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Abstract

If a body of dielectric material is coated by a plasmonic structure of negative dielectric
constant with nonzero loss parameter, then cloaking by anomalous localized resonance (CALR)
may occur as the loss parameter tends to zero. The aim of this paper is to investigate this
phenomenon in two and three dimensions when the coated structure is radial, and the core,
shell and matrix are isotropic materials. In two dimensions, we show that if the real part of the
permittivity of the shell is −1 (under the assumption that the permittivity of the background
is 1), then CALR takes place. If it is different from −1, then CALR does not occur. In
three dimensions, we show that CALR does not occur. The analysis of this paper reveals that
occurrence of CALR is determined by the eigenvalue distribution of the Neumann-Poincaré-
type operator associated with the structure.

1 Introduction

If a body of dielectric material is coated by a plasmonic structure of negative dielectric constant
(with nonzero loss parameter), then anomalous localized resonance may occur as the loss parameter
tends to zero. This phenomena, first discovered by Nicorovici, McPhedran and Milton [36] (see
also [33]), is responsible for the subwavelength focussing properties of superlenses [38], and also
occurs in magnetoelectric and thermoelectric systems [33]. The fields blow-up in a localized region,
which moves as the position of the source is moved, which is why it is termed anomalous localized
resonance. Remarkably, as found by Milton and Nicorovici [30] the localized resonant fields created
by a source can act back on the source and cloak it. This invisibility cloaking has attracted much
attention [30, 37, 8, 31, 35, 32, 27, 7, 11, 34, 2, 20, 40].

To state the problem and results in a precise way, let Ω be a bounded domain in Rd, d = 2, 3,
and D be a domain whose closure is contained in Ω. For a given loss parameter δ > 0, the
permittivity distribution in Rd is given by

ϵδ =


1 in Rd \ Ω,
ϵs + iδ in Ω \D,

ϵc in D,

(1.1)
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where −ϵs and ϵc are positive. We may consider the configuration as a core with permittivity ϵc
coated by the shell Ω \D with permittivity ϵs + iδ. For a given function f compactly supported
in Rd \ Ω satisfying ∫

R2

f dx = 0 (1.2)

(which is required by conservation of charge), we consider the following dielectric problem:

∇ · ϵδ∇Vδ = f in Rd, (1.3)

with the decay condition Vδ(x) → 0 as |x| → ∞. The problem of cloaking by anomalous localized
resonance (CALR) can be formulated as the problem of identifying the sources f such that first

Eδ :=

∫
Ω\D

δ|∇Vδ|2 dx → ∞ as δ → 0, (1.4)

and second, Vδ/
√
Eδ goes to zero outside some radius a, as δ → 0:

|Vδ(x)/
√
Eδ| → 0 as δ → 0 when |x| > a. (1.5)

Physically the quantity Eδ is proportional to the electromagnetic power dissipated into heat by the
time harmonic electrical field averaged over time. Using integration by parts we have the identity

Eδ = ℑ
∫
Rd

(ϵδ∇Vδ) · ∇Vδ dx = −ℑ
∫
Rd

fVδ dx (1.6)

(ℑ denotes the imaginary part) which equates the power dissipated into heat with the electromag-
netic power produced by the source, where Vδ is the complex conjugate of Vδ. Hence (1.4) implies
an infinite amount of energy dissipated per unit time in the limit δ → 0 which is unphysical. If we
rescale the source f by a factor of 1/

√
Eδ then the source will produce the same power independent

of δ and the new associated potential Vδ/
√
Eδ will, by (1.5), approach zero outside the radius a:

cloaking due to anomalous localized resonance (CALR) occurs.
In the recent paper [2] the authors develop a spectral approach to analyze the CALR phe-

nomenon. In particular, they show that if D and Ω are concentric disks in R2 and ϵc = −ϵs = 1,
then there is a critical radius r∗ such that for any source f supported outside r∗ CALR does not
occur, and for sources f satisfying a mild condition CALR takes place. The critical radius r∗ is
given by

r∗ =
√

r3e/ri, (1.7)

where re and ri are the radii of Ω and D, respectively. It is worth mentioning that these results
were extended in [20] to the case when the core D is not radial by a different method based on a
variational approach.

