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Abstract. The objects of study in this paper are sets of spectral synthesis for the
Fourier algebra A(G) of a locally compact group and the Varopoulos algebra V (G) of a com-
pact group with respect to submodules of the dual space. Such sets of synthesis are charac-
terized in terms of certain closed ideals. For a closed set in a closed subgroup H of G, the
relations between these ideals in the Fourier algebras of G and H are obtained. The injec-
tion theorem for such sets of synthesis is then a consequence. For the Fourier algebra of the
quotient modulo a compact subgroup, an inverse projection theorem is proved. For a compact
group, a correspondence between submodules of the dual spaces of A(G) and V (G) is set up
and this leads to a relation between the corresponding sets of synthesis.

Introduction. Spectral synthesis in the Fourier algebra of a locally compact abelian
group is a vintage topic in harmonic analysis, with Malliavin’s celebrated theorem on the
failure of spectral synthesis going back to 1959. Although the study of spectral synthesis
in the Fourier algebra A(G) of an arbitrary locally compact group was intiated by Eymard
himself in his original study ([2]) of A(G), not many papers have appeared in the topic. In a
recent work [6], Kaniuth and Lau introduce and study the concept of X-synthesis where X is
an A(G)-submodule of the group von Neumann algebra VN(G) = A(G)∗. This concept is
studied in some detail in this paper.

The concept of X-synthesis has been defined using supports of linear functionals. In
Section 2, we define, in the general context of commutative, semisimple, regular Banach
algebras, two closed ideals IXA (E) and JXA (E) and prove that E is of X-synthesis precisely
when these two ideals are equal. When X is the full dual, this reduces to the usual definition
of sets of synthesis.

Suppose, next, that H is a closed subgroup of G and E ⊆ H is closed. If r : A(G) →
A(H) is the restriction map, we show, in Section 3, that IXA(G)(E) = r−1(I

XH
A(H)(E)) and

JXA(G)(E) = r−1(J
XH
A(H)(E)), where XH is an A(H)-submodule of VN(H) associated to X.

An immediate consequence is the Injection Theorem for X-spectral sets due to Kaniuth and
Lau [6].

For a compact subgroup K of G, Forrest [3] has defined and studied the Fourier algebra
A(G/K) on the homogeneous space G/K. With any A(G)-submodule X of VN(G), we
associate an A(G/K)-submodule XK of VN(G/K) = A(G/K)∗ and prove that a closed set
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Ẽ ⊆ G/K is of XK -synthesis for A(G/K) if π−1(Ẽ) is of X-synthesis for A(G), π : G →
G/K being the canonical map (Section 3). We recover a result on synthesis due to Forrest [3]
when X = VN(G).

For a compact abelian group G, Varopoulos [12] related synthesis in A(G) to synthesis
in the Varopoulos algebra V (G). (He used this relation to give his famous tensor algebra proof
of Malliavin’s theorem.) This study has recently been carried over to nonabelian groups by
Spronk and Turowska [10]. Our second main purpose is to investigate X-synthesis in this
context. We set up (in Section 4) a correspondence between A(G)-submodules X of VN(G)
and V (G)-submodules Y of V (G)∗. Associated to an X we have a Y = XV and associated
to a Y we give an X = YA. We show that this correspondence is a natural one by proving that
(XV )A = X. The main result on synthesis in this context is: E is of X-synthesis for A(G) if
and only if E∗ := {(x, y) ∈ G × G; xy−1 ∈ E} is of XV -synthesis for V (G). Some of the
main ingredients in the proof are the facts that Y = XV , IV (E

∗)⊥ and IYV (E
∗) are all L1(G)-

modules. These and other needed results are presented as a sequence of lemmas preceding
the theorem in Section 5. When X = VN(G), we recover the result of Varopoulos [12] and
Spronk-Turowska [10].

1. Preliminaries. The Fourier algebra A(G) of a locally compact abelian group G is
just the algebra of Fourier transforms of integrable functions on the dual group Ĝ. It is a com-
mutative Banach algebra with the norm carried over from L1(Ĝ).WhenG is any arbitrary lo-
cally compact group, the Fourier algebra A(G) as defined and studied by Eymard [2] consists
of continuous functions onG of the form u(x) = 〈λ(x)f, g〉, x ∈ G, where f, g ∈ L2(G) and
λ is the left regular representation ofG. ThusA(G) is the space of coefficient functions of the
left regular representation. To describe the norm on A(G), consider the group von Neumann
algebra VN(G) ofG. Recall that VN(G) is the closure in the weak operator topology of span
{λ(x); x ∈ G} in B(L2(G)). For u ∈ A(G), with u(x) = 〈λ(x)f, g〉,

‖u‖A = sup{|〈Tf, g〉|; T ∈ VN(G), ‖T ‖ ≤ 1} .
With this norm A(G) is a Banach space, and with the pairing defined by 〈T , u〉 = 〈Tf, g〉,
it is the predual of VN(G). Moreover, with pointwise multiplication, A(G) is a commuta-
tive, semisimple, regular Banach algebra whose Gelfand structure space is identified with G
(via point evaluations). All these and more can be found in Eymard [2], which is the basic
reference for A(G).

The second Banach algebra that would be considered is the Varopoulos algebra V (G) of
a compact group G. It is the completion of the algebraic tensor product C(G) ⊗ C(G) with
respect to the norm defined by

‖v‖V = inf ‖∑|ϕi |2‖1/2∞ ‖∑|ψi |2‖1/2∞ ,

the infimum being taken over all (finite sum) representations v = ∑
ϕi ⊗ ψi in C(G) ⊗

C(G). Thus V (G) = C(G) ⊗h C(G), the Haagerup tensor product. Every v in V (G)
can be represented as a norm convergent series

∑
ϕi ⊗ ψi and ‖v‖V is the infimum of
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‖∑ |ϕi|2‖1/2∞ ‖∑ |ψi |2‖1/2∞ over all such representations, where
∑ |ϕi |2, ∑ |ψi |2 are (uni-

formly) convergent in C(G). Varopoulos [12] used the projective tensor product, but the pro-
jective norm is equivalent to the Haagerup norm (see Spronk and Turowska [10]). V (G) is a
commutative, semisimple, regular Banach algebra with Gelfand structure space G×G.

