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After reviewing the classical Perron-Frobenius theory of
irreducible matrices we turn to the reducible case and
discuss it in terms of underlying graphs.
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Graph of A

AeR] A>0

G(A): Graphof A
Vertex set {1,...,n}
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Graph of A

AeR] A>0
G(A): Graphof A
Vertex set {1,...,n}
i—j : a>0

i—j igyeeyiy) T—ip— - — i —J
or i=j
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Irreducibility

Airreducible:
G(A) strongly connected (Vi,j, i j):
=
NOT, after permutation similarity,

<A11 0)
Az A

with Aq1, Ao square, really there
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Irreducibility

Airreducible:
G(A) strongly connected (Vi,j, i j):
=
NOT, after permutation similarity,

<A11 0)
Az A

with Aq1, Ao square, really there
(0) irreducible
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Irreducible Perron-Frobenius

p(A) =max{|A| : A €spec(A)}

spectral radius of A€ R™
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Irreducible Perron-Frobenius

p(A) =max{|A| : A €spec(A)}
spectral radius of A€ R™

Perron (1907, 1907) Frobenius (1908, 1909, 1912)

Theorem
A >0, irreducible,
THEN

® 0 <p(A) € spec(A), (A#(0))
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Irreducible Perron-Frobenius

p(A) =max{|A| : A €spec(A)}
spectral radius of A€ R™

Perron (1907, 1907) Frobenius (1908, 1909, 1912)

Theorem

A >0, irreducible,

THEN
@ 0 <p(A) € spec(A), (A#(0))
@ p(A) simple eigenvalue
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Irreducible Perron-Frobenius

p(A) =max{|A| : A €spec(A)}
spectral radius of A€ R™

Perron (1907, 1907) Frobenius (1908, 1909, 1912)

Theorem

A >0, irreducible,

THEN
® 0 <p(A) € spec(A), (A#(0))
@ p(A) simple eigenvalue
@ Junique x, Ax=px, & x>0
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Irreducible Perron-Frobenius

p(A) =max{|A| : A €spec(A)}
spectral radius of A€ R™

Perron (1907, 1907) Frobenius (1908, 1909, 1912)

Theorem
A >0, irreducible,
THEN
® 0 <p(A) € spec(A), (A#(0))
@ p(A) simple eigenvalue
@ Junique x, Ax=px, & x>0
@ x Is the only nonnegative evector
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By continuity
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By continuity

A>0
THEN

@ p(A) € spec(A),
@ dx >0, Ax =px
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By continuity

A>0
THEN

@ p(A) € spec(A),
@ dx >0, Ax =px
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By continuity

A>0
THEN

@ p(A) € spec(A),
@ dx >0, Ax =px

000
100
000

Much, much more may be said about reducible nonneg A
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Frobenius Normal Form (FNF)

collect strong conn cpts of G(A)
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Frobenius Normal Form (FNF)

collect strong conn cpts of G(A)
After permutation similarity

Ay O ... ... 0 7
Ay Axn 0 ... 0
A— : o :
: : 0

| Akt Ak ... oo Ak

each diagonal block irreducible
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Frobenius Normal Form (FNF)

collect strong conn cpts of G(A)
After permutation similarity

Ay O ... ... 0 7
Ay Axn 0 ... 0
A— : o :
: : . 0

| Akt Ak ... oo Ak

each diagonal block irreducible

R (A): Reduced Graph of A
Vertex set {1,...,k} (classes) i—j <= A;>0

i has access to jin R(A): i jin R(A)
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Frobenius Normal Form (FNF)

collect strong conn cpts of G(A)
After permutation similarity

Ay O ... ... 0 7
Ay Axn 0 ... 0
A— : o :
: : . 0

| Akt Ak ... oo Ak

each diagonal block irreducible

R (A): Reduced Graph of A
Vertex set {1,...,k} (classes) i—j <= A;>0

i has access to jin R(A): i jin R(A)
partial order of classes
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Marked reduced graph

Each vertex marked with its Perron root (spec rad)
Example

Aty

0 A

Az1 Az Asz
77 A Ay
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Marked reduced graph

