
Spectral–spatial feature learning for
hyperspectral imagery classification
using deep stacked sparse
autoencoder

Ghasem Abdi
Farhad Samadzadegan
Peter Reinartz

Ghasem Abdi, Farhad Samadzadegan, Peter Reinartz, “Spectral–spatial feature learning for hyperspectral
imagery classification using deep stacked sparse autoencoder,” J. Appl. Remote Sens. 11(4),
042604 (2017), doi: 10.1117/1.JRS.11.042604.



Spectral–spatial feature learning for

hyperspectral imagery classification

using deep stacked sparse autoencoder

Ghasem Abdi,a,* Farhad Samadzadegan,a and Peter Reinartzb
aUniversity of Tehran, College of Engineering, Faculty of Surveying and Geospatial

Engineering, Tehran, Iran
bGerman Aerospace Centre (DLR), Remote Sensing Technology Institute,

Department of Photogrammetry and Image Analysis, Weßling, Germany

Abstract. Classification of hyperspectral remote sensing imagery is one of the most popular

topics because of its intrinsic potential to gather spectral signatures of materials and provides

distinct abilities to object detection and recognition. In the last decade, an enormous number of

methods were suggested to classify hyperspectral remote sensing data using spectral features,

though some are not using all information and lead to poor classification accuracy; on the other

hand, the exploration of deep features is recently considered a lot and has turned into a research

hot spot in the geoscience and remote sensing research community to enhance classification

accuracy. A deep learning architecture is proposed to classify hyperspectral remote sensing

imagery by joint utilization of spectral–spatial information. A stacked sparse autoencoder pro-

vides unsupervised feature learning to extract high-level feature representations of joint spectral–

spatial information; then, a soft classifier is employed to train high-level features and to fine-tune

the deep learning architecture. Comparative experiments are performed on two widely used

hyperspectral remote sensing data (Salinas and PaviaU) and a coarse resolution hyperspectral

data in the long-wave infrared range. The obtained results indicate the superiority of the pro-

posed spectral–spatial deep learning architecture against the conventional classification methods.
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1 Introduction

With the recent technological advances in remote sensing systems and the accessibility of hyper-

spectral data, the geoscience and remote sensing research community is increasing utilization of

well-defined spectral information of hyperspectral images in a wide range of practical

applications.1,2 Hyperspectral image data are comprised of hundreds of continuous narrow spec-

tral bands, resulting in high spectral information for the identification of diverse physical mate-

rials and leading thereby to enhanced image classification results.3,4 In the last decade, a large

number of methods have been widely investigated for addressing the ill-posed classification

problems of hyperspectral remote sensing data by considering high dimensionality and complex-

ity of spectral features.5–9 In this context, two popular dimensionality reduction strategies are

widely used to overcome the finite training set problem with high dimensionality of hyperspectral

remote sensing data. The dimensionality reduction by transform uses a transformation function

to compress data in some optimal sense, while the dimensionality reduction by band selection

extracts a suitable band subset to indicate data through a definite optimum criterion.10 Further-

more, joint utilization of spectral–spatial information of hyperspectral imagery has been
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extensively investigated to improve the classification accuracy by considering the spatial infor-

mation represented by neighboring pixels mostly pertaining to one class.11–13 Most of the

existing methodologies can determine shallow handcrafted features or transform-based filters

of the original data, which are not robust enough to deal with hyperspectral imagery classifi-

cation challenges.14 The exploration of deep features has recently attracted much consideration

and is now a research hot spot in the geoscience and remote sensing research community for

improving classification results via an extremely powerful deep learning model.15–23