The purpose of this paper is to extend some of the results in [2] in two directions. We consider
the case when ϵc and −ϵs are not both 1 and we consider CALR in three dimensions. The results
of this paper are threefold: Let Ω and D be concentric disks or balls in Rd of radii re and ri,
respectively. Then, the following results hold:

• If d = 2 and ϵs = −1, then CALR occurs. When ϵc = 1 the critical radius r∗ is given by
(1.7) and when ϵc ̸= 1 the critical radius is

r∗ =
r2e
ri
. (1.8)

That is, for almost any source f supported inside r∗ CALR occurs and for any source f
supported outside r∗ CALR does not occur. When ϵc ̸= 1 the cloaking radius r2e/ri matches
that found in [30] for a single dipolar source (see figure 5 there and accompanying text).
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• If ϵs ̸= −1, then CALR does not occur.

• If d = 3, then CALR does not occur whatever ϵs and ϵc are.

We emphasize that the result on non-occurrence of CALR in three dimensions holds only when
the dielectric constant ϵs is constant. In the recent work [3] we show that CALR does occur in
three dimensions if we use a shell with non-constant (anisotropic) dielectric constant.

It turns out that the occurrence of CALR depends on the distribution of eigenvalues of the
Neumann-Poincaré (NP) operator associated with the structure (see the next section for the defi-
nition of the NP operator). The NP operator is compact with its eigenvalues accumulating towards
0. It is proved in [2] that in two dimensions the NP operator associated with the circular structure
has the eigenvalues ±ρn for n = 1, 2, . . ., where ρ = ri/re. We show that in three dimensions the
NP operator associated with the spherical structure has the eigenvalues

± 1

2(2n+ 1)

√
1 + 4n(n+ 1)ρ2n+1, n = 0, 1, . . . . (1.9)

The exponential convergence of the eigenvalues in two dimensions is responsible for the occurrence
of CALR and the slow convergence (at the rate 1/n) in three dimensions is responsible for the
non-occurrence.

2 Layer potential formulation

Let G be the fundamental solution to the Laplacian in Rd which is given by

G(x) =


1

2π
ln |x|, d = 2,

− 1

4π

1

|x|
, d = 3.

Let Γi := ∂D and Γe := ∂Ω. For Γ = Γi or Γe, we denote the single layer potential of a function
φ ∈ L2(Γ) as SΓ[φ], where

SΓ[φ](x) :=

∫
Γ

G(x− y)φ(y) dσ(y), x ∈ Rd.

We also define the boundary integral operator KΓ on L2(Γ) by

KΓ[φ](x) :=

∫
Γ

∂G(x− y)

∂ν(y)
φ(y) dσ(y), x ∈ Γ,

and let K∗
Γ be the L2-adjoint of KΓ. Hence, the operator K∗

Γ is given by

K∗
Γ[φ](x) =

∫
Γ

∂G(x− y)

∂ν(x)
φ(y) dσ(y), φ ∈ L2(Γ).

The operators KΓ and K∗
Γ are sometimes called Neumann-Poincaré operators. These operators are

compact in L2(Γ) if Γ is C1,α for some α > 0.
The following notation will be used throughout this paper. For a function u defined on Rd \Γ,

we denote
u|±(x) := lim

t→0+
u(x± tν(x)), x ∈ Γ,

and
∂u

∂ν

∣∣∣
±
(x) := lim

t→0+
⟨∇u(x± tν(x)), ν(x)⟩ , x ∈ Γ,
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if the limits exist. Here and throughout this paper, ⟨ , ⟩ denotes the scalar product on Rd.
The following jump formula relates the traces of the normal derivative of the single layer

potential to the operator K∗
Γ. We have

∂

∂ν
SΓ[φ]

∣∣∣
±
(x) =

(
±1

2
I +K∗

Γ

)
[φ](x), x ∈ Γ. (2.1)

Here, ν is the outward unit normal vector field to Γ. See, for example, [5, 12].
Let F be the Newtonian potential of f , i.e.,

F (x) =

∫
Rd

G(x− y)f(y)dy, x ∈ Rd. (2.2)

Then F satisfies ∆F = f in Rd, and the solution Vδ to (1.3) may be represented as

Vδ(x) = F (x) + SΓi [φi](x) + SΓe [φe](x) (2.3)

for some functions φi ∈ L2
0(Γi) and φe ∈ L2

0(Γe) (L2
0 is the collection of all square integrable

functions with zero mean-value). The transmission conditions along the interfaces Γe and Γi

satisfied by Vδ read

(ϵs + iδ)
∂Vδ

∂ν

∣∣∣
+
= ϵc

∂Vδ

∂ν

∣∣∣
−

on Γi,

∂Vδ

∂ν

∣∣∣
+
= (ϵs + iδ)

∂Vδ

∂ν

∣∣∣
−

on Γe.

