and an Expectation-

Maximization (EM) algorithm [21] for estimating θ. Now we

consider these three steps.

B. 2. 1. Initialization

The output of this step provides the initial label x
(0) and

θ(0) for the MAP and EM algorithm respectively. In this paper,
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K-means was used to provide the initial labels and initial

parameters θ were computed for the initialization step. The

initial parameters are obtained by estimating the mean and

the standard deviation of the pixels within each cluster.

K-means [22] is as one of the best-known clustering

methods which was introduced by MacQueen (1967). This

method starts with a random initial partition of the pixel

vectors into candidate clusters and then reassigns these

vectors to clusters by reducing the squared error in each

iteration, until a convergence criterion is met.

B. 2. 2. MAP

From one point of view, image segmentation can be split

into two categories: structural and statistical. The former is

based on boundaries and regions. On the other hand, the latter

is mostly based on the probability distribution function of

image intensities and their associated class labels. Statistical

approaches try to find the class label x, when only the intensity

y for each pixel is given. Maximum a Posteriori (MAP) or

Maximum Likelihood (ML) are widely used criteria for this

kind of estimation. Using the MAP criterion, x̂ should be

estimated based on:

x̂ = argmax
x∈χ

{p (y |x ;θ) f (x)} · (3)

It is assumed that yi and xi are pairwise independent so

p(y|x,θ) =
N
∏

i=1

p(yi|xi)·

MRF can be completely explained by a Gibbs distribution

using the Hammersley-Clifford theorem which describes the

relation between MRF and Gibbs distribution [20]. Thus,

f(x) =
1

Z
exp(−U(x))

where Z is a normalizing constant and

U(x) =
∑

c∈C

Vc(xi, xj)

where Vc(xi, xj) are the so-called clique potentials and C is

the set of all possible cliques; see more details in [20]. A

clique c is a subset of S where every pair of distinct sites

is neighbors, except for single-site cliques. Fig. 2 depicts all

possible cliques for the predefined neighborhood system. The

general idea behind the HMRF model is that if a pixel has a

certain label, the pixels of its neighborhood system are also

of that type. In this paper, it is assumed that each pixel has

at most 4 neighbors in the image domain. Then, on pairs of

neighboring pixels, the clique potentials are calculated by:

Vc(xi, xj) =
1

2
(1− Ixi,xj

) (4)

Ixi,xj
=

{

0 if xi 6= xj

1 if xi = xj ·

MAP can be rewritten as a minimization problem

x̂ = argmin
x∈χ

{U(y|x) + U(x)} (5)

Fig. 2. All possible cliques for the predefined neighborhood system.

where U(y|x) =
∑

i

[

(yi−µxi)
2

2σ2
xi

+ 1
2 log σ

2
xi

]

measures

the fit, and U(x) can be viewed as a penalty term that

encourages spatial smoothness. The iterative MAP algorithm

stops when the relative change in the cost function is below

a pre-specified threshold. There exist efficient algorithms for

solving the MAP problem. Here, we use the same algorithms

as in [12].

B. 2. 3. EM algorithm

A statistical model is complete if and only if both its

functional forms and parameters are determined. In HMRF,

the parameter set θ = {θl, l ∈ L} should be estimated.

If the Gaussian density function is assumed for the pixel

intensity value y, the parameters of each Gaussian class are

θl = (µl, σl). Since both the class labels and parameters

are unknown, the calculation of the parameters is not

straightforward. One reliable way to solve this issue is the

EM algorithm [21]. We use the EM algorithm to estimate the

parameters θ. Below, the EM algorithm is briefly explained:

1) E-step: We compute the EM functional:

Q
(

θ

∣

∣

∣
θ(k)

)

= E
[

log p(y,x;θ)|y,θ(k)
]

· (6)

2) M-step: For obtaining the next estimate we maximize

the EM functional

θ(k+1) = argmax
θ

Q
(

θ

∣

∣

∣
θ(k)

)

· (7)

Then, let θ(k) −→ θ(k+1) and return to the E-step.

