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SPECTRAL THEORY OF THE LINEARIZED 
VLASOV-POISSON EQUATION 

BY 
PIERRE DEGOND 

ABSTRACT. We study the spectral theory of the linearized Vlasov-Poisson equation, 
in order to prove that its solution behaves, for large times, like a sum of plane waves. 
To obtain such an expansion involving damped waves, we must find an analytical 
extension of the resolvent of the equation. Then. the poles of this extension are no 
longer eigenvalues and must be interpreted as eigenmodes. associated to "gener-
alized eigenfunctions" which actually are linear functionals on a Banach space of 
analytic functions. 
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Introduction. This paper is concerned with the linearized Vlasov-Poisson equation 

(1) al al a</> , . at + v . ax + ax 10 ( v) = 0, 
a2</> 
-2 =jl(v,v,t)dv; 11/~o=g· ax 

This equation describes the behaviour of the electron distribution function in a 
plasma: given a uniform steady distribution lo( v) and an initial perturbation 
g(x, v), the equation describes the evolution of this perturbation I(x, v, t) under the 
action of the electrostatic potential </>(x, t), generated by the charges of the electrons. 

This work (cf. [3]) is an attempt at a mathematical explanation of Landau 
damping in terms of eigenmodes and scattering theory. Landau damping arose when 
physicists solved equation (1) by means of a Fourier-Laplace transform (cf. [1, 
Chapter 8]) and wondered whether the potential </> behaved like plane waves when t 
is large. They found that there is no way to exhibit damped plane waves except by 
providing an analytical extension of the Laplace transform of I, which is only 
possible by assuming that 10 and g are analytic with respect to v. Although very 
strong, these hypotheses are verified in numerous physical situations for instance in 
the case of a Maxwellian distribution: lo( v) = exp( _v2 ). 

In this paper we show that the potential </>(x, t) actually admits the expansion 
s 

(2) </>(x, t) = L cse"Ast+insx + (!)(e rl ), 
s=l 

r < Min (ReA,), 
l~s~S 
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436 PIERRE DEGOND 

in which r can be negative, and we proceed as follows: 
Equation (1), which, for convenience, we write as 

(3) j = T· I; 1(0) = g, 
is solved by semigroup theory: I(t) = exp(tT) . g. The Dunford formula [4] then 
relates it to the resolvent RA = (A - T)-l. A deformation of the path of integration 
in the Dunford formula allows us to give an asymptotic expansion for I: 

s 
(4) I(x,v,t) = L as(v)eA,t+in,x + &(e rt ), 

s=l 
r < Min (ReA,), 

l~s~S 

where r is positive, As are eigenvalues of T, and a s ( v) are well-defined functions of 
v. 

However, the continuous spectrum of T forbids us to use eigenvalues As such that 
Re As < 0, and formula (4) only involves unstable modes. In order to get rid of this 
restriction, we construct an analytical extension RA of the resolvent across the 
continuous spectrum; but we must then choose the initial data g in a Banach space 
f of analytic functions and consider RAg as a linear functional on f. Therefore, we 
can obtain an expansion (4) involving damped waves (i.e. r may be negative) having 
the remarkable properties that the A s for Re As < 0 are no longer eigenvalues of T, 
and that the corresponding as(v) are linear functionals on f. These As may be 
interpreted as eigenmodes, thanks to a suitable generalization of T to f', the dual of 
f. 

We try then to explain the appearance of such elements of f' by means of a 
partial Fourier transform with respect to v. Indeed, the transform of some elements 
<p of f' can be defined as a genuine function ip(~) growing exponentially fast at 
infinity.1 Thus, from formula (4), we obtain 

s 
(5) l(x,~,t) = L el,(~)eA,t+in,x + &(e rt ). 

s=l 

Because of the exponential growth of elsa) for ReAs < 0, expansion (5) is valid 
uniformly for ~ in an arbitrary compact subset of R. 

This behaviour may be compared to that of the wave equation outside an obstacle 
with no trapped rays. In [2], Lax and Phillips obtain for the solution of such an 
equation, the expansion, uniform for Iyl ~ R, with arbitrary R, 

s 
(6) u(y,t)= L eA,tw,(y)+&(e rt ), 

s= 1 
r < Min (ReA,), 

l~s~S 

where W,(Y) are exponentially growing functions. This analogy will be developed in 
the conclusion. 

Landau damping is examined in [1, Chapter 8]. But beside this approach, another 
successful theory has been developed by Van Kampen [8] and Case [9], using a 
"normal mode expansion". The link between the two theories has been established 
by Trocheris [10] in an interesting paper, where he uses linear functionals on spaces 
of analytic functions. In [3] we try to relate the normal mode expansion to the 
Dunford formula. 

I The notation iP will be used for the partial Fourier transform. with respect to the space variable. 
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I. Solution and spectral theory of Vlasov-Poisson equations in a I-dimensional 
periodic domain. 

1.1. The equations and the associated semigroup. Let x E X = [0, 2 7T] be the spatial 
coordinate, v E R the velocity, and t > 0, the time. Let fo( v) be the steady state of 
the plasma, and let Fo( v) = f~( v) be its derivative which is a continuous, real-valued 
function, verifying the following hypotheses: 

HI: Fo E Ll(R) () L 2(R); 
H2: Fo is Holder continuous in the neighbourhood of every point of R. 
We seek a pair of functions f(x, v, t) and CP(x, t) solutions of the Cauchy 

boundary value problem: 
(7) 

'Of 'Of acp at + v ax + axFo(v) = 0, 
a2cp j+OO 
-2 = f(x,v,t)dv, f(x,v,O) = g(x,v). 
ax -00 

(8) f(O,v,t) =f(27T,V,t), cp(O,t) = CP(27T,t) = 0, 
acp acp 
ax (O,t) = ax (27T,t). 