We are concerned with spectral synthesis in A(G) and V (G). Here are the basic defi-
nitions . Let A be a commutative, semisimple, regular Banach algebra with Gelfand space
∆(A). For a closed set E in ∆(A), let

jA(E)= {a ∈ A; â has compact support disjoint from E} ,
JA(E)= jA(E) ,
IA(E)= {a ∈ A; â = 0 on E} .

(When A = A(G), we write these as jA(E) etc; similarly, we use the notation jV (E) etc, in
the case A = V (G).) All the three sets are ideals in A with zero set E and jA(E) ⊆ I ⊆
IA(E) for any ideal I with zero set E. E is said to be a set of spectral synthesis (or a spectral
set) for A if IA(E) = JA(E). This is equivalent to saying that there is a unique closed ideal
with zero set E.

2. X-Synthesis. Kaniuth and Lau [6] have introduced the concept of sets of X-syn-
thesis, whereX is anA(G)-submodule of VN(G). In this section we study this concept. With
later use in mind, we formulate the definitions in a general context.

Let A be a commutative, semisimple, regular Banach algebra. The Banach space dual A∗
has a natural A-module structure. For u ∈ A and T ∈ A∗, define u.T by 〈u.T , v〉 = 〈T , uv〉,
v ∈ A. The concept of the support of a linear functional T ∈ A∗ is a much needed one in
spectral synthesis. Of the different formulations, the one that would be convenient for our
purposes is as follows:

supp T = {χ ∈ ∆(A); u.T �= 0 whenever û(χ) �= 0} .

It is a closed subset of ∆(A). Let X be an A-submodule of A∗. Then a closed set E ⊆ ∆(A)
is a set of X-synthesis (or an X-spectral set) if 〈T , u〉 = 0 for every T ∈ X with supp T ⊆ E

and every u ∈ IA(E). When X = A∗, we have the following result.

LEMMA 2.1. A closed set E ⊆ ∆(A) is of spectral synthesis if and only if it is of
A∗-synthesis.

PROOF. Using the regularity of A, the proof is essentially the same as that given in [6]
for the case A = A(G). �

We begin by looking at some examples in the case A = A(G) and A∗ = VN(G).

EXAMPLE 2.2. (i) It is clear that if X,Y are two A(G)-submodules of VN(G) such
that X ⊆ Y, then any Y -spectral set is an X-spectral set. In particular, sets of synthesis are of
X-synthesis for any choice of X.
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(ii) If X = UCc(Ĝ) := {T ∈ VN(G); supp T is compact}, then sets of X-synthesis
are nothing but sets of local synthesis (see [6]). Recall that E is a set of local synthesis if
every u ∈ IA(E) having compact support belongs to JA(E).

(iii) Let x ∈ G be fixed and letX = {u.λ(x); u ∈ A(G)}. Then every closed setE ⊆ G

is of X-synthesis.
(iv) LetX be the set of all finite sums

∑
ui.λ(xi)with ui ∈ A(G) and xi ∈ G. Consider

T = ∑n
i=1 ui.λ(xi) ∈ X. If x /∈ {x1, . . . , xn} and if u ∈ A(G) is chosen such that u(xi) = 0

for all i and u(x) �= 0, then u.T = 0. It follows that supp T ⊆ {x1, . . . , xn}. In fact, it is not
difficult to see that supp T = {xi; ui(xi) �= 0}. From this it follows that for any closed set
E, if supp T ⊆ E and u ∈ IA(E), then 〈T , u〉 = ∑

u(xi)ui(xi) = 0. In other words, every
closed set is a set of X-synthesis.

(v) Let F ⊆ G be closed. Consider

X = VNF (G) := {T ∈ VN(G); supp T ⊆ F } .
It follows, by Eymard’s results on supports of elements of VN(G) of the form S+T and u.T
([2, Proposition 4.8]), that VNF (G) is an A(G)-submodule. Moreover, it is weak-∗ closed:
if {Tα} is a net converging weak-∗ to T and if supp Tα ⊆ F for every α, then supp T ⊆ F

(Eymard [2]). In fact, it can be seen that

VNF (G) = JA(F )
⊥ := {T ∈ VN(G); 〈T , u〉 = 0 for every u ∈ JA(F )} .

Now it is easy to see that ifE ⊆ F is ofX-synthesis, then it is actually a set of synthesis. Thus
E ⊆ F is of synthesis if and only if E is of VNF (G)-synthesis. (When F = G, VNF (G) =
VN(G) and we recover the result of [6] that VN(G)-synthesis is same as synthesis.) This is
not true for sets E ⊃ F as the next example shows.

(vi) Take G = Rn, F = Sn−1, with n ≥ 3, in the previous example. It is a classical
result of L. Schwartz that F is of non-synthesis. Now let E = E1 ∪ E2, where

E1 = {x ∈ Rn; 1/2 ≤ ‖x‖ ≤ 3/2} , E2 = {x ∈ Rn; ‖x‖ = 1/4} .
Then E2 is a set of nonsynthesis, whereas E1 is a set of synthesis (for instance, using the
resuts on intersections of sets of synthesis in Muraleedharan and Parthasarathy [7]). Hence E
is of nonsynthesis, because the union of two disjoint closed sets is of synthesis if and only if
each of them is. On the other hand, it is easy to see that if u ∈ IA(E), then supp u ∩ F = ∅
and so 〈T , u〉 = 0 for T ∈ VNF (G). This means that E is of VNF (G)-synthesis. Thus
E ⊃ F is of VNF (G)-synthesis but is not of synthesis.