The EM functional can be written as

Q =
∑

i

∑

l

q(k)(j|yi)
{

ln q(l|xNi
)− 1

2
lnσ2

l −
1

2

(yi − µj)
2

σ2
l

}

(8)

where the posterior q(k)(j|yi) is obtained from the MAP step.

The M-step yields the following updates

µ
(k+1)
l =

∑

i q
(k)(j|yi)yi

∑

i q
(k)(j|yi)

(9)

σ
2(k+1)
l =

∑

i q
(k)(j|yi)(yi − µ

(k+1)
l )

∑

i q
(k)(j|yi)

· (10)

The iterative algorithm will stop when the relative change

in the cost function is less than a predefined threshold.
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C. Gradient

Image segmentation provides a smoothing process. Provided

that one image has strong discontinuities, MRFs may cause

over smoothing [23]. One way for addressing this issue is to

combine the underlying label with an additional line process

[23]. In order to preserve edges in the segmentation map,

the input image is first transformed by Principal Component

Analysis (PCA) and the PCs which have dominant variance

(more than 99 percent of the total variation) are kept. Sobel

edge detection is performed on each PC and then the output

of Sobel edge detected PCs are summed together. Finally, the

output is transformed to a binary format. Let us assume that

we have a binary edge map z; zi = 1 if the i-th pixel is edge

and zi = 0 if not. In this case, (5) is modified to

x̂ = argmin
x∈χ







U (y |x ) +
∑

j∈Ni,zi=0

Vc(l,x
(k)
N )







· (11)

This shows that the clique potentials are only estimated for

the pixels which are not edge pixels.

D. SVM

The general idea behind SVM is to separate training samples

belonging to different classes by tracing maximum margin

hyperplanes in the space where the samples are mapped [24].

SVMs were originally introduced for solving linear classifi-

cation problems. However, they can be generalized to non-

linear decision functions by considering the so-called kernel

trick [25]. A kernel-based SVM is being used to project the

pixel vectors into a higher dimensional space and estimate

maximum margin hyperplanes in this new space, in order to

improve linear separability of data [25]. The sensitivity to

the choice of the kernel and regularization parameters can be

considered as the most important disadvantages of SVM. The

latter is classically overcome by considering cross-validation

techniques using training data [26]. The Gaussian radial basis

function (RBF) is widely used in remote sensing [25].

E. Majority Voting

In this work, Majority Voting (MV) is used for combining

the result of the segmentation and classification steps. Fig. 3

shows the general idea of MV. The output of the segmentation

methods is a number of objects where each object consists

of several pixels with the same label. In other words, pixels

in each object share the same characteristics. For performing

MV on the output of the segmentation and classification steps,

first, the number of pixels with different class labels in each

object is counted. Then, the set of pixels in each object is

assigned to the most frequent class label (coming from the

classification step) in the object. Thus, each region from the

segmentation map is considered as an adaptive homogeneous

neighborhood for all the pixels within this region. The de-

scribed technique leads to a considerable improvement in

terms of classification accuracies. In addition, MV provides

more homogeneous classification maps in comparison with

classification methods which use local neighborhoods in order

to take into account spatial information in a classifier [27]. For

better understanding, the work flow of MV is given below:

1) The output of SVM (Classification Map (CM)) and

HMRF-EM (Segmentation Map (SM)) are considered

as the inputs for MV. SM consists of several object (in

Fig. 3 we have 3 different objects 1, 2 and 3) and CM

consists of different classes (in Fig. 3 we have 3 different

classes blue, grey and white).

2) In each object, all the pixels are assigned to the most

frequent class within this object.

III. EXPERIMENTAL RESULTS

Two hyperspectral data sets were used in experiments. They

are described below.

A. Data description

1) Indian Pines data: The first data set is the well-known

AVIRIS data set captured on NW Indian Pines in 1992
presenting 16 classes, mostly related to land covers. The

data set consists of 145 by 145 pixels with a spatial

resolution of 20 m/pixel. In this paper, we used 200 data

channels, i.e., after the elimination of the bands affected

by atmosphere absorption. The number of training and

test samples are displayed in Table I. Fig. 4. a), b) and c)

illustrate one band of Indian Pines and its corresponding

training and test sets, respectively.

