SPECTRAL THEORY OF REDUCIBLE NONNEGATIVE MATRICES: A GRAPH THEORETIC APPROACH

Hans Schneider

Chemnitz October 2010

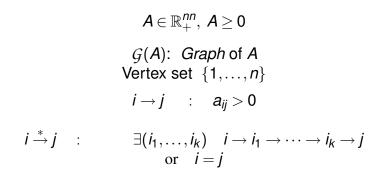
printed September 21, 2010

version 20 Sep 2010 19:00

reducible100920

After reviewing the classical Perron-Frobenius theory of irreducible matrices we turn to the reducible case and discuss it in terms of underlying graphs.

 $A \in \mathbb{R}^{nn}_+, A \ge 0$ $\mathcal{G}(A)$: Graph of A Vertex set $\{1, \dots, n\}$



A irreducible: $\mathcal{G}(A)$ strongly connected $(\forall i, j, i \stackrel{*}{\rightarrow} j)$: \iff NOT, after permutation similarity, $\begin{pmatrix} A_{11} & 0 \\ A_{12} & A_{22} \end{pmatrix}$

with A_{11}, A_{22} square, really there

A irreducible: $\mathcal{G}(A)$ strongly connected $(\forall i, j, i \xrightarrow{*} j)$: \iff NOT, after permutation similarity, $\begin{pmatrix} A_{11} & 0 \\ A_{12} & A_{22} \end{pmatrix}$

with A_{11}, A_{22} square, really there (0) irreducible

Irreducible Perron-Frobenius

$$\rho(A) = \max\{|\lambda| : \lambda \in spec(A)\}$$

spectral radius of $A \in \mathbb{R}^{nn}$

$$ho(A) = \max\{|\lambda| : \lambda \in spec(A)\}$$

```
spectral radius of A \in \mathbb{R}^{nn}
```

Theorem

•
$$0 < \rho(A) \in \operatorname{spec}(A), \ (A \neq (0))$$

$$ho(A) = \max\{|\lambda| : \lambda \in spec(A)\}$$

```
spectral radius of A \in \mathbb{R}^{nn}
```

Theorem

- $0 < \rho(A) \in \operatorname{spec}(A), \ (A \neq (0))$
- ρ(A) simple eigenvalue

$$ho(A) = \max\{|\lambda| \; : \; \lambda \in s extsf{pec}(A)\}$$

```
spectral radius of A \in \mathbb{R}^{nn}
```

Theorem

- $0 < \rho(A) \in \operatorname{spec}(A), \ (A \neq (0))$
- ρ(A) simple eigenvalue
- \exists unique x, $Ax = \rho x$, & x > 0

$$ho(A) = \max\{|\lambda| \; : \; \lambda \in s extsf{pec}(A)\}$$

```
spectral radius of A \in \mathbb{R}^{nn}
```

Theorem

- $0 < \rho(A) \in \operatorname{spec}(A), \ (A \neq (0))$
- ρ(A) simple eigenvalue
- \exists unique x, $Ax = \rho x$, & x > 0
- x is the only nonnegative evector

Theorem $A \ge 0$ THEN• $\rho(A) \in \operatorname{spec}(A)$,

 $A \ge 0$ THEN

- $\rho(A) \in \operatorname{spec}(A)$,
- $\exists x \ge 0, Ax = \rho x$

 $A \ge 0$ THEN

•
$$\rho(A) \in \operatorname{spec}(A)$$
,

•
$$\exists x \ge 0, \ Ax = \rho x$$

$$\begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

 $A \ge 0$ THEN

•
$$\rho(A) \in \operatorname{spec}(A)$$
,

•
$$\exists x \ge 0, \ Ax = \rho x$$

$$\begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Much, much more may be said about reducible nonneg A

collect strong conn cpts of $\mathcal{G}(A)$

collect strong conn cpts of $\mathcal{G}(A)$ After permutation similarity $A = \begin{bmatrix} A_{11} & 0 & \dots & \dots & 0 \\ A_{21} & A_{22} & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & 0 \\ A_{k1} & A_{k2} & \dots & A_{kk} \end{bmatrix}$