The periodic boundary conditions (8) imply the conservation of charge 
ffxXRf(x,v,t)dxdv = 0, 'Vt ~ 0. 

Now, denote by d the Banach space d= {Ij) E Ll(X X R) If flj)(x, v) dx dv = O} 
equipped with the Ll norm. 

A is the unbounded operator such that AIj) = -v(alj)/ax) with domain 
D(A) = {Ij) Edlv(alj)/ax) Ed, 1j)(0, v) = 1j)(27T,v)a.e.}. 

K is the compact bounded operator of d, defined by 
KIj) = -dcp/dx . Fo, 

where cp is given by 

d 2cp j+OO 
-2 = Ij)(x,v)dv, cp(O) = CP(27T) = 0, 
dx -oc 

dcp (0) = dcp (27T). 
dx dx 

Finally T = A + K is the unbounded operator associated with equation (7). The 
following property results from a classical perturbation theorem [5, p. 497] and 
allows us to solve equations (7) and (8). 

PROPOSITION 1.1. (a) A generates a strongly continuous group of isometries of d 
given by 

exp(tA) . Ij)(x, v) = Ij)*(x - vt,v), 'V1j) Ed, 
where Ij)* denotes the periodic extension of Ij) to R: 

Ij)*(x,v) = Ij)(x - 2k7T, v), if x E]2k7T,2(k + 1)7T[. 
(b) T generates a strongly continuous group on d. 

REMARK 1.1. There are two kinds of physically reasonable boundary conditions 
for the Vlasov-Poisson equations. The first one consists of choosing x E Rand 
imposing some decay at infinity. The second one is the periodic condition (8). Both 
allow the use of Fourier analysis in order to simplify the computations, but the latter 
gives a better framework to study the existence of solutions, and the spectral theory, 
essentially because T is a compact perturbation of the transport operator A. 0 
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438 PIERRE DEGOND 

1.2. Spectrum and resolvent of T. The plasma dispersion function D( n, A) appears 
naturally in the Fourier analysis of our equation. It will be defined as follows: 

DEFINITION 1.1. For A E C\ iR and n E Z*, then 

(9) D(n,A} = 1 _ i..f+oo Fo(v~dv. 
n -00 A + mv 

Formula (9) still has a meaning for pairs (iTJ, n) in iR X Z* such that Fo( -TJ/n) = 0, 
and defines D(n, iTJ). 

The following lemma is straightforward. 

LEMMA 1.1. (a) lim 1nl _++ oo D(n, A) = 1 uniformly for A in Sa = {A E Ci IRe AI ~ 
a}, where a is arbitrary positive. 

(b) For any fixed n E Z*, lim>,_oo;>'Esa D(n, A) = 1. 
(c) Let AO in C\ iR be given such that there is no integer n verifying D(n, AO) = O. 

Then, for A in a small enough neighbourhood of AO' one has 

(10) ID(n,A}I~Do>O, "VnEZ*. 
Formula (10) is also valid for A in a neighbourhood of 00 in Sa. 

As T generates a group, its spectrum o(T) is contained in a strip {A E C liRe AI 
:0;;; "'o}. We denote, respectively, by o/T), 0R(T), adT), the point, residual, and 
continous spectra of T. 

THEOREM 1.1. For <p in d, let 

~n(v} = (2'1TfIj e-inx<p(x,v}dx 
x 

be its nth Fourier coefficient. 
(a) For A not in the spectrum of T, the resolvent R>. = (A - T)-I satisfies 

(R>.g)q. = gO/A and 

(-) gn(v) i Fo(v} f+oo gn(w}dw (11) R g = + ifn =fo o. 
>. n A + inv nD( n, A} A + inv -00 A + inw ' 

(b) The spectrum of T is given by 

a(T) = iR U{A E Cj3n E Z*; D(n,A) = o}. 
It is symmetric with respect to the real and imaginary axes, and its intersection with 

any Sa is a finite set. 
(c) A belongs to a/T) if and only if A = 0 or there exists n in Z* such that 

D( n, A) = O. Moreover, if Re A =fo 0, the set of solutions n of the equation D( n, A) = 0 
is finite and denoted by {n l , ... , n p}. Then a basis of the eigenspace E>.(T) is given by 

{ exp( injx )<pj ( v), j = 1, ... , p } , where <Pj ( v) = Fo ( v ) /( A + in jV ), 

(d) aR(T) = op(T)\iR*; oC<T) = iR*. 

REMARK 1.2. Figure 1 shows a possible configuration of a(T). Of course, it 
depends on fo and for instance in [1, p. 445], it is proved that for a Maxwellian 
fo(v) = exp(-v2 ), one has ap(T) = aR(T) = {O}, adT) = iR*. 0 
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FIGURE L Spectrum of T. ( X = Point spectrum; 0 = Residual spectrum; 

~ = Continuous spectrum; Wo = type of exp(tT).) 
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PROOF OF THEOREM 1.1. (a) Let A be such that ReA *- 0 and that D(n, A) *- 0 for 
every integer n in Z*, and let g be in d. We look for a unique solution qJ of the 
spectral equations 

(12) AqJ + v . aqJ + dcp . F, = g ax dx 0 , 

d 2cp f dcp dcp 
-2 = qJ(X, v) dv, cp(O) = cp(277) = 0, -d (0) = -d (277). dx x x 

Taking Fourier coefficients of (12) we get 

(13) (A+inv)<Pn+in~nFo=gn and -n2~n=f<Pn(v)dv. 