Recently, several deep learning architectures have prospered24 and have been employed in

audio recognition,25 natural language processing,26 and many classification tasks.27,28 In this

context, deep learning researchers have expanded deep architectures as a replacement for the

traditional shallow architectures motivated by the human brain architectural model.29 From

the deep learning point of view, deep belief networks train one layer in an unsupervised way

via restricted Boltzmann machines.30,31 Autoencoder (AE) and its variants train the intermediate

layers of representation in an unsupervised manner.32,33 Unlike AEs, the sparse coding algo-

rithms extract sparse representations of the original data by learning a dictionary.34 Mean-

while, convolutional neural networks, the most representative supervised deep learning archi-

tecture, allow the deep architecture to learn high-level feature descriptors and to convert the input

space into representations that can clearly enhance the classification performance.35 In this con-

text, a set of learnable filters is convolved across the input volume to form a stacked activation

map of the filters, i.e., the network learns filters that activate when it detects some specific type of

features at some spatial position in the input data. More detailed descriptions about the deep

learning algorithms can be observed in the machine learning research literature.36,37

Deep learning-based classification involves making a deep architecture for the pixel-based

data representation and classification by extracting more robust and abstract descriptors to

enhance the classification results. Deep learning pixel-based classification of hyperspectral

imagery contains data input, hierarchical deep learning model training, and classification

steps. The input vector could be comprised of spectral, spatial, or joint utilization of spectral–

spatial descriptors. Next, a deep architecture is designed to train the feature representations of the

input data. The last step contains hard or soft classification using the learned features at the top

layer of the deep learning model, the hard classifiers, such as support vector machines (SVMs),

output an integer classification result. The soft classifiers, such as logistic regression, can

optimize the pretrained model and estimate a probability distribution of the classification

result.16,38,39 Deep learning-based hyperspectral imagery classification is a new subject in the

geoscience and remote sensing research community and limited research has been conducted

in this field of study.

From the autoencoder-based deep learning point of view, Chen et al.16 proposed stacked

autoencoder via traditional spectral, spatial, and a deep spectral–spatial learning model to obtain

the best classification results by a hybrid framework of principle component analysis (PCA),

deep learning architecture, and a softmax classifier to optimize the pretrained model and predict

land cover classification results. Experiments and results conducted over two public, Kennedy

Space Center (KSC) and Pavia, datasets proved that the proposed method provides statistically

higher accuracy than the SVM classifier. In addition, the experimental results indicated that

deeper features mostly lead to better classification performance. Tao et al.17 proposed a stacked

autoencoder using multiscale spectral–spatial features in a linear SVM to obtain the highest

classification results. Experiments and results conducted over Pavia and PaviaU datasets indi-

cated that the proposed method provides more discriminative features than the handcrafted spec-

tral–spatial features. The experimental results illustrated that the learned spectral–spatial feature

representation can be used for multiple images. Zhao et al.21 proposed a new spectral–spatial

deep learning-based classification framework that combines spectral–spatial information using

hyperspectral imagery of appropriate spatial resolution in a stacked sparse autoencoder to extract

high-level feature representations, followed by a random forest classifier to provide better trade-

off among performance, accuracy, and processing time compared to traditional classifiers.

Experiments conducted on two commonly used hyperspectral datasets (Indian Pines and

KSC) showed that the new feature improves the classification results compared with the original

hyperspectral imagery. Furthermore, the proposed framework provides higher classification

accuracy and stronger performance when compared with other classification techniques.
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Wang et al.22 presented a hybrid framework of PCA, guided filtering, and stacked autoencoder as

an efficient deep learning architecture for hyperspectral data classification. Experiments con-

ducted over two public, PaviaU and Salinas, datasets demonstrated that the proposed spec-

tral–spatial hyperspectral image classification method provides better results when compared

with some other commonly used methods. In the above papers, many ways were proposed

to classify hyperspectral imagery by deep learning mechanisms; they provided fascinating inno-

vations for classification and practical applications. Deep learning-based hyperspectral imagery

classification remains quite challenging because of its novelty and limited research up to now.

This paper presents a deep learning-based hyperspectral imagery classification technique and

addresses the superiority of the proposed method against a large number of traditional classifiers.