each diagonal block irreducible

collect strong conn cpts of $\mathcal{G}(A)$ After permutation similarity $A = \begin{bmatrix} A_{11} & 0 & \dots & 0 \\ A_{21} & A_{22} & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & 0 \\ A_{k1} & A_{k2} & \dots & A_{kk} \end{bmatrix}$

each diagonal block irreducible

 $\mathcal{R}(A): Reduced Graph of A$ Vertex set $\{1, \dots, k\}$ (classes) $i \to j \iff A_{ij} \ge 0$

i has access to *j* in $\mathbb{R}(A)$: $i \stackrel{*}{\rightarrow} j$ in $\mathcal{R}(A)$

collect strong conn cpts of $\mathcal{G}(A)$ After permutation similarity $A = \begin{bmatrix} A_{11} & 0 & \dots & 0 \\ A_{21} & A_{22} & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & 0 \\ A_{k1} & A_{k2} & \dots & A_{kk} \end{bmatrix}$

each diagonal block irreducible

 $\mathfrak{R}(A)$: Reduced Graph of A Vertex set $\{1, \dots, k\}$ (classes) $i \to j \iff A_{ij} \ge 0$

i has access to *j* in $\mathbb{R}(A)$: $i \stackrel{*}{\rightarrow} j$ in $\mathcal{R}(A)$

partial order of classes

Each vertex marked with its Perron root (spec rad)

Example $\begin{bmatrix}
A_{11} & \cdot & \cdot & \cdot \\
0 & A_{22} & \cdot & \cdot \\
A_{31} & A_{32} & A_{33} & \cdot \\
? & ? & A_{43} & A_{44}
\end{bmatrix}$ Each vertex marked with its Perron root (spec rad)

Example $\begin{bmatrix} A_{11} & \cdot & \cdot & \cdot \\ 0 & A_{22} & \cdot & \cdot \\ A_{31} & A_{32} & A_{33} & \cdot \\ ? & ? & A_{43} & A_{44} \end{bmatrix}$ (ρ_1) (ρ_2) (p₃) (ρ_4) $\rho_i = \rho(A_{ii})$

QUESTIONS

- Nonnegativity of eigenvectors
- Nonnegativity of generalized eigenvectors: $(A \lambda I)^k x = 0$
- Nonnegativity of basis for generalized eigenspace for ρ(A)
- Nonnegativity of Jordan basis for ρ
- Relation of Jordan form to graph structure for ρ

QUESTIONS

- Nonnegativity of eigenvectors
- Nonnegativity of generalized eigenvectors: (A – λI)^kx = 0
- Nonnegativity of basis for generalized eigenspace for ρ(A)
- Nonnegativity of Jordan basis for ρ
- Relation of Jordan form to graph structure for ρ

We explore how the nonnegativity, combinatorial, spectral properties inter-relate, see e.g. LAA 84 (1986), 161 - 189.

Definition

Vertex *i* of is a $\mathcal{R}(A)$ is a *distinguished vertex* if $i \stackrel{*}{\leftarrow} j \implies \rho_i > \rho_j$

Theorem

Let A be a nonnegative matrix in FNF. Then the nonnegative eigenvectors of A correspond to the distinguish vertices of A:

Definition

Vertex *i* of is a $\mathcal{R}(A)$ is a *distinguished vertex* if $i \stackrel{*}{\leftarrow} j \implies \rho_i > \rho_j$

Theorem

Let A be a nonnegative matrix in FNF. Then the nonnegative eigenvectors of A correspond to the distinguish vertices of A: for each distinguished vertex i of $\Re(A)$ there is nonnegative eigenvector x^i with $Ax^i = \rho_i x^i$ such that

$$x_j^i > 0$$
 if $i \leftarrow j$
 $x_j^i = 0$ otherwise

Definition

Vertex *i* of is a $\mathcal{R}(A)$ is a *distinguished vertex* if $i \stackrel{*}{\leftarrow} j \implies \rho_i > \rho_j$