So, we obtain <Po = go/A and, for n *- 0, we divide by (A + inv) and integrate 
with respect to v. Therefore 

f ' fgn(V)dv D(n,A) qJn(v)dv = A + inv . 

As D(n, A) *- 0, we can then obtain ~n' and replacing it in (13), we get equation 
(11) for <Pn. 

Conversely we must now show that formula (11) defines a function of D( A) 
verifying equations (12). But gn( v)/( A + inv) are the Fourier coefficients of the 
resolvent p>..g = (A - A)-lg, which is well defined in d for ReA *- 0, because A 
generates a group of isometries. The other term, 

(-) i Fo(v) f gn(w)dw 
a>..g n (v) = nD( n, A) A + inv A + inw ' n *- 0, 

defines an absolutely convergent Fourier series in d, as the expression 

ffxXR I(~teinxldxdv ~ nDol(A) IIFoII L2(n;eAf/21IgIILI • 277~eA 
is of order n- 3/ 2 (use Lemma 1.1). This completes the proof of point (a). 

(b) Formula (11) shows that (R>..g)n is no longer defined when D(n, A) = 0, and 
this provides point spectrum (cf. (c». On the other hand, when iA is real, (R>..g)n is 
not an integrable function of v, and this gives continuous spectrum (cf. (d». So, one 
has 

oCT) = iR U {A E q3n E Z*; D(n, A) = O}. 
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Separating real and imaginary parts, the equation D(n, A) = 0 becomes, for 
A = ~ + in, 1 Fo(v)dv -0 d 1 vFo(v)dv -e + ('I] + nv)2 - an e + ('I] + nv)2 - 1. 

These equations are invariant under the transformations ~ - -~ and ('I], n) -
(-TJ, -n), so that o(T) is symmetric with respect to the real and the imaginary axes. 

On the other hand, o(T) n Sa is finite, thanks to Lemma 1.1 and to the 
analyticity of D with respect to A. 

(c) Take an eigenvalue A, such that ReA'" 0, with corresponding eigenvector cpo 
The same computations as above lead to <Po = 0 and (A + inv)<Pn + in$nFo = 0; 
D(n, A)$n = 0, if n '" O. 

As cp is not zero, not every <Pn can be zero either, which implies that D(n, A) = 0 
for some n. By virtue of Lemma 1.1(b), this equation only admits a finite number of 
solutions, n l , ... , np , so that cp reads, with arbitrary 0's 

_ ~ 0 exp(injx)Fo(v) 
cp(x,v) - i..J A + . 

j=1 mjv 
o is an eigenvalue, because every odd integrable function of v is in the null space 

of T. 
If A = iTJ, TJ E R*, the integrability of cp with respect to v implies that Fo(-TJ/n) 

= 0 for any n such that <Pn'" O. This implies that D(n, iTJ) is well defined and 
allows the same computations as in the case Re A '" O. 

(d) The elements of 0R(T) are the eigenvalues of the adjoint T* of T, which is 
defined on d* = LOO(X x R)/R (space of bounded functions defined up to an 
additive constant) by 

afJ 
T*fJ = vax - Xo(x), 

where 

l x 1+00 xo(X) = - Fo(w)fJ(y,w)dydw 
o -00 

+ 2x jf Fo(w)fJ(y,w}dydw . 
." XxR 

Then computations similar to those of part (c) yield the result. 
From what precedes, in order to get odT) = iR*, it suffices to prove that 

iR* C o(T). Now it is easily shown that the equation 
(iTJ - T)cp = exp(ix - v2)/(TJ + V)I/2 

has no solution cp Ed, proving that iTJ E o(T). 
1.3. Asymptotic behaviour of exp(tT). 
Simplifying hypotheses 1.1. We assume that for each n E Z*, the zeroes of the 

analytic function A - D( n, A) (Re A '" 0) are simple. This implies that the Laurent 
development of R A around an eigenvalue Ao is (with the notations of Theorem 1.1(a» 

(14) RAg = A 2 A {f <0, g)exp( injx )cpi v}} + 0(1) 
o J=1 
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where 

(15) 

In the general case (detailed in [3]), one can link the multiplicity of a zero of 
D( n, . ) to the algebraic multiplicity of the corresponding eigenvalue. 

PROPOSITION 1.2. Let r be a real number such that 0 < r < "'0' and that no 
eigenvalue of T lies on the line Re A = r. Let As (s = 1, ... , S) be the eigenvalues of T 
such that r < ReA s ;;:; "'0' which are in finite number by virtue of Theorem 1.1(d). 
Denote by the superscript s the quantities p, n), C) associated with A s in formulae (14) 
and (15). Then, the following expansion is valid, in the Ll norm, for g E D(A), when 
t goes to 00 (cf. Figure 2): 

(16) T ~;;, +. , Fo( v) () e l g = 1... 1... eA,1 lnjx<~s, g) . S + 0 erl . 
s=l )=1 As + m)v 

PROOF. By the theorem of separation of the spectrum (d. [5, p. 178]), one can split 
T into its bounded projection Tl associated with the compact subset of a(T): 
}; = {As's = 1, ... , S}, and an unbounded remainder T2 • Then, the Dunford for-
mula applied to Tl gives 

s 
elTg= L Res(eAIRAg,As)+eIT2g. 

s=l 

By a classical estimate, we get exp(tT2 )g = O(e rl ) in ..#, and then expansion (14) 
leads to the result. 0 

REMARK 1.3. The expansion (16) only involves unstable waves, because Re As > O. 
Moreover, in the case of the Maxwellian fo, Corollary 1.1 does not give any 
indication by virtue of Remark 1.2. 