REMARK 2.3. (a) The A(G)-submodule X in example (iv) is weak-∗ dense in
VN(G), yet every closed set is of X-synthesis. Kaniuth and Lau [6] have shown that every
closed set is of VN(G)-synthesis if and only if G is discrete and u ∈ uA(G) for every u ∈
A(G).

(b) The set λ−1(X) = {x ∈ G; λ(x) ∈ X} is closed if X is weak-∗ closed. Question:
When is it of X-synthesis? Observe that when X = VNF (G), λ

−1(X) = F and so λ−1(X)

is of X-synthesis if and only if it is of synthesis.
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Recall that spectral synthesis has been defined in terms of ideals: E is of synthesis if
IA(E) = JA(E). So it is natural to try to reformulate the notion of X-synthesis in terms of
ideals. This task, it turns out, is not difficult.

Let X be an A-submodule of A∗. For a closed set E ⊆ ∆(A), define

IXA(E)= {u ∈ A; 〈T , u〉 = 0 for every T ∈ X ∩ IA(E)⊥} ,
JXA(E)= {u ∈ A; 〈T , u〉 = 0 for every T ∈ X ∩ JA(E)⊥} .

These are clearly closed, and are ideals since X is an A-submodule. Note that JXA (E) ⊆
IXA(E). Observe also that when X = A∗, IXA(E) = IA(E) and JXA (E) = JA(E). Here is the
promised characterization of X-synthesis in terms of these ideals.

PROPOSITION 2.4. Let A be a commutative, semisimple, regular Banach algebra
and let X be an A-submodule of A∗. A closed set E ⊆ ∆(A) is of X-synthesis if and only if
IXA(E) = JXA (E).

PROOF. Suppose E is of X-synthesis. Then

T ∈ X ∩ JA(E)⊥ ⇒ T ∈ X and suppT ⊆ E

⇒ 〈T , u〉 = 0 for u ∈ IA(E)
⇒ T ∈ X ∩ IA(E)⊥ .

Thus, IXA(E) ⊆ JXA(E). So equality holds. Conversely, suppose IXA(E) = JXA (E). Then

T ∈ X and suppT ⊆ E⇒ T ∈ X ∩ JA(E)⊥
⇒ 〈T , u〉 = 0 for u ∈ JXA(E) = IXA(E)
⇒ 〈T , u〉 = 0 for u ∈ IA(E) ⊆ IXA(E) .

Thus E is of X-synthesis. �

The next result identifies the zero sets of the two ideals IXA (E) and JXA (E).

PROPOSITION 2.5. Let X be a weak-∗ closed A(G)-submodule of VN(G) and let
E ⊆ G be closed. Consider the closed set EX := E ∩ λ−1(X). Then Z(IXA (E)) = EX =
Z(JXA (E)).

PROOF. Suppose x ∈ EX, so x ∈ E and λ(x) ∈ X. For u ∈ IA(E), 〈λ(x), u〉 =
u(x) = 0 and λ(x) ∈ IA(E)

⊥. Thus, if v ∈ IXA (E), then v(x) = 〈λ(x), v〉 = 0, since
λ(x) ∈ X ∩ IA(E)⊥. This means x ∈ Z(IXA (E)).

On the other hand, if x �∈ E, there is an open set U with compact closure such that
x ∈ U ⊂ Ū ⊂ Ec. Then there is a u ∈ A(G) with u(x) = 1 and suppu ⊂ U. Thus u(x) �= 0
and u ∈ jA(E) ⊂ JXA (E), and this, in turn, gives x �∈ Z(JXA (E)). Further, if λ(x) �∈ X, then
there is a u ∈ A(G) such that 〈T , u〉 = 0 for all T ∈ X, while u(x) = 〈λ(x), u〉 �= 0, since
X is weak-∗ closed. This, in particular, gives that u ∈ JXA (E), but u(x) �= 0. This implies
x �∈ Z(JXA (E)). Thus, if x �∈ EX, then x �∈ Z(JXA (E)).

We have therefore proved that Z(JXA (E)) ⊆ EX ⊆ Z(IXA (E)) ⊆ Z(JXA (E)). The result
follows. �
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COROLLARY 2.6. If X is a weak-∗ closed A(G)-submodule of VN(G), then
JA(EX) ⊆ JXA (E) ⊆ IXA (E) ⊆ IA(EX).

PROOF. The first and the last inclusions are consequences of Proposition 2.5 and the
fact that JA(EX) is the smallest and IA(EX) is the largest closed ideal, respectively, with zero
set EX. The middle inclusion being obvious, the corollary is proved.

COROLLARY 2.7. With X as before, if EX is of synthesis, then E is of X-synthesis.

EXAMPLE 2.8. With notation as in Example 2.2 (vii), say,E1 is of synthesis, (E1)X =
Sn−1 is of nonsynthesis. Thus the reverse implication in Corollary 2.7 does not hold.

3. Subgroups and quotients. Let H be a closed subgroup of G. Relations between
spectral synthesis in H and G/H with that in G are considered in this section.

Let VNH (G) denote the weak-∗ closed span of {λG(h); h ∈ H } in VN(G), and let, as
usual, VN(H) be the group von Neumann algebra of H.

It is well known (Herz [5]) that the restriction map r : u �→ ru = u|H is a continuous
linear surjection of A(G) onto A(H). It is shown in [6, Lemma 3.1] that the adjoint map
r∗ : VN(H) → VN(G) is an isomorphism of VN(H) onto VNH(G).

For an A(G)-submodule X of VN(G), write XH = r∗−1(X). It is easy to see that
XH is an A(H)-submodule of VN(H). Note that XH = VN(H) when X = VN(G). The
next result relates the ideals IXA(G)(E) and JXA(G)(E) introduced earlier with the corresponding
ideals in A(H).