Hence the pair of potentials (φi, φe) is the solution to the following system of integral equations:
(ϵs + iδ)

∂SΓi [φi]

∂νi

∣∣∣
+
− ϵc

∂SΓi [φi]

∂νi

∣∣∣
−
+ (ϵs − ϵc + iδ)

∂SΓe [φe]

∂νi
= (−ϵs + ϵc − iδ)

∂F

∂νi
on Γi,

(−1 + ϵs + iδ)
∂SΓi [φi]

∂νe
− ∂SΓe [φe]

∂νe

∣∣∣
+
+ (ϵs + iδ)

∂SΓe [φe]

∂νe

∣∣∣
−
= (1− ϵs − iδ)

∂F

∂νe
on Γe.

Note that we have used the notation νi and νe to indicate the outward normal on Γi and Γe,
respectively. Using the jump formula (2.1) for the normal derivative of the single layer potentials,
the above equations can be rewritten asz

δ
i I −K∗

Γi
− ∂

∂νi
SΓe

∂

∂νe
SΓi zδeI +K∗

Γe

[φi

φe

]
=


∂F

∂νi

− ∂F

∂νe

 (2.4)

on H0 = L2
0(Γi)× L2

0(Γe), where we set

zδi =
ϵc + ϵs + iδ

2(ϵc − ϵs − iδ)
, zδe =

1 + ϵs + iδ

2(1− ϵs − iδ)
. (2.5)

Let H = L2(Γi)×L2(Γe) and let the Neumann-Poincaré-type operator K∗ : H → H be defined
by

K∗ :=

 −K∗
Γi

− ∂

∂νi
SΓe

∂

∂νe
SΓi K∗

Γe

 , (2.6)
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and let

Φ :=

[
φi

φe

]
, g :=


∂F

∂νi

− ∂F

∂νe

 . (2.7)

Then, (2.4) can be rewritten in the form

(Iδ +K∗)Φ = g, (2.8)

where Iδ is given by

Iδ =

[
zδi I 0
0 zδeI

]
. (2.9)

3 Eigenvalues of the NP operator

It is proved in [2] that for arbitrary-shaped domains Ω and D the spectrum of the NP operator K∗

lies in [−1/2, 1/2], and if Ω and D are concentric disks, the eigenvalues of K∗ on H0 are ±ρn/2,
n = 1, 2, . . .. In this section we compute the eigenvalues K∗ on H when Ω and D are concentric
disks or balls.

3.1 Two dimensions

Let Γ = {|x| = r0} in two dimensions. It is known that for each integer n

SΓ[e
inθ](x) =


− r0
2|n|

(
r

r0

)|n|

einθ if |x| = r < r0,

− r0
2|n|

(r0
r

)|n|
einθ if |x| = r > r0.

(3.1)

Moreover,
K∗

Γ[e
inθ] = 0 ∀n ̸= 0, (3.2)

and

KΓ[1] =
1

2
. (3.3)

In other words, KΓ is a rank 1 operator whose only non-zero eigenvalue is 1/2.
Using (3.2), it is proved that eigenvalues of K∗ on H0 are ±ρ2/2 (see [2]). We now show that

±1/2 are also eigenvalues of K∗ on H0. These eigenvalues are of interest in relation to estimation
of stress concentration [4]. Using (3.3) we have

SΓ[1](x) =

log r0 if |x| = r < r0,

log |x| if |x| = r > r0,
(3.4)

and hence

∂

∂r
SΓ[1](x) =


0 if |x| = r < r0,

1

r
if |x| = r > r0.