2) Salinas data: This data set was captured by AVIRIS

over Salinas Valley, California, and is characterized by

high spatial resolution (3.7-meter pixels) consisting of

512 by 217 samples. The original data set consists of

224 data channels but here 20 water absorption bands

are discarded. It includes vegetations, bare soils, and

vineyard fields. The Salinas reference data contains 16
classes. Fig. 5. a) and b) show the Salinas data set and

its corresponding reference map.

B. General description

For the gradient step, the input image is transformed by

PCA and the first PCs with cumulative variance more than 99

percent are selected as the most effective components since

they explain almost all of the variance in the data. Then, Sobel

edge detection is performed on each component. Following

that, the components are summed up and the resulting image

is transformed to binary format in order to create the gradient

image.

Then, both data sets are classified by K-means and 16 and

20 are selected as the number of classes. Those numbers are

selected in such a fashion that the former is equal to the

number of classes in a reference map and the latter superior

to the minimum number, in order to compare the efficiency of

different methods in terms of different number of clusters in K-

means. Ten iterations are chosen for this step and the output

of this step and the edge detected image are regularized by

HMRF-EM for providing the spatial information.

In parallel, for extracting spectral information, the data sets

are classified by SVM with a Gaussian kernel. The hyper
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Fig. 3. The procedure of MV for combining the spectral and spatial information (based on [1]).

Fig. 4. An example of the Indian Pines test case. a) Data channels 27; b) training samples, c) test samples, each color represents a specific information class.
The information classes are listed in Table I

Fig. 5. An example of the Salinas test case. a) Data channels 57 b) training
samples, c) test samples, each color represents a specific information class.
The information classes are listed in Table III

tuning parameters are selected using 5-fold cross validation.

To make the comparison as fair as possible, SVM is performed

on each data set only once, and the classification map of this

step, is directly used for other methods. In other words, the

spectral part of all methods is the same and only the spatial

part is changed for each method.

In the final step, the results of the spectral and spatial steps

are combined using MV method and the output of this step is

the final classification map.

In this paper, we use McNemar’s test to assess our classifi-

cation result. The aforementioned test is calculated as follows:

M =
d12 − d21√
d12 + d21

(12)

where d12 is the number of pixels which are erroneously

classified by the proposed method and not by the compared

method, and d21 has a dual meaning [28]. The differences

between the proposed method and others are statistically

significant at 5-percent significant level if |M | > 1.96.

In this paper, SVM denotes the traditional SVM, HM-
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RFSVM is the proposed method which is the combination

of HMRF and SVM. HMRFSVM-E and HMRFSVM-NE are

HMRFSVM with and without including the gradient step,

respectively, and 16 and 20 depict the number of predefined

clusters for K-means clustering. KmeansSVM denotes a com-

bination of K-means and SVM by using MV.

C. Results

1) Indian Pines: For the classification of Indian Pines, all

the available data channels are taken into consideration without

performing feature reduction. It should be noted that all 16
classes were considered in order to evaluate the efficiency

of different methods. The result of the classification for each

class along with the overall accuracy and the Kappa coefficient

are given in Table I. Fig. 6 shows the classification maps for

SVM, KmeansSVM-16, HMRFSVM-NE-16, HMRFSVM-E-

16, KmeansSVM-20, HMRFSVM-NE-20 and HMRFSVM-E-

20, respectively.

The low spatial resolution of this data set adds more com-

plexity, since it leads to the presence of the highly mixed pix-

els. In this case, the unsupervised clustering (or/and clustering

based segmentation) might be degraded by spectrally mixed

pixels in the image. In addition, the significant differences

in the number of pixels in the reference data for different

classes add more complexities on the data set and make the

classification and the segmentation tasks more complicated

[29].