THEOREM 3.1. LetH be a closed subgroup ofG and let E ⊆ H be a closed set. Then
(i) IXA(G)(E) = r−1(I

XH
A(H)(E)),

(ii) JXA(G)(E) = r−1(J
XH
A(H)(E)).

PROOF. (i) Suppose u ∈ A(G) and ru ∈ I
XH
A(H)(E). To show u ∈ IXA(G)(E), let

T ∈ X ∩ IA(G)(E)
⊥. Now T ∈ IA(G)(E)

⊥ implies that T = r∗(S) for a (unique) S ∈
VN(H). We claim that S ∈ XH ∩ IA(H)(E)⊥. Since T ∈ X, S ∈ XH by definition, and
〈T , u〉 = 〈r∗S, u〉 = 〈S, ru〉. If v ∈ IA(H)(E), then v = rw for some w ∈ IA(G)(E) and
〈S, v〉 = 〈S, rw〉 = 〈r∗S,w〉 = 〈T ,w〉 = 0, since T ∈ IA(G)(E)

⊥. This proves the claim
that S ∈ XH ∩ IA(H)(E)⊥. But then 〈T , u〉 = 〈S, ru〉 = 0, proving that u ∈ IXA(G)(E).

Conversely, let u ∈ IXA(G)(E). Then ru ∈ A(H). To show that ru ∈ I
XH
A(H)(E), let S ∈

XH ∩ IA(H)(E)⊥. Now S ∈ XH implies that T = r∗S ∈ X. We claim that T ∈ IA(G)(E)⊥.
For, if v ∈ IA(G)(E), then clearly rv ∈ IA(H)(E) and 〈T , v〉 = 〈r∗S, v〉 = 〈S, rv〉 = 0 since
S ∈ IA(H)(E)⊥. Hence T ∈ X ∩ IA(G)(E)⊥ and 〈S, ru〉 = 〈T , u〉 = 0. Thus ru ∈ IXHA(H)(E),
so u ∈ r−1(I

XH
A(H)(E)).

(ii) Every closed subgroup is of synthesis, by [11, Theorem 3]. So IA(G)(H) =
JA(G)(H) ⊆ JA(G)(E) and hence JA(G)(E)⊥ ⊆ IA(G)(H)

⊥. Thus T ∈ X ∩ JA(G)(E)
⊥

implies T ∈ X ∩ IA(G)(H)⊥, and this in turn gives T = r∗S with S ∈ XH . On the other
hand T ∈ JA(G)(E)

⊥ also yields that supp T ⊆ E, and hence supp S ⊆ E (by [6]). This
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means S ∈ JA(H)(E)
⊥. All these observations combine to yield the implication that, for

T ∈ X ∩ JA(G)(E)⊥, 〈T , u〉 = 〈S, ru〉 = 0 if u ∈ A(G) and ru ∈ JXHA(H)(E). Thus, any such

u belongs to JXA(G)(E).
To prove the converse part, first note that v ∈ jA(G)(E) implies rv ∈ jA(H)(E), and

hence v ∈ JA(G)(E) implies rv ∈ JA(H)(E). With this observation, the proof of the converse
part is similar to the one in (i). �

The injection theorem for sets of synthesis is a well known result due to Reiter (see [9])
in the abelian case. The next result is the injection theorem for sets of X-synthesis and is due
to Kaniuth and Lau [6]. It is now an immediate consequence of Theorem 3.1 and Proposition
2.4.

COROLLARY 3.2 (Injection theorem for X-spectral sets). A closed set E ⊆ H is of
X-synthesis in A(G) if and only if it is of XH -synthesis in A(H).

To consider quotients, let K be a compact subgroup of G. We consider the Fourier al-
gebra on the homogeneous space G/K defined and studied by Forrest [3]. For u ∈ A(G)

define

Qu(x) =
∫
K

u(xk)dk ,

where dk denotes the normalised Haar measure onK. ThenQmapsA(G) into itself and is, in
fact, a projection. A(G : K), the range of Q, consists of functions in A(G) that are constant
on left cosets of K. Its dual VN(G : K) may be described as follows. Let L1(G : K) be the
space of functions in L1(G) that are constant on cosets of K; it is the range of the projection
defined on L1(G) as above. VN(G : K) is the weak-∗ closure of L1(G : K) in VN(G).
Functions u in A(G : K) can be identified, in a natural way, with (continuous) functions ũ
on the quotient space G/K : ũ(π(x)) = u(x), where π : G → G/K is the canonical map.
Then A(G/K) is defined as {ũ : u ∈ A(G : K)} with ‖ũ‖A(G/K) = ‖u‖A(G:K). In this
way, A(G/K) is a commutative, semisimple, regular Banach algebra with ∆(A(G/K)) =
G/K. We write VN(G/K) for the dual of A(G/K); it is identified with VN(G : K) via the
identification of A(G/K) with A(G : K).

If X is an A(G)-submodule of VN(G), there is a naturally associated A(G/K)-sub-
module XK of VN(G/K). To see this, consider the projection Q : A(G) → A(G : K) and
the isomorphism ψ : A(G : K) → A(G/K), ψ(u) = ũ. Thus ψ ◦Q : A(G) → A(G/K),

so we can consider the adjoint (ψ ◦ Q)∗ = Q∗ ◦ ψ∗ : VN(G/K) → VN(G). Let XK =
(ψ ◦Q)∗−1(X).

LEMMA 3.3. Let the notation be as given above. Then
(i) Q∗(u.T ) = u.Q∗(T ) for u ∈ A(G : K) and T ∈ VN(G : K),

(ii) ψ∗(ũ.T̃ ) = u.ψ∗(T̃ ) for ũ ∈ A(G/K) and T̃ ∈ VN(G/K),
(iii) XK is an A(G/K)-submodule of VN(G/K).
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PROOF. (i) Let u ∈ A(G : K) and T ∈ VN(G : K). For v ∈ A(G),

〈Q∗(u.T ), v〉 = 〈u.T ,Qv〉 = 〈T , u.Qv〉
= 〈T ,Q(uv)〉 = 〈Q∗(T ), uv〉
= 〈u.Q∗(T ), v〉 ,

where we have used the fact that Q(uv) = u.Q(v) if u = Qu.