In fact, the continuous spectrum appears as a barrier which prevents us from 
picking up the contributions of the eigenvalues A such that Re A < O. In order to 
overcome this difficulty, one must extend the resolvent R A across the imaginary axis. 

1m A 

X X 

0 
0 

0 r I Wo Re A 

® I 
I 

X )( ® 

FIGURE 2. Eigenvalues used in expansion (15) are encircled. 
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To this purpose, we refer to formula (11), with n = 1, for simplicity, and we try to 
extend the term gl(v)/(A + iv) or for instance GA(v) = I/(A + iv) (ReA> 0). 
Then, if we define 

1 (1' Gi~(V) = --:-P.V. --) + 7T8{v + TJ). 
1 V + TJ 

We have the limit in the sense of distributions 

(P.V. denoting the Cauchy principal value). Moreover, if h is a regular function, 
then 

( G h) = f h (v) dv 
A' A + iv (Re A > 0) 

is the Hilbert transform of h. It is well known [6] that this function may be extended 
into an analytic function on the half-plane Re A > -a (a > 0), if one assumes that 
h ( v) is analytic in a strip -a < 1m v < O. 

So GA and consequently RAg, must now be understood as linear functionals on a 
space of analytic functions. This is shown in detail in the next chapter. 0 

2. Analytical extension of the resolvent. 
2.1. The spaces G and r. Let Qa = {z E Cillmzl < a}, ITa = {z E CIRez > 

-a} where a > 0 is fixed. The restriction of a function defined on Q a' to the line 
1m z = TJ (TJ E [-a, aD, will be denoted by f~. 

DEFINITION 2.1. G (resp. r) is the Banach space 01 analytic functions f: Qa ~ C 
(resp. L2(X» such that 

1I/Ik (resp.n= Sup 11/~IIL2(R)(resp.L2(XXR))< +00. 
1)E[-a,+al 

These well-known Hardy type spaces are studied in [7, Chapter 5]. In particular G 
is a closed subspace of the Banach space CO([-a, +a], L 2(R», which answers the 
question of the definition of the boundary values la and I-a. From [7], we also 

1m z 

- a o 

Jj 
a 

Re z 

. _________ +-_ f 
iT) T) 

o Re z 

/ 
FIGURE 3. ITa and Qa 
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deduce the 

PROPOSITION 2.1. Let f E G. Then the Hilbert transforms H+f(z) and H-f(z) 
defined respectively for Imz > ° and Imz < ° by the formula f f(v)/(v - z)dv 
may be analytically extended respectively to 1m z > -ex and 1m z < ex, thanks to 
formulas 

and 

and we have 

(17) "iIz E QQ' f(z) = 2~ (H+f(z) - H-f(z)) (Plemeljformula). 
17T 

The dual spaces will playa fundamental part. In order to avoid conjugates in the 
Parseval formula, we define the duality in L 2( X X R) by 

(g,h) = if g(x,v)h(-x,v)dxdv. 
XxR 

Then 

PROPOSITION 2.2. (a) The restriction, to the real axis, of a function f of G or f 
defines continuous injectionsJ: f ~ L2(X X R) orJ: G ~ L 2(R). 

(b) ThemappingJ: L2(X X R) ~ f' defined by 

(Jg, h) = If g(x, v )h(-x, v) dxdv, "iIg E L2(X X R), "iIh E f, 
XxR 

is a continuous injection. (A similar property is true for J: L2(R) ~ G'.) 

PROOF. (a) Follows from the analytical extension principle. 
(b) Let g E L2(X X R) be such th~t Jg = 0. Take hex, z) = <p(-x)/(z - zo), 

with <p E L2(X) and 11m zol > ex. 
Then, (Jg, h) = ° means that 

L (v - Zfl[ix <p(x)g(X,V)dX] dv = 0, "iIz such that JlmzJ > ex 

and by the analytical extension principle, the same result holds for all z. This means 
that the Hilbert transform of the L 2-function fx<p(x)g(x, v) dx vanishes identically 
so that [6] 

ix <p(x)g(x,v)dx = 0, "iI<p E L2(X). 

Hence g = 0. 0 
We do not try to characterize the elements of f', because we shall only use the 

most regular ones, namely those g* which can be written 
m 

(18) (g*,h) = L if g/x, v)h.,,/-x, v) dxdv, "iIh E f 
j=l XxR 

where mEN, gj E L2(X X R), and T/j E [-ex, + ex] for j = 1, ... , m. 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



444 PIERRE DEGOND 

We call f{ the subset of all functionals of type (18) and Gi, the analogous with 
respect to G'. For instance, formula (17) shows that the Dirac mass l>z defined for 
z E Qa by (l>z'/) = f(z) belongs to Gi. 

Finally, we notice the following obvious facts, relative to the Fourier analysis of f 
and f'. 

LEMMA 2.1. If f E f then In E G, and IIlnllG';;; Ilfllr/ &. Moreover (h)n = 
(/',).", which we denote by l.",n' 

However, the Fourier series Lin exp(inx) do not generally converge in f. 
DEFINITION 2,2. For g* E G', we denote by exp(inx)g* E f' the functional 

(exp(inx)g*, h) = 2'IT(g*h n), 'fIh E f. 
This definition coincides with the usual one when g* is a genuine function 

(namely when g* is in the range of J). 
2.2. The analytical extension of the resolvent R x. In order to bring out the main 

difficulties, we begin with the extension of the resolvent Px = (A - A)-I, whose 
coefficients are 

(Pxg)Jv) = gn(V)/(A + inv) for g Ed. 