(3.5)

It then follows that

K∗
[
a
b

]
=

[
−1

2 0
1
re

1
2

] [
a
b

]
, (3.6)

where a and b are constants. So ±1/2 are eigenvalues of K∗.
We summarize our findings in the following proposition.
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Proposition 3.1 The eigenvalues of K∗ defined on concentric circles in two dimensions are

−1

2
,
1

2
, −1

2
ρn,

1

2
ρn, n = 1, 2, . . . , (3.7)

and corresponding eigenfunctions are[
1

− 1
re

]
,

[
0
1

]
,

[
e±inθ

ρe±inθ

]
,

[
e±inθ

−ρe±inθ

]
, n = 1, 2, . . . . (3.8)

3.2 Three dimensions

Let Y m
n (x̂) (m = −n,−n+ 1, . . . , 0, 1, . . . , n) be the orthonormal spherical harmonics of degree n.

Here x̂ = x
|x| . Then |x|nY m

n (x̂) is harmonic in R3.

Lemma 3.2 Let Γ = {|x| = r0} in three dimensions. We have for n = 0, 1, . . .

K∗
Γ[Y

m
n ](x) =

1

2(2n+ 1)
Y m
n (x̂), |x| = r0, m = −n, . . . , n. (3.9)

Proof. It is proved in [18, Lemma 2.3] that

K∗
Γ[φ](x) = − 1

2r0
SΓ[φ](x), |x| = r0 (3.10)

for any function φ ∈ L2(Γ). So it follows from (2.1) that

∂

∂r
SΓ[φ]

∣∣
−(x) +

1

2r0
SΓ[φ](x) = −1

2
φ(x), |x| = r0. (3.11)

Let φ(x) = Y m
n (x̂). Then since SΓ[Y

m
n ](x) and |x|nY m

n (x̂) are harmonic functions in {|x| < r0},
we have

SΓ[Y
m
n ](x) = − 1

2n+ 1

rn

rn−1
0

Y m
n (x̂), for |x| = r ≤ r0, (3.12)

and (3.9) follows from (3.10). □
Lemma 3.2 says that the eigenvalues of K∗

Γ on L2(Γ) when Γ is a sphere are 1
2(2n+1) , n = 0, 1, . . .,

and their multiplicities are 2n+ 1.
By (3.12), we have

∂

∂νi
SΓe [Y

m
n ](x) = − n

2n+ 1

(
ri
re

)n−1

Y m
n (x̂), |x| = ri. (3.13)

Similarly, we have

SΓi [Y
m
n ](x) = − 1

2n+ 1

rn+2
i

rn+1
Y m
n (x̂), for |x| = r ≥ ri,

and hence
∂

∂νe
SΓi [Y

m
n ](x) =

n+ 1

2n+ 1

(
ri
re

)n+2

Y m
n (x̂), |x| = re. (3.14)

We now have for constants a and b

K∗

[
aY m

n

bY m
n

]
=

(− a
2(2n+1) + b n

2n+1ρ
n−1
)
Y m
n(

a n+1
2n+1ρ

n+2 + b
2(2n+1)

)
Y m
n

 =

[− 1
2(2n+1)

n
2n+1ρ

n−1

n+1
2n+1ρ

n+2 1
2(2n+1)

][
aY m

n

bY m
n

]
. (3.15)

Thus we have the following result.
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Proposition 3.3 The eigenvalues of K∗ defined on two concentric spheres are

± 1

2(2n+ 1)

√
1 + 4n(n+ 1)ρ2n+1, n = 0, 1, . . . , (3.16)

and corresponding eigenfunctions are[
(
√
1 + 4n(n+ 1)ρ2n+1 − 1)Y m

n

2(n+ 1)ρn+2Y m
n

]
,

[
(−
√
1 + 4n(n+ 1)ρ2n+1 − 1)Y m

n

2(n+ 1)ρn+2Y m
n

]
, m = −n, . . . , n, (3.17)

respectively.

It is quite interesting to observe that if we let 1
2 = λ0 ≥ λ1 ≥ . . . be the eigenvalues of KΓ for a

disk or a sphere enumerated according to their multiplicities, then the eigenvalues µn of K∗ satisfy

µn = ±λn +O(ρn). (3.18)

4 Anomalous localized resonance in two dimensions

In this section we consider the CALR when the domains Ω and D are concentric disks. We first
observe that zδi and zδe converges to non-zero numbers as δ tends to 0 if ϵc ̸= −ϵs ̸= 1. So, in this
case CALR does not occur regardless of the location of the source. Furthermore, if ϵc = ϵs = 1,
a thorough study was done in [2]. It is proved in [2] that if the source f is supported inside the
critical radius r∗ =

√
r3e/ri, then the weak CALR occurs, namely,

lim sup
δ→0

Eδ = ∞. (4.1)

Moreover, if F is the Newtonian potential of f and the Fourier coefficients gne of − ∂F
∂νe

satisfies the
following gap property:

[GP] There exists a sequence {nk} with |n1| < |n2| < · · · such that

lim
k→∞

ρ|nk+1|−|nk| |gnk
e |2

|nk|ρ|nk|
= ∞,

then CALR occurs, namely
lim
δ→0

Eδ = ∞, (4.2)

and Vδ/
√
Eδ goes to zero outside the radius

√
r3e/ri.