(ii) Let ũ ∈ A(G/K) and T̃ ∈ VN(G/K). For v ∈ A(G : K), an easy computation
shows that 〈ψ∗(ũ.T̃ ), v〉 = 〈u.ψ∗(T̃ ), v〉.

(iii) It suffices to prove that XK is A(G/K)-invariant. Let ũ ∈ A(G/K) and T̃ ∈
XK, so (ψ ◦ Q)∗(T̃ ) ∈ X. But then, a little calculation shows that (ψ ◦ Q)∗(ũ.T̃ ) =
u.(ψ ◦Q)∗(T̃ ) ∈ X. Hence ũ.T̃ ∈ XK. �

LEMMA 3.4. Let Ẽ be a closed set in G/K and let T̃ ∈ VN(G/K). If supp T̃ ⊆ Ẽ,

then supp(ψ ◦Q)∗(T̃ ) ⊆ π−1(Ẽ).

PROOF. Let x ∈ supp(ψ ◦ Q)∗(T̃ ). Suppose ũ ∈ A(G/K) and ũ(π(x)) �= 0, i.e.,
ũ ◦ π(x) �= 0. Then ũ ◦ π.(ψ ◦Q)∗(T̃ ) �= 0. For some v ∈ A(G)

0 �= 〈ũ ◦ π.(ψ ◦Q)∗(T̃ ), v〉 = 〈(ψ ◦Q)∗(T̃ ), ũ ◦ π.v〉
= 〈T̃ , ψ(Q(ũ ◦ π.v))〉 = 〈T̃ , ψ(ũ ◦ π.Qv)〉
= 〈T̃ , ψ(ũ ◦ π)ψ(Qv)〉 = 〈T̃ , ũψ(Qv)〉
= 〈ũ.T̃ , ψ(Qv)〉 .

Thus ũ . T̃ �= 0, and so π(x) ∈ supp T̃ ⊆ Ẽ. �

We can now relate sets of synthesis for A(G/K) and A(G).

THEOREM 3.5. If π−1(Ẽ) is a set of X-synthesis for A(G), then Ẽ is a set of XK -
synthesis for A(G/K).

PROOF. In view of the lemmas, the proof is now easy. Suppose T̃ ∈ XK and supp T̃ ⊆
Ẽ. If ũ ∈ IA(G/K)(Ẽ), then u = ũ ◦ π ∈ IA(G)(π

−1(Ẽ)). If π−1(Ẽ) is of X-synthesis, the
definition of XK and Lemma 3.4 now give

0 = 〈(ψ ◦Q)∗(T̃ ), u〉 = 〈T̃ , ψ(Qu)〉 = 〈T̃ , ũ〉 ,

completing the proof.

When X = VN(G), XK = VN(G/K) and we get the following result of Forrest [3].

COROLLARY 3.6. If π−1(Ẽ) is a set of synthesis forA(G), then Ẽ is a set of synthesis
for A(G/K).

The question whether, conversely, π−1(Ẽ) is a set of X-synthesis for A(G) whenever Ẽ
is a set of XK -synthesis for A(G/K) is open even for the case X = VN(G).
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4. Submodules of A(G)∗ and V (G)∗. In this section, assuming that G is compact,
we give a correspondence between A(G)-submodules of A(G)∗ = VN(G) and V (G)-sub-
modules of V (G)∗. Here V (G) is the Varopoulos algebra on G as defined in Section 1. The
G-invariant functions in V (G) form a closed subalgebra of V (G):

Vinv(G) = {w ∈ V (G);w(xt, yt) = w(x, y) for x, y, t ∈ G}. Spronk and Turowska
[10] have proved that the map

N : A(G) → Vinv(G)

defined by Nu(x, y) = u(xy−1) is an isometric isomorphism of A(G) onto Vinv(G). This
imbedding of A(G) in V (G) and the projection of V (G) on Vinv(G) described below go back
to Varopoulos (see [12]) in the abelian case. Vinv(G) is complemented in V (G) and P defined,
for w ∈ V (G), by

Pw(x, y) =
∫
G

w(xt, yt)dt

is a contractive projection V (G) → Vinv(G) (see [10, Proposition 2.3]).
For an A(G)-submodule X of VN(G), define

XV = {S ∈ V (G)∗; (w.S) ◦ N ∈ X for all w ∈ V (G)} .
It is clear that XV is a V (G)-submodule of V (G)∗. Further XV is weak-∗ closed if X is.

Conversely, for a V (G)-submodule Y of V (G)∗, define

YA = {T ∈ VN(G); (u.T ) ◦ N−1 ◦ P ∈ Y for all u ∈ A(G)} .
YA is an A(G)-submodule of VN(G), which is weak-∗ closed if Y is.

Using this correspondence, we shall, in the next section, explore a relation between spec-
tral synthesis in A(G) and in V (G). But for now, we show that the correspondence is a nicely
behaved one. We need the following lemma that will also be used later in the proof of Lemma
5.3.

LEMMA 4.1. For w ∈ V (G) and T ∈ VN(G), we have w.(T ◦N−1 ◦P) ◦N = u.T ,
where u = N−1(Pw).

PROOF. For v ∈ A(G)
〈w.(T ◦ N−1 ◦ P) ◦N, v〉 = 〈w.(T ◦ N−1 ◦ P),Nv〉

= 〈T ◦ N−1 ◦ P,wNv〉 = 〈T ◦ N−1, P (wNv)〉
= 〈T ◦ N−1, PwNv〉 = 〈T ◦ N−1, NuNv〉
= 〈T ◦ N−1, N(uv)〉 = 〈T , uv〉
= 〈u.T , v〉 .