As can be seen from Table I, the overall accuracy and

Kappa coefficient increase when the number of clusters in-

creases from 16 to 20. For instance, the overall accuracy

of KmeansSVM, HMRFSVM-NE and HMRFSVM-E are im-

proved by almost 1.9, 1.1 and 2.8 percent, respectively, when

the number of clusters increases from 16 to 20. The main

reason behind is undersegmentation which occurs when the

number of predefined clusters is not sufficient. In this case

several regions are detected as one and merged together which

is not desired. This issue is easily solved by increasing the

number of predefined clusters in the K-means.

Results confirm that the spectral and spatial classification

approach, using majority voting is able to improve the pixel-

wise classification accuracy considerably, in particular for the

classification of large spatial structures in the data set. This

fact helps to reduce the noisy behavior of the pixel-wise

classification significantly. However, for small structures, when

the spatial information from adjacent neighbors are taken into

account, the small structures are in danger of disappearing

and merging with bigger structures. Accurate segmentation can

improve the spatial part of the spectral and spatial classifica-

tion techniques and help to overcome the above-mentioned

problem.

Due to the fact that the data set contains large spatial

structures and the reference data does not comprise region

edges, the advantage of considering the gradient step for

HMRFSVM-E compared to HMRFSVM-NE is not obvious.

With reference to Table I, HMRFSVM-E-16 improves SVM

and KmeansSVM by 5.1 and 1.3 percent, respectively. In the

same way, HMRFSVM-E-20 increases the overall accuracy

of the classification of SVM and KmeansSVM by 8.2 and 2.2

percent, respectively.

Table II shows the results from McNemar’s test. As can

be seen from the table, the differences in classification ac-

curacy between the proposed method and others are statis-

tically significant using 5 percent level of significance. In

this case HMRFSVM-20 is statistically different from SVM,

KmeansSVM-20 and HMRFSVM-NE-20 by almost 22.15,

7.11 and 4.71 respectively.

2) Salinas: Table III shows the classification accuracies for

the approaches applied to the Salinas data. As can be seen

from the table, HMRFSVM-E gives the best performance in

terms of classification accuracies when compared with the

other methods. For 16 clusters, HMRFSVM-E-16 improves

the classification accuracies of KmeansSVM-16 and SVM by

5.7 and 2.7 percent, respectively. In the same way, when

the number of clusters was selected as 20, the proposed

method showed improvement over all studied methods. Re-

sults confirm that considering majority voting helps different

methods to decrease the noisy behavior of the traditional SVM.

The main assumption behind HMRF is that in a predefined

neighborhood structure, any given pixel is more likely to be

allocated to a given cluster type if its neighboring pixels are

also of that type. Therefore, it is easy to conclude that HMRF

can be effective for images containing big structures.

KmeansSVM-16 shows the worst performance in terms of

classification accuracies when compared to other methods.

The main reasons for the bad performance of KmeansSVM-

16 might be: 1) the spectral signature of Grapes-untrained

and Vinyard-untrained are close to each other; in particular,

considering only 16 clusters leads to a merging of the clusters

which have a close spectral response, 2) KmeansSVM-16 does

not consider spatial dependencies of the image and clustering

is done by only considering the spectral information. In other

words, since spatial dependencies are not taken into account

and the number of predefined clusters is not enough, majority

voting is not able to determine the correct class within each

segment.

As can be seen from Table IV, the differences between

the proposed method which considers edges and others were

significantly different when the Salinas data were clustered

with 16 and 20 clusters.

D. Comparison of the proposed method with the state-of-the-

art

In this section the proposed method is compared with

some recent approaches in terms of classification accuracy

in order to provide a brief vision regarding the capability

of HMRFSVM-E. Since Indian Pines is considered as one

of best known data sets which many researchers have tested

their algorithms on, that data set is used here for comparison.

Table V reports the overall accuracy and Kappa coefficient for

the-state-of-the-art. In the following we only analyze methods

which have shown better classification accuracies than the

proposed approach. The methods with better results than the

proposed approach are shown in bold. For better understanding

of the methods used for comparison, we refer readers to the
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Fig. 6. Classification maps of different methods for Indian Pines: a) SVM, b) KmeansSVM-16, c) HMRFSVM-NE-16, d) HMRFSVM-E-16, e) KmeansSVM-
20, f) HMRFSVM-NE-20 and, g) HMRFSVM-E-20.