The remaining two cases are when ϵc ̸= −ϵs = 1 and ϵc = −ϵs ̸= 1. In these cases, we have the
following theorem.

Theorem 4.1 (i) If ϵc = −ϵs ̸= 1, then CALR does not occur, i.e.,

Eδ ≤ C (4.3)

for some C > 0. (We note, however, that there will be CALR for appropriately placed sources
inside the core, as can be seen from the fact that the equations are invariant under conformal
transformations, and in particular under the inverse transformation 1/z where z = x1 + ix2,
which in effect interchanges the roles of the matrix and core.)

(ii) If ϵc ̸= −ϵs = 1, then weak CALR occurs and the critical radius is r∗ = r2er
−1
i , i.e., if the

source function is supported inside r∗ (and its Newtonian potential does not extend harmon-
ically to R2), then

lim sup
δ→0

Eδ = ∞, (4.4)
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and there exists a constant C such that

|Vδ(x)| < C (4.5)

for all x with |x| > r3e/r
2
i .

(iii) In addition to the assumptions of (ii), the Fourier coefficients gne of − ∂F
∂νe

satisfies the fol-
lowing gap property:

[GP2] There exists a sequence {nk} with |n1| < |n2| < · · · such that

lim
k→∞

ρ2(|nk+1|−|nk|) |gnk
e |2

|nk|ρ|nk|
= ∞,

then the CALR occurs, i.e.,
lim
δ→0

Eδ = ∞, (4.6)

and Vδ/
√
Eδ goes to zero outside the radius r3e/r

2
i , as implied by (4.5).

Before proving Theorem 4.1 we make a remark on the Gap Properties [GP] and [GP2]. One
can easily see that [GP] is weaker than [GP2], namely, if [GP] holds, so does [GP2].

The rest of this section is devoted to the proof of Theorem 4.1. As was proved in [2], we have

∂

∂νe
SΓi [e

inθ](x) =
1

2
ρ|n|+1einθ,

∂

∂νi
SΓe [e

inθ](x) = −1

2
ρ|n|−1einθ.

Using these identities, one can see that if g defined by (2.7) has the Fourier series expansion

g =
∑
n ̸=0

[
gni
gne

]
einθ,

then the integral equations (2.8) are equivalent to
zδi φ

n
i +

ρ|n|−1

2
φn
e = gni ,

zδeφ
n
e +

ρ|n|+1

2
φn
i = gne

(4.7)

for every |n| ≥ 1. It is readily seen that the solution Φ = (φi, φe) to (4.7) is given by

φi = 2
∑
n ̸=0

2zδeg
n
i − ρ|n|−1gne

4zδi z
δ
e − ρ2|n|

einθ,

φe = 2
∑
n ̸=0

2zδi g
n
e − ρ|n|+1gni

4zδi z
δ
e − ρ2|n|

einθ.

If the source is located outside the structure, i.e., f is supported in |x| > re, then the Newtonian
potential of f , F , is harmonic in |x| ≤ re and

F (x) = c−
∑
n̸=0

gne

|n|r|n|−1
e

r|n|einθ, |x| ≤ re. (4.8)

Thus we have
gni = −gne ρ

|n|−1. (4.9)
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So we have 
φi = −2

∑
n ̸=0

(2zδe + 1)ρ|n|−1gne
4zδi z

δ
e − ρ2|n|

einθ,

φe = 2
∑
n̸=0

(2zδi + ρ2|n|)gne
4zδi z

δ
e − ρ2|n|

einθ.