Observe that we have made use of the fact that P(ww′) = Pw.w′ if w′ ∈ Vinv(G). �

PROPOSITION 4.2. Let X be an A(G)-submodule of VN(G). Then (XV )A = X.

PROOF. Suppose T ∈ (XV )A. Then u.T ◦ N−1 ◦ P ∈ XV for all u ∈ A(G). This, in
turn, means that w.(u.T ◦ N−1 ◦ P) ◦ N ∈ X for all w ∈ V (G). For u, v ∈ A(G) and w ∈
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V (G) applying Lemma 4.1 with T replaced by v.T we have w.(v.T ◦N−1 ◦P) ◦N = uv.T .

Thus, uv.T = (w.(u.T ◦ N−1 ◦ P)) ◦ N ∈ X. In particular, taking u = 1 and w = 1 ⊗ 1,
so that N−1(Pw) = 1, we get that T ∈ X.

Conversely, suppose T ∈ X. Let u ∈ A(G) and S = (u.T )◦ N−1◦ P.We check that S ∈
XV . For w ∈ V (G) and v ∈ A(G), 〈w.S ◦ N, v〉 = 〈w.S,Nv〉 = 〈u.T ◦ N−1 ◦ P,wNv〉 =
〈u′u.T , v〉 as before, where u′ = N−1(Pw). This means that w.S ◦ N = u′u.T ∈ X. So
S ∈ XV , i.e., (u.T ) ◦ N−1 ◦ P ∈ XV , for all u ∈ A(G). Thus T ∈ (XV )A, and the proof is
complete.

Here are some examples of X and the corresponding XV .

EXAMPLE 4.3. (i) If X = VN(G), then XV = V (G)∗.
(ii) This example is motivated by the results on synthesis that are discussed in the next

section. Consider the map θ : G × G → G, θ(x, y) = xy−1. For a closed set E ⊆ G,

consider the closed set

E∗ := θ−1(E) = {(x, y) ∈ G×G; xy−1 ∈ E} .
Then it is known that u ∈ IA(E) ⇔ Nu ∈ IV (E∗) and u ∈ JA(E) ⇔ Nu ∈ JV (E∗)(see [12],
[10]). Let X = {T ∈ VN(G); supp T ⊆ E}. Then XV = {S ∈ V (G)∗; supp S ⊆ E∗}. To
see this, let S ∈ V (G)∗ with supp S ⊆ E∗. We show that suppw.S ◦ N ⊆ E for w ∈ V (G).
For this, observe that

u ∈ JA(E)⇒Nu ∈ JV (E∗)
⇒w.Nu ∈ JV (E∗) for all w ∈ V (G)
⇒ 0 = 〈S,w.Nu〉 = 〈w.S ◦ N,u〉 .

This means that w.S ◦ N ∈ JA(E)⊥ = X. Thus S ∈ XV . Conversely, suppose S ∈ XV . This
means that w.S ◦ N ∈ X for all w ∈ V (G), i.e., suppw.S ◦ N ⊆ E. To prove supp S ⊆ E∗,
we have to show that if (x, y) ∈ suppS then xy−1 ∈ E. Let (x, y) ∈ supp S. Then

u ∈ A(G), u(xy−1) �= 0 ⇒Nu(x, y) �= 0 ⇒ Nu.S �= 0

⇒ there is a w ∈ V (G) with 0 �= 〈Nu.S,w〉 = 〈w.S,Nu〉
= 〈w.S ◦ N,u〉 = 〈u.(w.S) ◦ N, 1〉

⇒ u.(w.S ◦ N) �= 0 .

Thus xy−1 ∈ supp(wS ◦ N) ⊆ E. Another way of stating this example is: if X = JA(E)
⊥,

then XV = JV (E
∗)⊥.

(iii) If X = {∑n
1 ui.λ(xi); ui ∈ A(G), xi ∈ G, n ∈ N}, then XV = {S ∈

V (G)∗; supp S ⊆ F ∗, F ⊂ G is finite}.
(iv) Consider the circle group G = T . In this case VN(G) = 	∞(Z). If X = c0(Z),

then XV = {S ∈ V (G)∗; Ŝ(n,−n) → 0 as |n| → ∞}, where Ŝ(m, n); = 〈S, em ⊗ en〉 and
em(t) = exp(2πimt).
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5. Synthesis in A(G) and V (G). The setting in this section is as in the previous
section. In particular, G is a compact group and V (G) is the Varopoulos algebra of G. We
look for a relation between synthesis in A(G) and in V (G).More specifically, we prove, with
the notation of Section 4, that a closed set E ⊆ G is a set of X-synthesis for A(G) if and
only if E∗ is a set of XV -synthesis for V (G). For the case when X = VN(G), this result
goes back to Varopoulos [12] for abelian G and the nonabelian case is given by Spronk and
Turowska [10]. We begin with a couple of lemmas.

LEMMA 5.1. Let E ⊆ G be a closed set. Then IV (E∗) and JV (E∗) are both invariant
under the projection P : V (G) → Vinv(G).

PROOF. For IV (E∗), the result is obvious: if (x, y) ∈ E∗, then (xt, yt) ∈ E∗ for all
t ∈ G. So w ∈ IV (E∗) implies w(xt, yt) = 0 for all t ∈ G, whence Pw(x, y) = 0.

To prove the result for JV (E∗), it suffices, by continuity of P, to show that Pw ∈
JV (E

∗) whenever w ∈ jV (E
∗). It is, in fact, true that supp Pw ∩ E∗ = ∅ for w ∈ jV (E

∗).
To see this, let

U = {(x, y) ∈ G×G;Pw(x, y) �= 0} ,
W = {(x, y) ∈ G×G;w(x, y) �= 0} .