2 Proposed Method

In this paper, we propose spectral–spatial feature learning for hyperspectral imagery classifica-

tion using a deep stacked sparse autoencoder (DSSAE). In this context, a stacked sparse autoen-

coder provides unsupervised feature learning to extract high-level feature representations of joint

spectral–spatial information; then, a soft classifier is employed to train high-level features and to

fine-tune the deep learning architecture. Figure 1 shows the general structure of the proposed

method.

2.1 Spectral–Spatial Feature Extraction

The spectral–spatial feature descriptors are concatenated to construct the joint spectral–spatial

classification framework. In this context, the raw spectral information is first considered

(xspectral ¼ fxk;1; xk;2; : : : ; xk;sg, where xspectral is the raw spectral data at the k’th pixel with s

bands), because it consists of the most basic information from the classification point of view.

Furthermore, the first several principle components (PCs) of a local window are considered as

the spatial feature descriptors (xspatial ¼ fxk;1; xk;2; : : : ; xk;d; : : : ; xk;sg, where xspatial is the local

information at the k’th pixel with the first d PC bands) to enhance the classification results; the

obtained features are then stacked to make a hybrid set of joint spectral–spatial information.

2.2 Stacked Sparse Autoencoder

A shallow sparse autoencoder introduces a specific kind of neural network containing input,

hidden, and reconstruction layers that can be employed to train the high-level feature represen-

tations in an unsupervised manner.40,41 In other words, sparse autoencoder tries to estimate

Fig. 1 Flowchart of the proposed method.
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a reconstruction function that maximizes the similarity score of decoding and input layer

functions.21

In the training phase of an autoencoder, an encoder transfer function is applied to map an

input vector into an abstract feature representation of the input vector as the hidden layer

EQ-TARGET;temp:intralink-;e001;116;687z ¼ fðWzxþ bzÞ; (1)

where Wz and bz indicate the weights and biases of the input to hidden layer, respectively.

Furthermore, the logistic sigmoid function, fðxÞ ¼ ½1þ expð−xÞ�−1, is used to obtain nonlinear

mapping of both the encoder and decoder transfer functions. Moreover, the hidden representa-

tion is employed to reconstruct an approximation of the input vector using a decoder transfer

function from output layer

EQ-TARGET;temp:intralink-;e002;116;596y ¼ fðWyzþ byÞ ; (2)

where Wy and by indicate the weights and biases of the hidden to output layer, respectively. In

general, the optimal parameters are estimated by minimizing the reconstruction error with spar-

sity constraint and weight decay terms
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where the first term denotes an average sum of squares error term that demonstrates the

reconstruction error of M training samples,17 the second term indicates the weight decay

term that is applied to reduce the over fitting of autoencoder via managing the weights amplitude

(where λ is a weight decay parameter, W
ðlÞ
i;j denotes the connection between the i’th unit in layer

l − 1 and the j’th unit in layer l),42 and the third term is a sparsity penalty term that η controls the

weight of the term and KLðrkr̄jÞ illustrates a Kullback–Leibler divergence, a function used to

measure the difference between Bernoulli distributions of the expected activation over the train-

ing set of hidden unit j and its target value, to be penalized by the sparsity constant to enforce the

average latent unit activation to be close to the target value17

EQ-TARGET;temp:intralink-;e004;116;369KLðrkr̄jÞ ¼
X

S

j¼1

�

r log
r

r̄j
þ ð1 − rÞ log

1 − r

1 − r̄j

�

; (4)

where r is the parameter of desired sparsity and r̄j ¼
1
M

P

M
i¼1½yjðxiÞ� denotes the average acti-

vation of hidden unit j of the training data xi. The minimum KL distance is achieved by r ¼ r̄j
and extends up to infinity as r̄j increases, enforcing r̄j not to significantly deviate from the

desired sparsity value r; the smaller desired sparsity value commonly leads to a sparser repre-