(4.10)

Therefore, from (3.1) we find that

SΓi [φi](x) + SΓe [φe](x) =
∑
n̸=0

2(r
2|n|
i zδe − r

2|n|
e zδi )

|n|r|n|−1
e (4zδi z

δ
e − ρ2|n|)

gne
r|n|

einθ, re < r = |x|, (4.11)

and

SΓi [φi](x) = −
∑
n̸=0

r
2|n|
i (2zδe + 1)

|n|r|n|−1
e (ρ2|n| − 4zδi z

δ
e)

gne
r|n|

einθ, ri < r = |x| < re, (4.12)

SΓe [φe](x) =
∑
n̸=0

(2zδi + ρ2|n|)

|n|r|n|−1
e (ρ2|n| − 4zδi z

δ
e)
gne r

|n|einθ, ri < r = |x| < re. (4.13)

We obtain the following lemma.

Lemma 4.2 There exists δ0 such that

Eδ ≈


∑
n̸=0

δ|gne |2

|n|(δ2 + ρ4|n|)
, if ϵc ̸= ϵs = 1,

∑
n̸=0

δρ2|n||gne |2

|n|(δ2 + ρ4|n|)
, if ϵc = ϵs ̸= 1,

(4.14)

uniformly in δ ≤ δ0.

Proof. Using (4.8), (4.12), and (4.13), one can see that

Vδ(x) = c+ re
∑
n̸=0

[
r
2|n|
i

r|n|
− 2zδi r

|n|

]
(2zδe + 1)gne e

inθ

|n|r|n|e (4zδi z
δ
e − ρ2|n|)

.

We check that ∣∣∣∣∣∇
((

r
2|n|
i

r|n|
− 2zδi r

|n|

)
einθ

)∣∣∣∣∣
2

=
2|n|2

r2

∣∣∣∣∣r2|n|i

r|n|
− 2zδi r

|n|

∣∣∣∣∣
2

.

Then straightforward computations yield that∫
Be\Bi

δ|∇Vδ|2 ≈
∑
n ̸=0

δ

∣∣∣∣ 2zδe + 1

4zδi z
δ
e − ρ2|n|

∣∣∣∣2 (4|zδi |2 + ρ2|n|)
|gne |2

|n|
.

If δ is sufficiently small, then one can also easily show that

|4zδi zδe − ρ2|n|| ≈ δ + ρ2|n|.

Therefore we get (4.14) and the proof is complete. □
First, if ϵc = −ϵs ̸= 1, then

Eδ ≈
∑
n ̸=0

δρ2|n||gne |2

|n|(δ2 + ρ4|n|)
≤
∑
n ̸=0

|gne |2

2|n|
≤ 1

2

∥∥∥∥ ∂F∂νe
∥∥∥∥
L2(Γe)

≤ C∥f∥L2(R2).
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Suppose that ϵc ̸= −ϵs = 1, and let

Nδ =
log δ

2 log ρ
. (4.15)

If |n| ≤ Nδ, then δ ≤ ρ2|n|, and hence

∑
n̸=0

δ|gne |2

|n|(δ2 + ρ4|n|)
≥

∑
0̸=|n|≤Nδ

δ|gne |2

|n|(δ2 + ρ4|n|)
≥

∑
0̸=|n|≤Nδ

δ|gne |2

|n|ρ4|n|
. (4.16)

If the following holds

lim sup
n→∞

|gne |2

|n|ρ2|n|
= ∞, (4.17)

then one can show as in [2] that there is a sequence {|nk|} such that

lim
k→∞

Eρ|nk| = ∞. (4.18)

Suppose that the source function f is supported inside the critical radius r∗ = r2er
−1
i (and

outside re). Then its Newtonian potential F cannot be extended harmonically in |x| < r∗ in
general. So, if F is given by

F = c−
∑
n̸=0

anr
|n|einθ, r < re + ϵ (4.19)

for some ϵ > 0, then the radius of convergence of the series is less than r∗. Thus we have

lim sup
|n|→∞

|an|2r2|n|∗ = ∞. (4.20)

Since gne = |n|anr|n|−1
e , (4.17) holds.

By (4.11), we know

|Vδ| ≤ |F |+ C
∑
n̸=0

r
|n|
e

δ + ρ2|n|
|gne |
r|n|

≤ |F |+ C
∑
n̸=0

r
3|n|
e

r
2|n|
i

|gne |
r|n|

≤ C ′ (4.21)

if r > r3e/r
2
i . Thus (ii) is proved.