Let en = sgn( n), for n =1= 0, and eo = 0, and denote by B( X, Y) the space of linear 
bounded operators from X to Y. 

THEOREM 2.1. For A =1= 0, Re A > -0:, one defines Px E B(f, f') by the formula 

(19) ( - h) = 2 ~ 1-ifn O<+00 gn(nhn(n d'" ~ hE f Pxg, 'IT 1-, A + 'n" ~,g, . 
n E Z -lenO< - 00 I ~ 

(a) The mapping A ~ Px is uniformly meromorphic2 with unique pole 0, of order 1, 
and residue (1 such that (1g = go' 

(b) If g E dn f, and ReA> 0, then Pxg and Pxg coincide: Jpxg = Pxg; on the 
contrary, this is falsf for Re A < 0. 

PROOF. (a) The mapping Px belongs to B(f, f') because, thanks to the Cauchy-
Schwarz inequality, and Parseval's formula, one gets 

I (Pxg, h) I.;;; Re ~'IT+ 0: (II g-a IIL211 h_ a IIL2 + II galiL211 haliL2) + I ~ III gild h liL2 

.;;; C(A)llgllrllhllr. 
Then expanding 1/(A + inn in powers of (A - Ao) (for any Ao E ITa) gives 

P = ~ + ~ p(Pl(A - A )P 
A A 1- A() 0 

p:;;.o 

where p\P) E B(f, f') is such that 
I\() 

(p}:(,)g, h) = 2'IT( -IV L 1-,ifnO<+00 gn(nhn(n dr, 'fig, hE f. 
( '\0 + l'n,,)P+l nEZ* -IEnCX-QO 1\ ~ 

This proves the analyticity. 

lThis means" meromorphic in the uniform topology of the operators of B(f, f')". 
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(b) Proposition 2.1 applies, but it is worthwhile going into details. For Re X > 0 
the function g,,(nh,,(n/(X + inn has a unique pole at iX/no Then the Cauchy 
formula allows us to deform the integration path according to Figure 4. Thus 

(20) ( - h) = 2 " f+oo g,,{v)h,,{v) d Pxg, 7T i... "\ + . V 
IIEZ -00 A mv 

= ff Pxg(x,v)h{-x,v)dxdv, 
XxR 

proving that Pxg = JPxg· 
REMARK 2.1. For Re X < 0, the pole iX/n lies on the other side of the real axis, so 

that a residue appears in formula (20). Actually (p-;g)" is the sum of an L 2 function 
and a complex Dirac mass: 

(-) (-) 2IT ( iX ) Pxg ,,= Pxg" + Vlg" -; 8;Ajn' D 

Since the operator Px is an extension of Px = (X + v%x)-l, its inverse will 
provide us an extension of (X + v%x) to f'. 

PROPOSITION 2.3. (a) Px is injective. Its inverse is an unbounded operator from f' to 
f, denoted by (X + r· %x), whose domain Ilx is the range of Px. 

(b) Let Il = {g E fir· og/ox E f, g(O,n = g(27T,n ";fr E Qa}' Then J(Il) c 
Il x, and for such functions, the operator (X + r%x) defined above, coincides with 
the usual Xg + rog/ox. 

PROOF. The proof of (a) is similar to that of Proposition 2.2, and the proof of (b), 
to that of Theorem 2.1(b). D 

We notice that the domain Ilx of the operator (X + r%x) depends on X, and 
that this operator is not defined for X = 0, because zero is a pole of Px. So there is 
no natural way to give a sense to the operator ro /ox. 

1m :\ 
i~ 

X i:\ - Re :\ n 

1 
0 

1 
-i~ 

Case n > 0 - Im(i:\/n) > 0 
Deformation of the integration 
path from Im:\ = -~ to Im:\ = 0 

j 
in 

o 

- in 

1m :\ 

iA 
n 

Case n < 0 - Im(I:\/n) < 0 
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path from Im:\ = ~ to 1m :\ = 0 

FIGURE 4 

j 
Re :\ 
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Now we perform the extension of D(n, A) under 
HYPOTHESIS H3. Fo extends to Q", and is an element of G. 

PROPOSITION 2.4. There exists an analytical extension of D(n, .) defined on II"" 
which reads 

(21) 

Then D has the same properties as D, namely 
(a) If pjJ= {A E II",13n E Z*, D(n,A) = OJ, then pjJ() IIp is a finite set, Vf3 < lX. 

(b) The inequality ID(n, A)I ~ Do> 0, Vn E Z* is valid in the neighbourhood of 
any AO E II", \ pjJ, and also in the neighbourhood of 00 in IIp, Vf3 < lX. 

We can now go to the extension of the resolvent. The proof of Theorem 2.2 is 
similar to that of Theorem 2.1 and is omitted. 