sentation. Furthermore, the minimization procedure of the desired function can be performed via

the stochastic gradient descent and backpropagation method, iteratively.43,44

The sparse autoencoders are mostly stacked to progressively learn high-level feature repre-

sentations of data information.45 A typical stacked sparse autoencoder is developed via stacking

the input and hidden layers of sparse autoencoders layer-by-layer and can be trained using a

greedy layerwise method for extra layers. The optimal parameters of stacked sparse autoen-

coders (weight and bias values) can be estimated by minimizing the difference score of input

data and their reconstruction, similar to the learning scheme of sparse autoencoders. Figure 2

shows a model of a sparse autoencoder with single and multiple hidden layers.

2.3 Logistic Regression Classifier

Once the high-level feature representations of input data are extracted via a layerwise pretraining

method, the output feature descriptors (that were learned using only unlabeled data) of the high-

est layer are investigated through the classification process by augmenting a logistic regression

classifier (such as the softmax regression classifier) above the last hidden layer of the stacked

sparse autoencoder to fine-tune the deep learning architecture and improve the learned features
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(using labeled data) in a supervised manner.21,22 In particular, the fine-tuning enforces gradient

descent from the current setting of the parameters (i.e., labeled data can be used to modify the

weights, so that adjustments can be made to the features extracted by the layer of hidden units) to

reduce the training error on the labeled training samples. In this context, softmax regression is an

extended type of logistic regression that can be employed for multiclass classification purposes;

it confirms that the activation of each output unit sums to be one and the output can be supposed

as a set of conditional probabilities

EQ-TARGET;temp:intralink-;e005;116;396PðY ¼ ijR;W; bÞ ¼ sðWRþ bÞ ¼
eWiRþbi

P

j

eWjRþbj
; (5)

where R denotes an output of the last hidden layer of the stacked sparse autoencoder, W and b

indicate the weights and biases of the logistic regression layer. The fine-tuning is also carried out

on the deep learning framework by considering very slight learning rates on the preceding

autoencoder layers. More detailed descriptions about the fine-tuning deep learning architecture

can be found in Ref. 16.

3 Experiments and Results

To evaluate the potential of the proposed hyperspectral imagery classification framework, two

commonly used hyperspectral datasets (Salinas and PaviaU) and a coarse resolution hyperspec-

tral dataset in the long-wave infrared range (LWIR) are investigated (as at-sensor radiance data).

The Salinas scene (Fig. 3) is of 512 × 217 pixels with 3.7-m spatial resolution. The 224 spectral

band AVIRIS scene was collected over Salinas Valley, California. The data comes with a 16 class

labeled ground truth map. Of the 224 bands, 20 spectral bands [(108–112), (154–167), and 224]

were discarded due to their water absorption features. The Pavia University image (Fig. 4) is of

610 × 340 pixels with 103 bands at 1.3-m spatial resolution. The image was collected by the

ROSIS sensor over Pavia, northern Italy, and the data is provided with a nine class labeled

ground truth map. The LWIR hyperspectral imagery (Fig. 5) is of 874 × 751 pixels (with

∼1-m spatial resolution), and it was collected by a fixed-wing aircraft at ∼800-m flight height

over Thetford Mines in Québec, Canada. The data comes with a seven class labeled ground truth

map. The LWIR hyperspectral imagery was acquired by the latest airborne LWIR hyperspectral

imager “Hyper-Cam” containing 84 spectral narrow bands. In all the mentioned datasets, one-

fourth of each ground truth label is randomly separated for training and the rest are used as the

Fig. 2 A model of sparse autoencoder (a) single hidden layer and (b) multiple hidden layers.
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testing samples (Table 1). In this section, comparative experiments are carried out on the

described datasets to quantitatively investigate the superiority of the proposed spectral/spec-

tral–spatial deep feature learning framework against the conventional classifiers,46 including

decision tree (DT), discriminant analysis (DA), naive Bayes (NB), K-nearest neighbor

(KNN), and SVM. In the case of the conventional classifiers, Eigenvalue (EV), hyperspectral

signal subspace identification by minimum error (HS), and noise-whitened Harsanyi–Farrand–

Chang (NH) techniques10 are adopted as intrinsic dimension estimation (IDE) to be used by

dimensionality reduction with PCA.