Thus suppPw = Ū and supp w = W̄ . Since Pw(x, y) �= 0 implies w(xt, yt) �= 0 for some
t ∈ G, it follows that θ(U) ⊆ θ(W). Hence

θ(Ū) ⊆ θ(U) ⊆ θ(W) ⊆ θ(W̄ ) = θ(W̄).

Recalling that G is compact, the last equality holds because of the compactness of W̄ , hence
of θ(W̄). Suppose there is a point (x, y) ∈ supp Pw ∩ E∗, i.e., (x, y) ∈ Ū ∩E∗. Then

θ(x, y) ∈ θ(Ū) ∩ E ⊆ θ(W̄) ∩ E ,
and so θ(x, y) = θ(s, t) for some (s, t) ∈ suppw ∩E∗, a contradiction, since suppw ∩E∗ =
∅ as w ∈ jV (E∗). �

REMARK 5.2. The following shorter proof of the second part of Lemma 5.1 has been
kindly suggested to us by the referee: Using vector-valued integration, write Pw = ∫

G t.w dt.

For w ∈ JV (E∗) and S ∈ JV (E∗)⊥, 〈S, Pw〉 = ∫
G〈S, t.w〉dt = 0, whence Pw ∈ JV (E∗).

The case X = VN(G) of the next lemma has already been mentioned in Example 4.3
(ii). This special case is made use of in the proof below. For a closed set F ⊆ G × G and
a V (G)-submodule Y of V (G)∗, recall, from Section 2, the definition of the closed ideals
IYV (F ) and J YV (F ).

LEMMA 5.3. Let X be an A(G)-submodule of VN(G) and let Y = XV be the associ-
ated V (G)-submodule of V (G)∗. Let E be a closed subset of G. Then, for u ∈ A(G),

(i) u ∈ IXA (E) ⇔ Nu ∈ IYV (E∗),
(ii) u ∈ JXA (E) ⇔ Nu ∈ J YV (E∗).
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PROOF. (i) Suppose u ∈ IXA (E). To prove Nu ∈ IYV (E
∗), let S ∈ Y ∩ IV (E

∗)⊥.
Then w.S ◦ N ∈ X for w ∈ V (G); in particular, S ◦ N ∈ X. Further, if v ∈ IA(E), then
Nv ∈ IV (E∗) by the special case mentioned above and so 〈S ◦ N, v〉 = 〈S,Nv〉 = 0. This
means that S ◦ N ∈ IA(E)⊥ and hence 〈S,Nu〉 = 〈S ◦ N,u〉 = 0. This proves the forward
implication in (i).

For the converse, let Nu ∈ IYV (E∗) and T ∈ X∩ IA(E)⊥.We claim that T ◦ N−1 ◦ P ∈
Y ∩IV (E∗)⊥.Now, forw0 ∈ V (G), w0.(T ◦N−1 P) ◦N = u0T ∈ X, by Lemma 4.1, where
u0 = N−1(Pw0). So by definition T ◦ N−1 ◦ P ∈ Y. To see that T ◦ N−1 ◦ P ∈ IV (E∗)⊥,
let w′ ∈ IV (E

∗). Then Pw′ ∈ IV (E
∗) by Lemma 5.1 and so N−1(Pw′) ∈ IA(E). Hence

〈T ◦ N−1 ◦ P,w′〉 = 〈T ◦ N−1, Pw′〉 = 〈T ,N−1(Pw′)〉 = 0. This completes the proof of
the claim. It is now easy to finish the proof of (i):

0 = 〈T ◦ N−1 ◦ P,Nu〉 = 〈T ◦ N−1, Nu〉 = 〈T , u〉 .

We have thus proved that 〈T , u〉 = 0 for T ∈ X ∩ IA(E)⊥, i.e., u ∈ IXA (E).
(ii) The proof of the first part of (ii) is just a repetition of that of the first part of (i)

with J in place of I . In view of the second part of Lemma 5.1, the previous sentence may be
repeated with ‘second part’ replacing ‘first part’. The lemma is thus proved.

Next, observe that G acts continuously on V (G) as a group of isometries: for t ∈ G and
w ∈ V (G), t.w ∈ V (G) is given by t .w(x, y) = w(xt, yt), for x, y ∈ G. Further, this action
of G induces an action of L1(G) on V (G) : for f ∈ L1(G) and w ∈ V (G)

f.w =
∫
G

f (t)t.wdt .

As noted in [10], this vector valued integral makes sense and this action turns V (G) into
an essential Banach L1(G)-module. We also need the dual action of L1(G) on V (G)∗: For
f ∈ L1(G) and S ∈ V (G)∗, f.S is defined by

〈f.S,w〉 = 〈S, f.w〉 , w ∈ V (G) .

We need a few lemmas on these actions of L1(G) on V (G) and on V (G)∗.

LEMMA 5.4. For a closed subsetE ofG, IV (E∗)⊥ is an L1(G)-submodule of V (G)∗.

PROOF. This is easy. First, it is clear from the definition that if w ∈ IV (E
∗) and f ∈

L1(G), then f.w ∈ IV (E
∗). Hence, for w ∈ IV (E

∗), S ∈ IV (E
∗)⊥ and f ∈ L1(G),

〈f.S,w〉 = 〈S, f.w〉 = 0. �

LEMMA 5.5. Let X be an A(G)-submodule of VN(G) and let XV be the associated
V (G)-submodule of V (G)∗. Then XV is an L1(G)-submodule of V (G)∗.
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PROOF. Recall that S ∈ XV if and only if w.S ◦ N ∈ X for all w ∈ V (G). Let S ∈ XV
and f ∈ L1(G). For w ∈ V (G) and u ∈ A(G)

〈(w.(f.S)) ◦ N,u〉 = 〈w.(f.S),Nu〉 = 〈f.S,wNu〉
= 〈S, f.(wNu)〉 = 〈S, f.wNu〉
= 〈((f.w).S) ◦ N,u〉 .