Theorem

Let A be a nonnegative matrix in FNF. Then the nonnegative eigenvectors of A correspond to the distinguish vertices of A: for each distinguished vertex i of $\Re(A)$ there is nonnegative eigenvector x^i with $Ax^i = \rho_i x^i$ such that

> $x_j^i > 0$ if $i \leftarrow j$ $x_j^i = 0$ otherwise

These are linearly independent, and for any part evalue, extremals of the cone of nonneg evectors. (Carlson 1963)

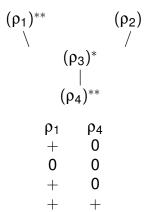
Example

$$\begin{bmatrix} A_{11} & \cdot & \cdot & \cdot \\ 0 & A_{22} & \cdot & \cdot \\ A_{31} & A_{32} & A_{33} & \cdot \\ ? & ? & A_{43} & A_{44} \end{bmatrix}$$

 $\rho_1>\rho_3=\rho_4>\rho_2$

$$(\rho_1)^{**}$$
 (ρ_2)
 $\langle (\rho_3)^*$
 $|$
 $(\rho_4)^{**}$

$$\rho_1>\rho_3=\rho_4>\rho_2$$



Warning! Nonnegative eigenvectors!

$$\begin{pmatrix} 0 & \cdot & \cdot \\ 0 & 0 & \cdot \\ 1 & 1 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 0 \\ \cdot \\ 0 \end{pmatrix} \qquad (0) \qquad (0)$$

$$\begin{pmatrix} 0 \\ \cdot \\ 0 \end{pmatrix}$$

 $\begin{pmatrix} 0\\0\\1 \end{pmatrix} \qquad \begin{pmatrix} 1\\-1\\0 \end{pmatrix}$

Eigenvectors

Jordan block (of size 4):

$$\begin{pmatrix} \lambda & 1 & 0 & 0 \\ 0 & \lambda & 1 & 0 \\ 0 & 0 & \lambda & 1 \\ 0 & 0 & 0 & \lambda \end{pmatrix}$$

Theorem

Over the complex numbers, every matrix is similar to a direct sum of Jordan blocks.

ind_{λ}(*A*) := max size of J–block for λ = min{k : $\mathcal{N} = \mathcal{N}(\lambda I - A)^{k+1} = \mathcal{N}(\lambda I - A)^{k}$ }

 \mathcal{N} – generalized nullspace of A

Jordan block (of size 4):

$$\begin{pmatrix} \lambda & 1 & 0 & 0 \\ 0 & \lambda & 1 & 0 \\ 0 & 0 & \lambda & 1 \\ 0 & 0 & 0 & \lambda \end{pmatrix}$$

Theorem

Over the complex numbers, every matrix is similar to a direct sum of Jordan blocks.

 $\begin{aligned} & \text{ind}_{\lambda}(A) := \max \text{ size of } J\text{-block for } \lambda \\ &= \min\{k : \mathcal{N} = \mathcal{N}(\lambda I - A)^{k+1} = \mathcal{N}(\lambda I - A)^k\} \end{aligned}$

 \mathcal{N} – generalized nullspace of A

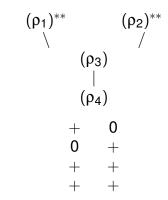
Q: Does the red graph determine the J-form for $\rho?$

 $A \in \mathbb{R}^{nn}_+$. TFAE:

- (a) $dim(\mathcal{N}(A-\rho I)) = 1$
- (a') All Jordan block for ρ are size 1
- (b) The ρ classes are trivially ordered.