The first experiment is conducted on the Salinas hyperspectral imagery. To evaluate the pro-

posed classification framework, a comprehensive comparison is performed via two quality indi-

ces overall accuracy (OA) and kappa coefficient. The quantitative evaluation results obtained by

the various classifiers are shown in Table 2. It can be seen that JS attains the most accurate

classification result (OA/kappa: 98.07/97.85) compared with the conventional classifiers.

Also, the visual inspection of the classification maps validates the effectiveness of the proposed

classification technique (Fig. 3). The second experiment is conducted on the PaviaU dataset. The

implementation procedures are the same as that of the first dataset. As can be seen from Table 3,

JS obtains the highest classification accuracies (OA/kappa: 99.44/99.25). Figure 4 shows the

classification maps of the various classification frameworks. The last experiment is carried out

on the TIRHS dataset. As per the classification results in Table 4 and by inspecting Fig. 5, it can

be seen that the JS classification framework provides again the best classification performance

(OA/kappa: 80.70/73.58). Furthermore, Fig. 6 shows the quantitative evaluation results obtained

by the various classifiers graphically.

Table 1 Number of training and testing samples on different datasets.

No.

Salinas dataset PaviaU dataset TIRHS dataset

Class name Train Test Class name Train Test Class name Train Test

1 Broccoli green weeds_1 502 1507 Asphalt 1658 4973 Road 9139 27417

2 Broccoli green weeds_2 932 2794 Meadows 4662 13987 Tree 1281 3841

3 Fallow 494 1482 Gravel 525 1574 Red roof 1818 5452

4 Fallow rough plow 349 1045 Trees 766 2298 Gray roof 1944 5832

5 Fallow smooth 670 2008 Painted metal
sheets

336 1009 Concrete roof 2062 6187

6 Stubble 990 2969 Bare soil 1257 3772 Vegetation 2867 8599

7 Celery 895 2684 Bitumen 333 997 Bare soil 936 2808

8 Grapes untrained 2818 8453 Self-blocking
bricks

921 2761

9 Soil vineyard develop 1551 4652 Shadows 237 710

10 Corn senesced green
weeds

820 2458

11 Lettuce romaine 4 week 267 801

12 Lettuce romaine 5 week 482 1445

13 Lettuce romaine 6 week 229 687

14 Lettuce romaine 7 week 268 802

15 vineyard untrained 1817 5451

16 vineyard vertical trellis 452 1355
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Table 2 Salinas classification accuracies.

No.

PCA
DSSAE

EV HS NH EV HS NH EV HS NH EV HS NH EV HS NH

DT DA NB KNN SVM SS JS

1 1.00 1.00 1.00 0.99 1.00 1.00 0.98 0.98 0.98 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00

2 1.00 1.00 1.00 0.98 1.00 1.00 0.98 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

3 0.96 0.98 0.98 0.73 0.97 0.91 0.82 0.99 0.98 0.97 1.00 1.00 0.97 1.00 1.00 0.99 1.00

4 0.99 0.97 0.98 0.98 0.96 0.93 0.99 0.96 0.96 0.99 0.99 0.99 0.99 0.99 0.99 1.00 1.00

5 0.96 0.97 0.97 0.98 0.99 0.98 0.98 0.98 0.98 0.98 1.00 0.99 0.99 1.00 0.99 0.98 1.00

6 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

7 0.99 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00

8 0.80 0.83 0.83 0.85 0.85 0.85 0.61 0.77 0.73 0.82 0.89 0.88 0.88 0.93 0.92 0.89 0.96