Along the way, we have used the easily verified fact that, for f ∈ L1(G), w ∈ V (G) and
v ∈ Vinv(G), f.(wv) = (f.w)v. We have thus proved that the L1(G)-action and the V (G)-
action on V (G)∗ commute when restricted to Vinv(G) : (w.(f.S)) ◦ N = ((f.w).S) ◦ N, and
this last object belongs to X since S ∈ XV . This yields the required result that f.S ∈ XV ,

completing the proof. �

LEMMA 5.6. Let E ⊆ G be closed, let X be an A(G)-submodule of VN(G) and let
Y = XV be the associated V (G)-submodule of V (G)∗. Then IYV (E

∗) is an L1(G)-submodule
of V (G).

PROOF. We have to show that if w ∈ IYV (E
∗) and f ∈ L1(G), then f.w ∈ IYV (E

∗).
This is an immediate consequence of Lemmas 5.4 and 5.5: For S ∈ XV ∩ IV (E

∗)⊥, we have
〈S, f.w〉 = 〈f.S,w〉 = 0. �

We are now ready to prove the main result of the section. In addition to the preceding
lemmas, we also make use of the case A = V (G) of Proposition 2.4.

THEOREM 5.7. Let X be an A(G)-submodule of VN(G) and let Y = XV be the
associated V (G)-submodule of V (G)∗. Then a closed subset E of G is a set of X-synthesis
for A(G) if and only if E∗ is a set of XV -synthesis for V (G).

PROOF. One part is immediate from Lemma 5.3: If E∗ is of XV -synthesis, then

u ∈ IXA (E) ⇒ Nu ∈ IYV (E∗) ⇒ Nu ∈ J YV (E∗) ⇒ u ∈ JXA (E) .
The converse is more involved. Armed with our array of lemmas, we can easily mimic

the proof of [10, Theorem 3.1], where Spronk and Turowska prove the result for the case
X = VN(G), XV = V (G)∗. For the convenience of the readers, here is a brief summary of
the arguments.

Suppose E is of X-synthesis and w ∈ IYV (E∗). It suffices to show that w ∈ J YV (E∗). For

each π ∈ Ĝ, the unitary dual of G, define the matrix functions wπ and w̃π by

wπ(x, y)=
∫
G

w(xt, yt)π(t)dt ,

w̃π (x, y)=wπ(x, y)π(x) .

If uπij , i, j = 1, . . . , dπ , are the matrix coefficients of π, consider

wπij = uπij .w and w̃πij =
∑
k

uπik ⊗ 1 wπkj .
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Observe that wπij ∈ IYV (E
∗) and w̃πij ∈ IYV (E

∗) ∩ Vinv(G). Hence Lemma 5.3 implies

N−1(w̃πij ) ∈ IXA (E) = JXA (E), whence w̃πij ∈ J YV (E∗). But

wπij =
∑

ǔπik ⊗ 1 w̃πkj ,

so wπij ∈ J YV (E∗). Thus, we have proved that if w ∈ IYV (E∗), then wπij ∈ J YV (E∗) for all i, j.

Moreover, as observed in [10], L1(G) has a bounded approximate identity (uα) such that

uα ∈ span{uπij ; i, j = 1, . . . , dπ , π ∈ Ĝ}
for all α. So uα.w ∈ span{wπij ; i, j = 1, . . . , dπ , π ∈ Ĝ} ⊂ J YV (E

∗). But then w =
lim uα.w ∈ J YV (E∗). �

CONCLUDING REMARKS. Froelich [4] has studied the relation between spectral syn-
thesis on abelian groups and the concept of operator synthesis introduced by Arveson [1].
Spronk and Turowska [10] investigate this for compact (nonabelian) groups. In a paper that
has just appeared ([8]), we have defined a version of operator synthesis analogous to X-
synthesis and have studied the relation between these two. Our results on weak X-synthesis
are to be included in a separate communication.

We heartily thank the referee for his perspicuous suggestions.

REFERENCES

[ 1 ] W. ARVESON, Operator algebras and invariant subspaces, Ann. of Math. (2) 100 (1974), 433–532.
[ 2 ] P. EYMARD, L’algèbre de Fourier d’un groupe localement compact, Bull. Soc. Math. France 92 (1964), 181–

236.
[ 3 ] B. FORREST, Fourier analysis on coset spaces, Rocky Mountain J. Math. 28 (1998), 173–190.
[ 4 ] J. FROELICH, Compact operators, invariant subspaces and spectral synthesis, J. Functional Analysis 81 (1988),

1–37.
[ 5 ] C. HERZ, Harmonic synthesis for subgroups, Ann. Inst. Fourier (Grenoble) 23 (1973), 91–123.
[ 6 ] E. KANIUTH AND A. T. LAU, Spectral synthesis for A(G) and subspaces of VN(G), Proc. Amer. Math. Soc.

129 (2001), 3253–3263.
[ 7 ] T. K. MURALEEDHARAN AND K. PARTHASARATHY, Difference spectrum and spectral synthesis, Tohoku

Math. J. (2) 51 (1999), 65–73.
[ 8 ] K. PARTHASARATHY AND R. PRAKASH, Spectral synthesis and operator synthesis, Studia Math. 177 (2006),

173–181.
[ 9 ] H. REITER, Classical harmonic analysis and locally compact groups, Clarendon Press, Oxford, 1968.
[10] N. SPRONK AND L. TUROWSKA, Spectral synthesis and operator synthesis for compact groups, J. London

Math. Soc. (2) 66 (2002), 361–376.
[11] M. TAKESAKI AND N. TATSUUMA, Duality and subgroups II, J. Functional Analysis 11 (1972), 184–190.
[12] N. TH. VAROPOULOS, Tensor algebras and harmonic analysis, Acta Math. 119 (1967), 51–112.

RAMANUJAN INSTITUTE FOR ADVANCED

STUDY IN MATHEMATICS

UNIVERSITY OF MADRAS

CHENNAI 600 005
INDIA