TABLE I
INDIAN PINES: THE NUMBER OF TRAINING AND TEST SAMPLES; CLASSIFICATION ACCURACIES OF TEST SAMPLES IN PERCENTAGE FOR SVM,

KMEANSSVM-16, HMRFSVM-NE-16, HMRFSVM-E-16, KMEANSSVM-20, HMRFSVM-NE-20 AND HMRFSVM-E-20.

Class No. of Samples SVM KmeansSVM HMRFSVM-NE HMRFSVM-E
No. Name Training Test 16 20 16 20 16 20

1 Corn-notill 50 1384 79.1 63.7 73.0 89.5 88.3 85.5 89.4
2 Corn-mintill 50 784 83.4 89.4 93.3 96.1 96.0 96.3 95.9
3 Corn 50 184 92.9 97.2 96.7 92.9 94.0 96.2 94.5
4 Grass-pasture 50 447 96.6 95.7 95.9 95.5 93.9 96.2 95.1
5 Grass-trees 50 697 91.9 90.5 92.8 93.1 93.8 93.1 93.8
6 Hay-windrowed 50 439 96.8 99.3 98.4 98.4 98.6 98.4 97.7
7 Soybean-notill 50 918 84.6 91.9 91.2 72.6 89.4 66.9 90.8
8 Soybean-mintill 50 2418 69.1 83.7 83.5 81.5 80.6 82.3 82.4
9 Soybean-clean 50 564 87.2 83.5 85.6 89.1 88.6 89.3 88.3
10 Wheat 50 162 99.3 99.3 99.3 99.3 99.3 99.3 98.7
11 Woods 50 1244 88.5 96.1 97.1 96.4 96.3 96.5 96.3
12 Bldg-Grass-Tree-Drives 50 330 81.2 93.9 93.0 92.4 90.9 93.3 90.9
13 Stone-Steel-Towers 50 45 97.7 100 100 100 100 100 100
14 Alfalfa 15 39 89.7 76.9 92.3 94.8 94.8 89.7 94.8
15 Grass-pasture-mowed 15 11 90.9 100 90.9 90.9 90.9 90.9 90.9
16 Oats 15 5 100 100 100 100 100 100 100

Total Overall Accuracy – – 82.56 86.38 88.34 88.69 89.78 87.74 90.50
Kappa Coefficient – – 0.8019 0.8446 0.8672 0.8709 0.8836 0.8601 0.8917

TABLE II
INDIAN PINES: THE RESULT OF MCNEMAR’S TEST TO VALIDATE

WHETHER THE DIFFERENCE BETWEEN CLASSIFICATION ACCURACIES OF

THE PROPOSED METHOD WITH BOTH PREDEFINED 16 AND 20 CLUSTERS

IS SIGNIFICANTLY DIFFERENT FROM OTHER METHODS.

Indian Pines M

HMRFSVM-E 16 vs. SVM 14.06
HMRFSVM-E 16 vs. KmeansSVM 16 4.24

HMRFSVM-E 16 vs. HMRFSVM-NE 16 4.41
HMRFSVM-E 20 vs. SVM 22.15

HMRFSVM-E 20 vs. KmeansSVM 20 7.11
HMRFSVM-E 20 vs. HMRFSVM-NE 20 4.71

references which can be found in front of each method in

Table V.

As can be seen from Table V, the proposed method has

an acceptable result in comparison with the other methods.

Below, the proposed method is compared in more detail to

SVMMRF-E [13], SVMMSF+MV [30] and MSSC-MSF [27].