THEOREM 2.2. For A E II", \ (pjJ u {On, define RA E B(f, f') by 

(22) (RAg, h) = (PAg, h) + 2'1T.E - (i A) 1- i
£n'" + 00 Fo~tlhi~~t) dt 

nEZ. nD n, -"n"'-OO 

. 1-ien'" + 00 gn(r~ d~' 
-ie "'-00 A + mt n 

Then RA is uniformly meromorphic on IT", with poles in pjJ U {OJ and is an extension 
of R A in the same manner as PA• 

RAg = J(RAg) VA, ReA> 0, Vg E Si/() f. 
More indications about the poles are provided by a 
SYMPLIFYING HYPOTHESIS 2.1. We assume that for any n E Z*, the zeroes of 

D(n, A) are simple. 
So, let AO E pjJ, and denote by {n j' j = 1, ... , p}, the finite set of solutions of the 

equation D(n, AO) = O. Then, the Laurent development of RA near AO is written 

RAg= A!A {f (0,g)exP(in j x)cpj} +0(1) 
o J=l 

(23) 

where CPj E G' and 0 E f' are defined according to 

(24) (cpJ' h) = 1-ien)"'+00 Fo(t)h(t) dt Vh E G 
-"n)"'-OO AO + injt 

and 

(25) 

REMARK 2.2. The poles AO' such that Re AO. > 0 are eigenvalues of T, and the 
corresponding CPj'S coincide with the eigenvalue fPj' up to the injection J, because we 
can perform a deformation of the integration paths in formula (24), as shown on 
Figure 4. 
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On the other hand, when Re AO < 0, AO is no more an eigenvalue of T, neither is 
ipj a genuine function of v. As pointed out in Remark 2.1, ipj is the sum of an 
L 2-function and of a complex Dirac mass. Thus, the concepts of eigenvalue and 
eigenfunction may no longer be used. 

However, we shall generalize (A - T); so that it operates in f', in order to 
formalize the idea that ipj is "almost" an eigenfunction. This is the aim of the next 
paragraph. 0 

2.3. The generalized spectral equation. We begin to give a sense to j g* dv for 
g* E f'. 

DEFINITION 2.3. If g* E f' is defined according to (18) and furthermore, if 
gj E L l( X X R), (j = 1, ... , p), then 

m +00 

(26) f g*dv= L f g/X,V)dVEL1(X). 
j=1 -00 

LEMMA 2.3. Let g E dn f. Then jPAgdA is well defined by (26) and is an element 
of L2(X). 

PROOF. Formula (19) gives, for g E dn f and h E f, 

(PAg,h) = f gohodv+ ffxXR (1/;-(x,v)h_ a(-x,v)+lV(x,v)h a{-x,v»dxdv 

where I/; - and I/; + are defined by their Fourier coefficients 

;f,-(v) = g-a.n(v) ifn>O, 
n A + In la + inv 

~+(v)= ga.n{v) ifn<O, 
n A + In la + inv 

the other coefficients of I/; + and I/; - being zero. It is easy to see that there exists x( v) 
in L 2(R) such that 

1 ------ ~ x{v) 't;fn E Z*. 
1 A + In la + inv 1 

Thus 

+ 00 ( A 2) 1/2 + 00 100 ,'Eo II/;;;-(v) 1 dv ~ 100 x(v)lIg_a(v)IIL2(x)dv ~llgllrIIXIIL2. 

Therefore I/; - and 1/;+ belong to Ll(R, L 2( X». Then, as j go( v) dv = 0, we obtain 
the existence of j'pAg dv in L 2( X). 0 

THEOREM 2.3. Let g E d n f, and A E IT a \ f!lJ. Then ip = RAg is a solution of the 
generalized spectral equation 

(27) ( "\ J-O)_ dcp D d 2cp f- d 1\ + ~- cp + - . ro = g' - = cp v ox dx 'dx2 ' 
dcp dcp 

cp(O) = cp(2'1T) = ° -(0) = -(2'1T) , dx . dx ' 
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where (A + ra lax) is defined in Proposition 2.3. Furthermore, exp(injx )ipj defined at 
formula (24) is solution of equation (27) where A = Ao and g = O. 

PROOF. Formula (22) shows that ip = Px(g + 1/;Fo), where 1/;(x) is an L2(X) 
function defined by 

A _ d A _ i J-;""'+OO gn(r) dr 1/;0 - 0 an 1/;n - - ( 'I.) 'I.' J" for n oF O. nD n,1\ -;'."'-00 I\+m~ 

Then g + 1/;Fo Ed, so that Lemma 2.3 applies, and one checks that1/; = -d<f>ldx. 
Then, thanks to the definition of (A + ra/ax), one gets (27). 0 

Theorem 2.3 shows that the extension R x is still, in a generalized sense, a 
resolvent of T, and that its poles Ao with Re Ao < 0 are generalized eigenvalues that 
we may call eigenmodes. 

In the next section we use this extension Rx to give an expansion of type (16) 
involving both unstable and stable waves. However, semigroup techniques fail in this 
context, and we must prove some estimates about Rx. 

2.4 Generalized asymptotic behaviour of exp(tT). 

LEMMA 2.4 ( estimate of R x). One has for every g E d and r > -a 

lim IIRxgllr- = o. 
X-> 00 

ReX;;.r 

PROOF. Using the convergence of the series and of the integrals, we may reduce 
formulae (19) and (22) to finite sums with respect to n, and integrals upon bounded 
domains with respect to r Then the Lebesgue theorem allows us to take the limit 
when A goes to infinity, which is obviously zero. Details are left to the reader. 0 

LEMMA 2.5 (estimate of the remainder). Let g E rand r (-a < r < 0) be such that 
no element of g; lies on the line Re A = r. Then 

(28) 

PROOF. Let 

(29) 

Then (28) is equivalent to 1I«J>(t)lIr- ~ C(to)lIglir. 
We integrate by parts and split «J>(t) into two operators «J>l(t) and «J>2(t), which 

read as follows for hEr, A = r + iTt (the integrals with respect to r are performed 
on the line Imr = -Ena). 