9 0.99 0.99 1.00 1.00 1.00 1.00 0.99 0.99 0.99 0.99 1.00 1.00 0.99 1.00 1.00 1.00 1.00

10 0.90 0.96 0.96 0.60 0.93 0.91 0.88 0.99 0.98 0.97 0.99 0.99 0.96 0.99 0.99 0.98 0.99

11 0.94 0.97 0.98 0.86 0.92 0.92 0.90 0.93 0.93 0.99 1.00 1.00 0.98 1.00 0.99 0.94 0.99

12 0.99 0.98 0.98 0.99 1.00 1.00 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

13 0.96 0.95 0.95 0.99 1.00 1.00 0.98 0.99 0.98 1.00 1.00 0.99 0.99 1.00 1.00 1.00 1.00

14 0.94 0.95 0.95 0.91 0.91 0.92 0.93 0.94 0.92 0.98 0.99 0.99 0.98 0.99 0.98 0.97 1.00

15 0.70 0.75 0.78 0.35 0.66 0.64 0.77 0.77 0.78 0.73 0.82 0.82 0.61 0.78 0.77 0.71 0.92

16 0.97 0.96 0.97 0.89 0.98 0.98 0.94 0.98 0.98 1.00 1.00 1.00 0.99 1.00 1.00 0.99 1.00

OA 0.90 0.92 0.92 0.84 0.91 0.90 0.86 0.91 0.90 0.92 0.95 0.95 0.92 0.95 0.95 0.93 0.98

kappa 0.89 0.91 0.92 0.82 0.90 0.89 0.85 0.90 0.89 0.91 0.95 0.94 0.91 0.95 0.94 0.93 0.98

Note: Number of intrinsic dimensionality: EV ¼ 6, HS ¼ 23, and NH ¼ 14.
Bold values indicate outlier at the 5% level of significance.

Fig. 3 Salinas imagery, ground truth, and classification maps.

Abdi, Samadzadegan, and Reinartz: Spectral–spatial feature learning for hyperspectral imagery. . .

Journal of Applied Remote Sensing 042604-7 Oct–Dec 2017 • Vol. 11(4)



Table 3 PaviaU classification accuracies.

No.

PCA
DSSAE

EV HS NH EV HS NH EV HS NH EV HS NH EV HS NH

DT DA NB KNN SVM SS JS

1 0.89 0.89 0.90 0.93 0.89 0.93 0.83 0.87 0.87 0.88 0.85 0.91 0.94 0.94 0.93 0.95 0.99

2 0.95 0.94 0.95 0.87 0.93 0.90 0.86 0.88 0.87 0.96 0.97 0.98 0.96 0.98 0.97 0.98 1.00

3 0.68 0.68 0.69 0.46 0.66 0.60 0.70 0.71 0.71 0.69 0.67 0.75 0.69 0.74 0.71 0.78 0.97

4 0.90 0.86 0.88 0.82 0.86 0.82 0.84 0.88 0.85 0.90 0.88 0.91 0.85 0.94 0.91 0.95 0.99

5 1.00 1.00 1.00 0.99 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00

6 0.84 0.83 0.84 0.35 0.64 0.58 0.79 0.80 0.81 0.86 0.85 0.89 0.89 0.89 0.89 0.90 1.00

7 0.67 0.75 0.74 0.00 0.39 0.03 0.80 0.87 0.85 0.71 0.71 0.83 0.00 0.70 0.64 0.86 0.99

8 0.76 0.75 0.77 0.85 0.80 0.83 0.78 0.79 0.80 0.79 0.65 0.80 0.85 0.90 0.88 0.89 0.98

9 0.99 0.99 0.99 1.00 1.00 1.00 0.99 0.99 0.99 0.99 0.99 1.00 0.99 0.99 1.00 1.00 1.00

OA 0.89 0.88 0.89 0.77 0.85 0.82 0.84 0.86 0.85 0.90 0.88 0.92 0.89 0.93 0.92 0.94 0.99

kappa 0.85 0.84 0.86 0.69 0.79 0.76 0.79 0.81 0.81 0.86 0.84 0.90 0.85 0.91 0.90 0.92 0.99

Note: Number of intrinsic dimensionality: EV ¼ 5, HS ¼ 49, and NH ¼ 9.
Bold values indicate outlier at the 5% level of significance.