1) HMRFSVM-E vs. SVMMRF-E: In SVMMRF-E the in-

put data set is at first classified by a probabilistic SVM and

then regularized by MRF using a gradient step. The most

important disadvantage of SVMMRF-E is that the parame-

ter β must be carefully set but that parameter controls the

importance of the spatial energy terms versus the spectral
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Fig. 7. Classification maps of different methods for Salinas: a) SVM, b) KmeansSVM-16, c) HMRFSVM-NE-16, d) HMRFSVM-E-16, e) KmeansSVM-20,
f) HMRFSVM-NE-20 and, g) HMRFSVM-E-20.

energy term. With reference to [13], different values of β can

considerably change the result of the classification and that

poses a problem for this approach. In contrast, the method

proposed in this paper is fully automatic, i.e., there is no need

to initialize the parameters in order to achieve good results.

2) HMRFSVM-E vs. SVMMSF+MV: SVMMSF+MV was

proposed in [30]. In this method, the original data set is

initially classified by using a probabilistic pixel-wise clas-

sification technique. The output of this step provides both

a classification map and a probability map. The outputs of

the first step helps one to select the most reliably classified

pixels. For providing a map of markers the classification

and probability maps are considered to provide a Connected

Components (CCs) labeling of the classification map. Then,

for each CC, the region is compared to a threshold, M , in

order to define whether the region is considered as being large

or small. The M parameter is initialized by considering the

resolution of the image along with typical sizes of the objects

of interest. If the region is considered as small, the marker is

the same with pixels of CC with probabilities more than S

percent. The S parameter is set by considering the probability

of the presence of small structures in the image (which also

depends on the image resolution and the classes of interests).

If the region is considered as large, the marker is P (defining
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TABLE III
SALINAS: THE NUMBER OF TRAINING AND TEST SAMPLES; CLASSIFICATION ACCURACIES OF TEST SAMPLES IN PERCENTAGE FOR SVM,

KMEANSSVM-16, HMRFSVM-NE-16, HMRFSVM-E-16, KMEANSSVM-20, HMRFSVM-NE-20 AND HMRFSVM-E-20.

Class No. of Samples SVM KmeansSVM HMRFSVM-NE HMRFSVM-E
No. Name Training Test 16 20 16 20 16 20

1 Brocoli green weeds 1 252 1757 99.5 100 100 100 100 100 100
2 Brocoli green weeds 2 474 3252 100 100 100 100 100 100 100
3 Fallow 239 1737 99.3 99.7 99.5 99.7 99.7 99.7 99.7
4 Fallow rough plow 169 1225 99.2 99.8 99.8 99.8 99.8 99.8 99.8
5 Fallow smooth 342 2336 99.4 98.5 98.8 85.3 98.9 86.8 99.1
6 Stubble 516 3443 99.9 99.7 99.9 98.5 99.6 98.6 99.8
7 Celery 442 3137 99.4 99.4 99.4 99.4 99.4 99.4 99.5
8 Grapes untrained 1395 9876 88.4 95.8 94.3 95.6 95.0 96.2 95.1
9 Soil vinyard develop 775 5428 99.9 99.9 99.9 99.9 99.7 99.9 99.6

10 Corn senesced green weeds 407 2871 97.2 96.7 95.7 90.8 90.8 90.6 91.9
11 Lettuce romaine 4wk 141 927 98.7 99.0 98.9 99.0 99.0 99.0 99.0
12 Lettuce romaine 5wk 232 1695 99.8 99.8 99.8 100 99.8 100 100
13 Lettuce romaine 6wk 124 792 99.4 98.9 98.8 98.6 98.8 98.8 99.0
14 Lettuce romaine 7wk 121 949 95.4 95.4 95.8 97.2 96.0 97.1 96.3
15 Vinyard untrained 906 6362 76.9 43.2 90.0 92.9 92.6 92.8 92.8
16 Vinyard vertical trellis 231 1576 98.9 98.9 98.9 99.3 99.0 99.1 99.2

Total Overall Accuracy – – 94.02 91.01 96.93 96.57 97.10 96.76 97.24
Kappa Coefficient – – 0.9334 0.8993 0.9658 0.9618 0.9677 0.9639 0.9692

TABLE IV
SALINAS: THE RESULT OF MCNEMAR’S TEST TO VALIDATE WHETHER

THE DIFFERENCE BETWEEN CLASSIFICATION ACCURACIES OF THE

PROPOSED METHOD WITH BOTH PREDEFINED 16 AND 20 CLUSTERS IS

SIGNIFICANTLY DIFFERENT FROM OTHER METHODS.