(a) & (a') are complex algebra (b) is combinatorial

$$\begin{bmatrix} A_{11} & \cdot & \cdot & \cdot \\ 0 & A_{22} & \cdot & \cdot \\ A_{31} & A_{32} & A_{33} & \cdot \\ ? & ? & A_{43} & A_{44} \end{bmatrix}$$
$$\begin{array}{c} (\rho_1)^{**} & (\rho_2)^{**} \\ & & & / \\ & & & / \\ & & & & / \\ & & & (\rho_3) \\ & & & & | \\ & & & (\rho_4) \\ \end{array}$$
$$(\rho =) \ \rho_1 = \rho_2 > \rho_3 = \rho_4 \\ \text{J-form for } \rho \text{ is } (1,1) \\ \end{array}$$



These are the *only* evecs for ρ

 $A \in \mathbb{R}^{nn}_+$. TFAE:

- (a) dim null $(A \rho I) = \operatorname{mult}_{\rho}(A)$
- (a') There is only one Jordan block for ρ
- (b) The ρ classes are linearly ordered.

Example

$$(\rho_{1})^{**} \qquad (\rho_{2}) \\ (\rho_{3}) \\ (\rho_{4})^{**} \\ (\rho =) \rho_{1} = \rho_{4} > \rho_{2} = \rho_{3} \\ x \quad z \\ + \quad 0 \\ 0 \quad 0 \\ + \quad 0 \\ + \quad + \\ (\rho I - A)x = z, \quad (\rho I - A)z = 0$$

$$(\rho_{1})^{**} \qquad (\rho_{2}) \\ (\rho_{3}) \\ (\rho_{4})^{**} \\ (\rho =) \rho_{1} = \rho_{4} > \rho_{2} = \rho_{3} \\ x \qquad z \\ + \qquad 0 \\ 0 \qquad 0 \\ + \qquad 0 \\ + \qquad + \\ (\rho I - A)x = z, \quad (\rho I - A)z = 0$$

J-form form for ρ is (2)

Example that stopped me in 1952

$$\begin{bmatrix} 0 & \cdot & \cdot & \cdot \\ \cdot & 0 & \cdot & \cdot \\ 1 & 1 & 0 & \cdot \\ a & 1 & \cdot & 0 \end{bmatrix}$$

Example that stopped me in 1952

Example that stopped me in 1952

$$\begin{bmatrix} 0 & \cdot & \cdot & \cdot \\ \cdot & 0 & \cdot & \cdot \\ 1 & 1 & 0 & \cdot \\ a & 1 & \cdot & 0 \end{bmatrix}$$

0 0
×
0 0
Jordan form
 $a \neq 1$ (2,2)
 $a = 1$ (2,1,1)
Hershkowitz-S (1991)

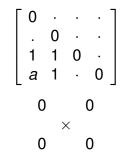
"Solved" the problem using majorization

$\begin{aligned} & \text{ind}_{\rho}(A) := \max \text{ size of } J\text{-block for } A \\ & = \min\{k : \mathcal{N} = \mathcal{N}(\rho I - A)^{k+1} = \mathcal{N}(\rho I - A)^k\} \end{aligned}$

Theorem

*ind*_{ρ} = max length of chain of ρ classes

 $\begin{bmatrix} 0 & \cdot & \cdot & \cdot \\ \cdot & 0 & \cdot & \cdot \\ 1 & 1 & 0 & \cdot \\ a & 1 & \cdot & 0 \end{bmatrix}$



max chain of 0 classes = 2

$$\begin{bmatrix} 0 & \cdot & \cdot & \cdot \\ \cdot & 0 & \cdot & \cdot \\ 1 & 1 & 0 & \cdot \\ a & 1 & \cdot & 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 0 \\ \cdot \\ \cdot \\ 0 & 0 \end{bmatrix}$$

max chain of 0 classes = 2 Jordan form: either (2,2) or (2,1,1)either case ind₀ = 2

x a gen evector of A for λ

 $(A-\lambda I)^r x=0, r>0$

x a gen evector of A for λ

 $(\boldsymbol{A}-\boldsymbol{\lambda}\boldsymbol{I})^r\boldsymbol{x}=\boldsymbol{0},\ \boldsymbol{r}>\boldsymbol{0}$

$$\mathcal{N}_{\lambda}(A) := \{x : (A - \lambda I)^r x = 0, r \ge n\}$$

x a gen evector of A for λ

 $(A-\lambda I)^r x=0, r>0$

 $\mathcal{N}_{\lambda}(A) := \{ x : (A - \lambda I)^r x = 0, \ r \ge n \}$

i is a *semi-distinguished vertex*: $i \stackrel{*}{\leftarrow} j \implies \rho_i \ge \rho_j$