Fig. 4 PaviaU imagery, ground truth, and classification maps.
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The overall results demonstrate that the proposed spectral–spatial deep feature learning

framework outperforms the conventional classifiers in terms of classification metrics used.

JS provides 2.67/2.98%, 6.10/8.13%, and 6.80/9.49% classification performance improvements

for Salinas, PaviaU, and the TIRHS hyperspectral data, respectively, in terms of OA/kappa met-

rics. It can be also seen that the accuracies of most classes have been increased effectively.

Table 5 indicates the grid search hyperparameters for the proposed deep frameworks.

Figure 7 shows IDE techniques and the classifier’s average overall accuracy to summarize the

obtained results. It is clearly obvious that the proposed classification procedure tends to be

more robust and obtains the highest classification results in terms of the classification quality

index.

Table 4 TIRHS classification accuracies.

No.

PCA
DSSAE

EV HS NH EV HS NH EV HS NH EV HS NH EV HS NH

DT DA NB KNN SVM SS JS

1 0.83 0.96 0.95 0.95 0.95 0.96 0.94 0.95 0.95 0.80 0.96 0.96 0.97 0.97 0.97 0.97 0.99

2 0.18 0.28 0.32 0.00 0.00 0.01 0.00 0.06 0.09 0.21 0.31 0.29 0.00 0.00 0.00 0.00 0.23

3 0.19 0.48 0.46 0.00 0.33 0.41 0.00 0.55 0.54 0.20 0.48 0.46 0.00 0.56 0.55 0.42 0.60

4 0.22 0.47 0.47 0.05 0.59 0.55 0.13 0.37 0.40 0.24 0.51 0.49 0.00 0.50 0.53 0.54 0.58

5 0.29 0.51 0.50 0.00 0.23 0.26 0.17 0.22 0.23 0.33 0.54 0.50 0.15 0.28 0.41 0.36 0.70

6 0.51 0.55 0.54 0.95 0.92 0.92 0.94 0.90 0.88 0.45 0.56 0.54 0.94 0.93 0.91 0.90 0.89

7 0.20 0.57 0.56 0.00 0.40 0.41 0.00 0.44 0.44 0.20 0.58 0.53 0.00 0.42 0.43 0.44 0.64

OA 0.54 0.70 0.70 0.58 0.70 0.71 0.59 0.70 0.70 0.52 0.71 0.70 0.59 0.72 0.74 0.72 0.81

kappa 0.36 0.59 0.59 0.36 0.58 0.60 0.39 0.58 0.58 0.35 0.61 0.59 0.37 0.62 0.64 0.62 0.74

Note: Number of intrinsic dimensionality: EV ¼ 1, HS ¼ 5, and NH ¼ 13.
Bold values indicate outlier at the 5% level of significance.

Fig. 5 TIRHS imagery, ground truth, and classification maps.
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In this section, we evaluate a sparse autoencoder reconstruction and the sensitivity of a fea-

ture learning scheme with respect to the sparsity parameter, execution time, and effect of model

depth to avoid influencing outcomes. First, we investigate the quality of feature descriptors to

reconstruct original data in different iteration epochs. Furthermore, a set of experiments is con-

ducted to investigate the effect of the sparsity parameter on the classification performance.