Salinas M

HMRFSVM-E 16 vs. SVM 24.04
HMRFSVM-E 16 vs. KmeansSVM 16 41.74

HMRFSVM-E 16 vs. HMRFSVM-NE 16 5.41
HMRFSVM-E 20 vs. SVM 30.75

HMRFSVM-E 20 vs. KmeansSVM 20 3.83
HMRFSVM-E 20 vs. HMRFSVM-NE 20 3.66

TABLE V
INDIAN PINES: COMPARISON WITH THE-STATE-OF-THE-ART. THE

METHODS WITH HIGHER ACCURACIES THAN THE PROPOSED APPROACH

ARE SHOWN IN BOLD FACE

Method Overall Accuracy Kappa Coefficient

HMRFSVM-E 90.50 0.892

WH+MV [30] 89.63 0.848

EM+MV [27] 83.60 0.848

SVMMRF-E [13] 91.83 0.907

SVMMSF+MV [30] 91.80 0.906

MC-MSF [27] 86.66 0.848

MSSC-MSF [27] 92.3 0.911

M-HSEGr [31] SAM 77.53 0.744
Swght = 0.0 Inf 76.63 0.734

M-HSEGp [31] SAM 81.59 0.791
Swght = 0.0 Inf 81.16 0.786

M-HSEGop [31] SAM 89.23 0.877
Swght = 0.0 Inf 89.00 0.874

M-HSEGop [31] SAM 88.72 0.871
Swght = 0.2 Inf 89.01 0.874

the percentage of pixels within the large region to be used as

markers) percent of its pixels with the highest probabilities.

The output of this step is a Map of Markers. Furthermore,

the result of the previous step leads to the construction of

a minimum spanning forest. Finally, majority voting within

the connected components provides the final segmentation

and classification map. From the above description, it can be

observed that the method is not automatic. In addition, in order

to apply this method successfully, a comprehensive knowledge

regarding the different structures of the input data is needed.

3) HMRFSVM-E vs. MSSC-MSF: The MSSC-MSF was

introduced in [27]. In this method, the input image is at first

classified by a pixel-wise SVM. Second, The input image

is segmented with Watershed Segmentation and the result

combined with an SVM using majority voting (MV). Third,

the input data is segmented by EM and combined with SVM

through MV. Then, the input data set is segmented with Re-

cursive divide-and-conquer approximation of HSEG (RHSEG)

and combined with SVM by using MV. Furthermore, the

output of the three steps are used for marker selection. The

output of this step is then used for the construction of a

minimum spanning forest. Based on the above work flow, it

is easy to see that MSSC-MSF is quite complicated and can

be become computationally very demanding without parallel

processing.

IV. CONCLUSION

In this paper a fully automated framework which takes into

account both spectral and spatial information is introduced for

classification of hyperspectral images. In the framework, SVM

is used for the extraction of spectral information. In parallel,

HMRF-EM is used for the extraction of spatial information.

In the final step, those results are combined by using majority

voting. The efficiency of the proposed method is tested in both

situations with and without considering the gradient step. The

proposed method is evaluated on two data sets (Indian Pines

and Salinas). In both cases the new approach outperforms other

studied methods. The classification of the proposed method

works better than SVM in terms of accuracies and improves

the results of overall accuracy by almost 8 and 3.2 percent for

Indian Pines and Salinas, respectively. It should be noted that

the concept of HMRF is used for the first time in the field of
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remote sensing in this paper and the efficiency of that for the

segmentation of hyperspectral images is demonstrated. Finally,

it is shown in the paper that the method performs well in terms

of accuracies compared with the state of the art. In addition,

the proposed approach is fully automatic and user-friendly in

contrast to most of the methods.
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