We now prove (iii). We emphasize that [GP2] implies (4.17), but the converse may not be true.
On the other hand [GP2] holds if

lim
n→∞

|gne |2

|n|ρ2|n|
= ∞. (4.22)

So we may regard the condition [GP2] something between (4.17) and (4.22).
Suppose that [GP2] holds. If we take δ = ρ2α and let k(α) be the number such that

|nk(α)| ≤ α < |nk(α)+1|,

then ∑
0 ̸=|n|≤Nδ

δ|gne |2

|n|ρ4|n|
= ρ2α

∑
0̸=|n|≤α

|gne |2

|n|ρ4|n|
≥ ρ2(|nk(α)+1|−|nk(α)|) |gnk(α)

e |2

|nk(α)|ρ2|nk(α)|
→ ∞, (4.23)

as α → ∞. Combined with Lemma 4.2 and (4.16), it gives us (iii).

10



5 Non-occurrence of CALR in 3D

In this section we show that CALR does not occur in a radially symmetric three dimensional coated
sphere structure when the core, matrix and shell are isotropic. We have the following theorem.

Theorem 5.1 Suppose that Γe and Γi are concentric spheres. For any ϵc and ϵs, there is a
constant C independent of δ such that if Vδ is the solution to (1.3), then∫

Ω\D
δ|∇Vδ|2 ≤ C∥f∥2L2(R3). (5.1)

Proof. Suppose that ∂
∂νe

F has the Fourier series expansion

∂

∂νe
F = −

∞∑
n=0

n∑
m=−n

gemnY
n
m. (5.2)

Then one can show as in (4.9) that

∂

∂νi
F = −

∞∑
n=0

n∑
m=−n

gemnρ
n−1Y n

m. (5.3)

By solving the integral equation (2.4) using (3.15), we obtain

φi = −
∞∑

n=0

n∑
m=−n

∆−1
n ρn−1

(
zδe +

1

2

)
gemnY

m
n , (5.4)

φe =

∞∑
n=0

n∑
m=−n

∆−1
n ρn−1

(
zδi −

1

2(2n+ 1)
+

n+ 1

2(2n+ 1)
ρ2n+1

)
gemnY

m
n , (5.5)

where

∆n :=

(
zδi −

1

2(2n+ 1)

)(
zδe +

1

2(2n+ 1)

)
+

n(n+ 1)

(2n+ 1)2
ρ2n+1.

Suppose for simplicity that ϵc = −ϵs = 1, so that zδi and zδe given by (2.5) simplify to

zδi = zδe =
iδ

2(2− iδ)
.

Then one can see that if δ is sufficiently small, then

|∆n| ≈ δ2 + n−2.

So we have

δ∥φi∥2L2(Γi)
≤ C

∞∑
n=0

n∑
m=−n

δρ2n

(δ2 + n−2)2
|gemn|2

≤ C

∞∑
n=0

n∑
m=−n

n3ρ2n|gemn|2

≤ C

∞∑
n=0

|gemn|2 ≤ C∥f∥2L2(R3).

and

δ∥φe∥2L2(Γe)
≤ C

∞∑
n=0

n∑
m=−n

δρ2n

δ2 + n−2
|gemn|2 ≤ C∥f∥2L2(R3).
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Therefore we have∫
Ω\D

δ|∇Vδ|2 =

∫
Ω\D

δ|∇F |2 +
∫
Ω\D

δ|∇(SΓi [φi] + SΓe [φe])|2

≤
∫
Ω\D

δ|∇F |2 +
∫
Ω\D

δ|∇(SΓi [φi] + SΓe [φe])|2

≤
∫
Ω\D

δ|∇F |2 + δ(∥φi∥2L2(Γi)
+ ∥φe∥2L2(Γe)

) ≤ C∥f∥2L2(R3).

If ϵs ̸= −1 or/and ϵc ̸= 1, then the same argument can be applied to arrive at (5.1). This completes
the proof. □
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Poincaré-type operator and analysis of cloaking due to anomalous localized resonance, Arch.
Rat. Mech. Anal., to appear.

[3] H. Ammari, G. Ciraolo, H. Kang, H. Lee and G.W. Milton, Anomalous localized resonance
using a folded geometry in three dimensions, in preparation.

[4] H. Ammari, G. Ciraolo, H. Kang, H. Lee and K. Yun, Spectral analysis of the Neumann-
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