(30) (<<J>l(t),h) = 217 J+oo e i7lt (L: J gn(nhn(r; dr ) dT/, 'tIh E r, 
t -00 z. (A + inn 
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Thanks to an inversion of summations, and to the estimate 

(32) 
1 d11/lr + i( 11 + nn 12 ~ '1T/(r + a), one obtains 

I(IPI(t),h)! ~ '1TlIgllrllhllr/t(r + a) ~ C(to)llgllrllhllr-
Differentiating with respect to A in (31) we get a sum of three terms, the first one 

of which is 

2'1T 1+ 00 eilll{ L -i 1 Fo(3) dt3 
t -ctO z. nb(n,A)2 (A + int3)2 

-1 gn(t1 ) dt1 1 Fo(t2 )hn(t2 ) dt } d 
A + intI A + inA 2 2 11-

With the help of Proposition 2-4 its modulus is estimate by 

Cil F. II (1 2) 1/2 
(33) tDo(r: :) F. !gn(t1 )! dt1 

Applying now the Cauchy-Schwarz inequality to the integral with respect to 11, 
and using estimate (32) and Parseval's formula, one gets that (33) is less than or 
equal to 

C{r, a, Do, Fo)llgllrllh Ilr/t ~ C(to)llgllrllh Ilr Vt ~ to· 
A similar method can be applied so as to estimate the other terms, and to prove 

the final result. 0 
Weare now able to prove the following 

THEOREM. 2-4. As in Proposition 1.2, the superscipts s indicate quantities associated 
to the pole As of R". We define 

D1(A) = {g E.s#n L2(XX R)lv~~ E.s#n L2(XX R), g(O,v) = g(2'1T,v)a.e.}. 

Now, let g E Dl(A) n f and r (-a < r < 0) be such that no element of 9 lies on 
the line Re A = r. Denote by {AI' ... ' As} the finite set of the elements A of 9, such 
that r < ReA ~ Woo 

Then, the following asymptotic expansion is valid in the strong topology of f', when t 
goes to infinity: 

s P, 

(34) J(eITg)=go+ L L e",I+injX(C/,g)cpj(v)+lV(e rl ). 
s= 1 j= 1 

PROOF. Dl(A) is the domain of A and T, as operators in .s#n L2(X X R). Thus, 
when g belongs to Dl(A) n f, the following Dunford integral converges in the 
strong topology of f': 

J(eITg) = 2~ jP+ioo e"tR"gdA Vt > 0, Vp > Woo 
1'1T p-ioo 
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FIGURE 5. The path (C) 

Now, apply the theorem of residues with the path (C) depicted in Figure 5. We 
obtain. according to (23), 

(35) 11 ,- ~ ~ " --.- e"tR"gdX = go + £.... £.... e",t+znJ\C/, g)<pj. 
21'1T (C) s=l )=1 

Then, thanks to Lemma 2.4, the integrals along the segments of the horizontal 
lines 1m X = ±A go to zero when A goes to infinity. Furthermore, Lemma 2.5 
asserts that the integral along the infinite line Re X = r is of order ert. So, putting 
A = 00 in (35) gives (34). 0 

REMARK 2.3. Theorem 2.4 answers the questions that arose at Remark 1.4. Indeed, 
expansion (34) involves both stable and unstable waves. But we must point out the 
fact that the magnitude of the stable waves depends on the velocity v through the 
functionals <Pj. 

Before looking for similar expansions of the potential, we shall interpret the 
appearance of such functionals by means of a Fourier transform with respect to the 
velocity. 0 

3. Fourier transform with respect to the velocity. 
3.1. Fourier transform in f and f'. For g E L2(X X R), we denote by g(x, 0 its 

Fourier transform with respect to v: 

g(x,g)= f g(x,v)exp(-iv·g)dv. 

If g E f, then one gets a kind of Paley-Wiener property: 
(36) g(x, g) = exp( ."g)(g,,)(x, g). 

DEFINITION 3.1. If the element g* of f{ is given by (18) then 
m +00 m 

(37) g*(x, g) = L f gj(x, v )e-i(V+i"J)~ dv = L gj(x, Oe"J~. 
)=1 -00 )=1 

REMARK 3.1. This definition seems very natural, but the exponential growth of g*, 
when g goes to infinity, explains why g* cannot be considered as an ordinary 
distribution. Analogous definitions can be stated for G, and for instance, one has 
8=(0 = exp(-izg). 
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But a difficulty arises from the nonuniqueness of expression (18) for g*. However, 
one has 

PROPOSITION 3.1. Let g* in f{ be given by formula (18). then g* is identically zero if 
and only if its Fourier transform g* given by (37) is identically zero. 

PROOF. It uses the same techniques as Proposition 2.2, and is omitted (cf. [3]). 0 
3.2. Fourier transform of the resolvent and of its extension. Theorem 3.1 clarifies the 

meaning of the analytical extension of the resolvent. We denote by Hoa) the 
Fourier transform of Fo(v). 

THEOREM 3.1. (a) Let Re A be positive and g belong to d. Then one has for Ii =F 0: 

- 1'000 ds (38) (Rxgta) = e-X(S-~)/ngn(s) -; 
~ 

i 1'000 -X(s-~)/nH ( ) ds '1'"00 -Xs/n- ( ) ds + (') e 0 s e gn S • nD n, 1\ ~ non 

(b) Let Re A > -a and g E d n f. Then the Fourier transform of R x g, which is an 
element of f{, is still given by formula (38). 