Figure 8 shows the reconstructed raw spectral input in 10, 100, and 1000 iteration epochs

and the sensitivity of the feature learning scheme with respect to the sparsity parameter. It

can be concluded that autoencoder can reconstruct raw spectra input progressively more accurate

and retains increasingly more spectral information. It can be also observed that a feature learning

scheme is relatively robust for higher values of the sparsity parameter, while the representation

will become sparser with smaller values.

The execution time of the deep learning framework contains training and testing times.

Training time denotes the time utilization of the learning stacked sparse autoencoder, classifi-

cation layers, and fine-tuning the deep feature learning architecture. Figure 9 shows how the

training time changes with variation of model hidden layer neurons and iteration epoch param-

eters. It can be noticed that the training time gently increases with the extension of the number of

hidden layer neurons and iteration epochs.

Fig. 6 The quantitative evaluation results of (a) Salinas, (b) PaviaU, (c) TIRHS, and (d) graphs’

legend.

Table 5 Model parameters of the proposed deep feature learning frameworks on different

datasets.

Classifier Dataset Local window size No. of PCs No. of features Layers Units Iteration

Salinas — — 204 3 40 1000

Spectral PaviaU — — 103 2 60 1000

TIRHS — — 83 2 10 1000

Salinas 3 7 267 4 40 1000

Spectral–spatial PaviaU 5 5 228 3 60 1000

TIRHS 3 6 137 5 10 1000
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Fig. 8 Sparse autoencoder evaluation for (a) reconstruction of a raw spectra input in different

iteration epochs and (b) the effect of sparsity parameter on the classification performance.

Fig. 9 Comparison of training time with the variation of model parameters (a) Salinas, (b) PaviaU,

and (c) TIRHS and comparison of testing time with the variation of model depths: (d) Salinas,

PaviaU, and TIRHS Datasets.

Fig. 7 Average overall accuracy of (a) IDE and (b) classification techniques.
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Moreover, a comparison of the testing times, for different model depths, is displayed in

Table 6. The superiority of the proposed deep feature learning framework can be observed

by looking at the superfast performance of the testing step.

In addition, model depth plays a significant role in the classification performance because it

can improve the feature representation quality of the original data. In general, the higher model

depths tend to extract more detailed representations of raw data. In this context, a set of experi-

ments is carried out to evaluate how the depth parameter of the deep feature learning architecture

shows an impact on the classification results (Table 7). It can be concluded that the classification

accuracy improves with the expansion of the model depth parameter and it also indicates that as

the model depth keeps increasing, the accuracy tends to decline.

The overall results prove that the proposed spectral–spatial deep feature learning exhibits a

superior classification performance for hyperspectral image data classification compared to the

conventional spectral-based classification methods.

4 Conclusions

In this paper, joint spectral–spatial information is exploited in a deep stacked sparse autoencoder

for hyperspectral imagery classification. Experiments and results show that the spectral–spatial

feature descriptors improve the classification results compared with the spectral-based classi-

fiers. Furthermore, the proposed classification framework provides statistically higher classifi-

cation accuracy and appears to be more robust than the conventional classification methods

based on consistency over three hyperspectral datasets. We evaluated the sparse autoencoder

reconstruction, execution time, and effect of model depth on hyperspectral imagery classifica-

tion. In this context, we suggest using a deep learning model to obtain higher classification

accuracy and consume the least amount of execution time. In future work, we will consider

how to effectively employ textural features to enhance the classification results.
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Table 7 Comparison of overall accuracy for different model depths.

Dataset

Model depth

1 2 3 4 5

Salinas 97.65 97.67 97.75 98.07 97.20

OA (%) PaviaU 99.29 99.39 99.44 99.32 99.15

TIRHS 78.39 79.21 79.34 79.82 80.70

Table 6 Comparison of testing time for different model depths.

Dataset

Model depth

1 2 3 4 5

Salinas 0.40 0.43 0.46 0.48 0.64

Testing time (s) PaviaU 0.30 0.36 0.38 0.42 0.49

TIRHS 0.29 0.30 0.30 0.34 0.48
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