Rothblum(1975), Richman-S(1978), Hershkowitz-S(1988)

Theorem

Let $\lambda \ge 0$. Suppose the semi-dist vertices of A with $\rho_i = \lambda$ are $i_1 < \ldots < i_s$. Then there exist x^p , $p = 1, \ldots, s$ in $\mathcal{N}(A)$ such that

$$x_j^p > 0$$
 if $i_p \leftarrow j$
 $x_j^p = 0$ otherwise

Rothblum(1975), Richman-S(1978), Hershkowitz-S(1988)

Theorem

Let $\lambda \ge 0$. Suppose the semi-dist vertices of A with $\rho_i = \lambda$ are $i_1 < \ldots < i_s$. Then there exist x^p , $p = 1, \ldots, s$ in $\mathcal{N}(A)$ such that

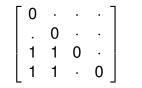
$$x_j^p > 0$$
 if $i_p \stackrel{*}{\leftarrow} j$
 $x_j^p = 0$ otherwise

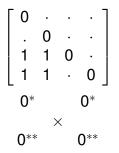
and such that

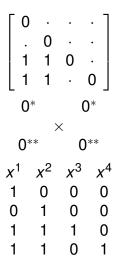
$$(A - \lambda I)x^p = \sum_q c_{pq} x^q$$

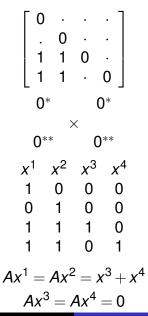
where

$$c_{pq} > 0$$
 if $i_p \stackrel{*}{\leftarrow} i_q, q \neq p$
 $c_{pq} = 0$ otherwise









more

$$\begin{bmatrix} 0 \cdot \cdot \cdot \cdot \\ \cdot & 0 \cdot \cdot \cdot \\ 1 & 1 & 0 \cdot \cdot \\ 1 & 1 & \cdot & 0 \end{bmatrix}$$
$$Ax^{1} = Ax^{2} = x^{3} + x^{4}$$
$$Ax^{3} = Ax^{4} = 0$$

$$\begin{bmatrix} 0 \cdot \cdot \cdot \cdot \\ \cdot & 0 \cdot \cdot \\ 1 & 1 & 0 \cdot \\ 1 & 1 & \cdot & 0 \end{bmatrix}$$
$$Ax^{1} = Ax^{2} = x^{3} + x^{4}$$
$$Ax^{3} = Ax^{4} = 0$$

These vectors span \mathcal{N}_0 but are not lin indep

Rothblum(1975)

Theorem

The gen null space for $\rho(A)$ has a nonneg basis

By Frobenius tracedown method: Solve successively equations for $x_i \ge 0$ of the form

$$(A_{ii}-\rho_i I_{ii})x_i=b_i$$

where $b_i \ge 0$.

By Frobenius tracedown method: Solve successively equations for $x_i \ge 0$ of the form

 $(A_{ii}-\rho_i I_{ii})x_i=b_i$

where $b_i \ge 0$.

Carlson1963 $Ax + b = \rho x$ given reducible $A \ge 0$ and $b \ge 0$.

H.S The influence of the marked reduced graph of a nonnegative matrix on the Jordan form and related properties: A survey, Lin. Alg. Appl. 84 (1986), 161-189.

D. Hershkowitz and H.S, On the existence of matrices with prescribed height and level characteristics, Israel Math J. 75 (1991), 105-117.

H.S The influence of the marked reduced graph of a nonnegative matrix on the Jordan form and related properties: A survey, Lin. Alg. Appl. 84 (1986), 161-189.

D. Hershkowitz and H.S, On the existence of matrices with prescribed height and level characteristics, Israel Math J. 75 (1991), 105-117.

THANK YOU