Each vertex marked with its Perron root (spec rad)
Example

Aty

0 A

Az1 Az Asz
77 A Ay

(P1) (P2)

pi = p(Ai)
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QUESTIONS

@ Nonnegativity of eigenvectors

@ Nonnegativity of generalized
eigenvectors: (A—ANfx =0

@ Nonnegativity of basis for generalized
eigenspace for p(A)

@ Nonnegativity of Jordan basis for p

@ Relation of Jordan form to graph
structure for p
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QUESTIONS

@ Nonnegativity of eigenvectors

@ Nonnegativity of generalized
eigenvectors: (A—ANfx =0

@ Nonnegativity of basis for generalized
eigenspace for p(A)

@ Nonnegativity of Jordan basis for p

@ Relation of Jordan form to graph
structure for p

We explore how the nonnegativity, combinatorial, spectral
properties inter-relate, see e.g. LAA 84 (1986), 161 - 189.
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Frobenius 1912, Victory 1985

Vertex i of is a R (A) is a distinguished vertex if
i<j = pi>pj

Theorem

Let A be a nonnegative matrix in FNF. Then the
nonnegative eigenvectors of A correspond to the
distinguish vertices of A:
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Frobenius 1912, Victory 1985

Vertex i of is a R (A) is a distinguished vertex if
i<j = pi>pj

Theorem
Let A be a nonnegative matrix in FNF. Then the
nonnegative eigenvectors of A correspond to the
distinguish vertices of A: for each distinguished vertex i of
R (A) there is nonnegative eigenvector x' with Ax' = p;x’
such that

X[ >0 if i

X/-" =0 otherwise
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Frobenius 1912, Victory 1985

Vertex i of is a R (A) is a distinguished vertex if
i<j = pi>pj

Theorem

Let A be a nonnegative matrix in FNF. Then the
nonnegative eigenvectors of A correspond to the
distinguish vertices of A: for each distinguished vertex i of
R (A) there is nonnegative eigenvector x' with Ax' = p;x’
such that

X[ >0 if i

X/-" =0 otherwise

These are linearly independent, and for any part evalue,
extremals of the cone of nonneg evectors. (Carlson 1963)
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A1

0 Ax

Az1 Aszz Asz
77 A Ay

P1>P3=pPg4> P2
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continuation

P1>P3=pPg4> P2

(P1)™ (P2)
\ /

++o+72
+ coocoP
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Warning! Nonnegative eigenvectors!

Eigenvectors
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Reminder: Jordan Form

Jordan block (of size 4):

A
0
0
0

> =+ OO

0
1

A
0

OO > =

Over the complex numbers, every matrix is similar to a
direct sum of Jordan blocks.

indy (A) : = max size of J-block for A

—min{k : N = N (M — Ak = a((M — A)F)

AN — generalized nullspace of A

Hans Schneider Reducible nonnegative matrices



Reminder: Jordan Form

Jordan block (of size 4):

A
0
0
0

> =+ OO

0
1

A
0

OO > =

Over the complex numbers, every matrix is similar to a
direct sum of Jordan blocks.

indy (A) : = max size of J-block for A

=min{k : N = N(M — AT = a(M - A)K}
AN — generalized nullspace of A

Q: Does the red graph determine the J-form for p?
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Special case 1: S 1952/56

Ac R TFAE:
(@) dim(N(A—pl)) =1

(@) All Jordan block for p are size 1
(b) The p classes are trivially ordered.

(a) & (@) are complex algebra
(b) is combinatorial
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A

0 Ax»

A3y Azx Asz
77 Az A

\ /
(P|3)
(P4)

(P=)p1 =p2 >p3 =ps
J-form for p is (1,1)
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continuation

(p1)™ (p2)*™
\ /
(ﬂs)

(Pa)

+ 0
0+
+ o+
+ o+

These are the only evecs for p
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Special case 2: S 1952/56

Ac R TFAE:
(@) dim null(A—pl) = multy(A)

(@’) There is only one Jordan block for p
(b) The p classes are linearly ordered.
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(p1)™ (p2)
\ /
(9’3)
(pa)™

(P=)p1 =pa>p2 =p3

+ + o+ X
+ oo oN
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(p1)™ (p2)
\ /
(P3)

(Pa)™
(P=)p1 =pa>p2 =p3
X

+ oo oN

_|_
0
+
+
(pl—Ax=2z, (p/l-Az=0

J-form form for p is (2)

Reducible nonnegative matrices

Hans Schneider



General case??