REMARK 3.2. In st~ent (a), (Rxg)n is a continuous function of ~ going to zero 

at infinity, whereas (Rxg)n (for -a < Re A < 0) grows exponentially, when ~ tends 
to infinity. Furthermore, in the latter case, the convergence of the integrals in (38) is 
due to formula (36). 

However, the same formula (38) gives the resolvent and its extension and they 
both satisfy the spectral equation 

0- . 
ACPn - n o~n - ~CPn(O) . Ho = gn if n =F O. 

Similar properties are true for the eigenfunctions <pj( v), and their generalization 
<Pj( v). These considerations strengthen our feeling that R x is the right extension of 
Rx and that its poles are genuine "generalized eigenvalues" of operator T. 

PROOF OF THEOREM 3.1. (a) The problem reduces to looking for the Fourier 
transform of ~n(v) = <p(V)/(A + inv) where <P E L1(R). Now ~n is a solution of the 
equation 

Thus 

(39) - 1'000 ds ~n(~) = e-X(s-n/ncpn(S)-' 
~ n 

(b) Now, we prove that the Fourier transform of the functional ~n E G1 such that 
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(where fP E G n Ll(R)) is still given by (39). According to Definition 3.1, one gets 

:: j+oo fP_."a(v)exp(-iv~)dv 
1/; (~) = e-·"a~ 

n -00 (X + In la) + inv 

But, since Re(X + Inla) > 0, the proof of (a) applies and gives 

t(~) = e_."a~~E"OO e-(A+lnla)(s-~)/n<P_."a(s) ~. 

Formula (36) then leads to (39). 
3.3. Asymptotic behaviour of the fourier transform of the distribution function and of 

the potential. 

THEOREM 3.2. Assume that the hypotheses of Theorem 2.4 are satisfied, and 
furthermore, that g-a and ga E Ll(X X R). Then the velocity Fourier transform of 
exp(tT) . g expands according to 

(40) J(exp(tT)g)(x, O = L eA,t+injx(CjS, g)~ja) + goa) + (9(e rt ) 
soj 

in CO([-R, +R]~, Ll(X)) for every arbitrary R > O. Then the following expansion 
holds for the potential cp in W2.1( X): 

(41) 
~' ., i ( Cjs, g) ) cp(x, t) = £..- e,,·,t+lnjx. s + (9(ert . 

. n· 
So) } 

PROOF. The velocity Fourier transform of equation (34) gives (40). However, the 
main problem is to estimate the Fourier transform of the integral remainder Sr(t) 
(formula (29)) in the CO([-R, R], L 1(X))-norm. This is not a consequence of 
Lemma 2.5, because the Fourier transform is not continuous on f', and estimate 
(40) is actually sharper. Keeping the notations of Lemma 2.5, we shall prove that 

(42) II<pl(t) Ilco([-RoR]oL1(X» ~ C, 'Vt;;. to> 0 
where C = C(to, g, r, R). A similar estimate can be proved for fP2' by means of the 
same techniques, and is omitted (cf. [3]). 

Indeed, one can invert the summations in (30) and compute the integral with 
respect to 1/, by the residue theorem. Then one has 

(fPl(t),h) = (2'lT)2e- rt L j-iE"a+oo gn(nhn(ne-initdK. 
nEZ* -lEna-CO 

Thus 

(fPl(t),h) = 2'lTe- rtff (y-(x,v)h_a(-x,V) +y+(x,v)ha(-x,v))dxdv 
XxR 

where, one can easily check by the aid of Fourier coefficients that 
e±i(X-y)-at 

Y '1'(x v) = f g (y -vt v) dlJ , X + a '1 _ e ± i(x-y)-at :f' 

This proves that fPl(t) is an element of f{, whose Fourier transform is 
<PI (t, x, ~) = 2'lTexp( -rt)( y- (x, Oexp( -a~) + y+ (x, ~)exp( aO). 
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Then 

II<h (t) Ilco([-R.R].LI(X)) ~ C( to)e-(r+a)teaR (II ga IILI + II g-aIILI) 

and since r + a > 0, one gets (42). 

453 

As far as cf> is concerned, put ~ = 0 in (40) and integrate twice with respect to x. 
Since D(nj, As) = 0, then one has cP}(O) = -in}, which leads to (41). 0 

Expansion (41) was the aim of this paper. However, expansion (40) presents 
interesting analogies with Lax and Phillips' scattering theory, which we detail in the 
conclusion. 

3.4. Comparison between Vlasov's equation and scattering theory. One of the aims 
of the scattering theory [2] is to obtain an asymptotic behaviour for the wave 
equation outside a bounded obstacle. Although the total energy of the solution 
remains constant, the dispersion towards infinity leads to a local decay of the L oc 

norm of the solution. This decay is well expressed by expansion (6). 
The same phenomena actually arises for Vlasov's equation. Indeed, for any fixed 

x, expansion (40) is only valid locally in ~, because of the exponential growth of the 
cPj(~). Moreover, the velocity Fourier transform of Vlasov's equation is a perturbed 
transport equation 

a/n a/n i v ( at - na[ - ~fn O)Ho = 0 

whose solution propagates towards infinity in the ~-space. Thus, in a stable periodic 
plasma, the energy disperses towards the high oscillatory modes in the velocity 
space, which explains the appearance of "analytic distributions". This phenomena is 
known in physics as "phase mixing" and is sometimes considered as unphysical (cf. 
[1, §8.7]). 
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