Example that stopped me in 1952
0

— —h o .
o

1
a
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General case??

Example that stopped me in 1952

0 0

Jordan form

az1 (2,2)
a=1 (2,1,1)
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General case??

Example that stopped me in 1952

0 0

Jordan form

az1 (2,2)
a=1 (2,1,1)

Hershkowitz-S (1991)
"Solved" the problem using majorization
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Rothblum index thm 1975

indp(A) : = max size of J-block for A

= min{k : N = N(p/— Ak = A (pl — A)K}

ind, = max length of chain of p classes \

Hans Schneider Reducible nonnegative matrices



0
10
1

m_k.
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0 0

max chain of 0 classes =2

Hans Schneider Reducible nonnegative matrices



0 0

max chain of 0 classes =2

Jordan form:
either (2,2) or (2,1,1)
either case indg = 2
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generalized eigenvectors

X a gen evector of A for A

(A-=A)'x=0,r>0

Hans Schneider Reducible nonnegative matrices



generalized eigenvectors

X a gen evector of A for A

(A-=A)'x=0,r>0

AN(A) :={x: (A=AN)'x=0, r>n}
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generalized eigenvectors

X a gen evector of A for A

(A-=A)'x=0,r>0

AN(A) :={x: (A=AN)'x=0, r>n}

i is a semi-distinguished vertex:
. 3k .
l—] = Ppi=pj
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Preferred basis Theorem
Rothblum(1975), Richman-S(1978), Hershkowitz-S(1988)

Theorem

Let A > 0. Suppose the semi-dist vertices of A with p; = A
are iy < ... <ls. Then there exist xP, p=1,....s in N(A)
such that

. . * .
ij>0 if  pe—

ij =0 otherwise

Hans Schneider Reducible nonnegative matrices



Preferred basis Theorem
Rothblum(1975), Richman-S(1978), Hershkowitz-S(1988)

Theorem

Let A > 0. Suppose the semi-dist vertices of A with p; = A
are iy < ... <ls. Then there exist xP, p=1,....s in N(A)
such that

X > 0 if ip«j
ij =0 otherwise

and such that
q

where
. . ES .
Cpq>0 if I,OHIqu;ép
Cpg =0 otherwise
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0** 0**
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T x2 x3 x4

X
1
0
1
1

Ax' = Ax? = x3 +x4
Ax® = Ax* =0
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0
110 -
1 1 0
Ax' = Ax? = x3+x4
Ax® = Ax* =0
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0 -
.0 -
110 -
1 1 0
Ax' = Ax® = x® 4+ x*
Ax3=Ax*=0
These vectors span Ay but are not lin indep

Rothblum(1975)

The gen null space for p(A) has a nonneg basis
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By Frobenius tracedown method:
Solve successively equations for x; > 0 of the form

(Aji —pilif)xi = b;

where b; > 0.
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By Frobenius tracedown method:
Solve successively equations for x; > 0 of the form

(Aji —pilif)xi = b;

where b; > 0.

Carlson1963
Ax + b = px given reducible A> 0 and b > 0.
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two references

H.S The influence of the marked reduced graph of a
nonnegative matrix on the Jordan form and related
properties: A survey, Lin. Alg. Appl. 84 (1986), 161-189.

D. Hershkowitz and H.S, On the existence of matrices
with prescribed height and level characteristics, Israel
Math J. 75 (1991), 105-117.
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two references

H.S The influence of the marked reduced graph of a
nonnegative matrix on the Jordan form and related
properties: A survey, Lin. Alg. Appl. 84 (1986), 161-189.

D. Hershkowitz and H.S, On the existence of matrices
with prescribed height and level characteristics, Israel
Math J. 75 (1991), 105-117.

THANK YOU
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