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Abstract. We study unimodal interval maps T with negative Schwarzian derivative
satisfying the Collet-Eckmann condition |DT"(7c)| = KA! for some constants
K>0and A,>1 (c is the critical point of 7). We prove exponential mixing
properties of the unique invariant probability density of 7, describe the long term
behaviour of typical (in the sense of Lebesgue measure) trajectories by Central
Limit and Large Deviations Theorems for partial sum processes of the form
Sp= Y1 o f(T'x), and study the distribution of “typical” periodic orbits, also in
the sense of a Central Limit Theorem and a Large Deviations Theorem.

This is achieved by proving quasicompactness of the Perron Frobenius oper-
ator and of similar transfer operators for the Markov extension of T and relating
the isolated eigenvalues of these operators to the poles of the corresponding Ruelle
zeta functions.

1. Introduction

During the last years considerable progress was made towards the understanding
of the metric structure of general unimodal maps with negative Schwarzian
derivative (henceforth called S-unimodal maps). The likely limit set in the sense of
Milnor [ Mi] was described and related to the conservativeness/transitiveness of the
map with respect to Lebesgue measure [ BL1, BL3, GJ, Ma, K4]. The ergodicity of
S-unimodal maps without stable periodic orbit was proved in [BL2, BL3, Ma]. (For
a discussion of these results see [ HK3].) Also new sufficient or equivalent conditions
for the existence of invariant probability densities were found. (The uniqueness of
such invariant densities follows from the ergodicity of T.) Before we describe some of
these results, we introduce the class of maps we are going to investigate:

T:[0,1]—[0, 1] is of class C3 and has a unique nondegenerate critical point
¢ of order [, see (1.2).
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We also assume that T has negative Schwarzian derivative, i.e.

T 3 T/I 2
== =] 20 t h "=0.
ST T 2( T’) <0 except at ¢ where 7' =0

For such maps Collet-Eckmann [CE] proved:

If lim inf ",/|DT"(Tc)| > 1, then T has an invariant probability density.
Indeed, they used some additional assumption, which was removed in [N3].
Recently, Nowicki—van Strien [ NvS2] strengthened this to:

If 3 |DT"(Tc¢)|” ' < oo, then T has an invariant probability density .

n=1

For xe[0, 17, let A(x):= lim sup,_ ., /| DT"(x)|. With this notation Keller proved
in [K4]:

If A(x) > 1 for a set of points x of positive Lebesgue measure, then T has
an invariant probability density.

Finally, combining this with observations from Nowicki [ N17], the following result
is shown in [K4]:

If T is uniformly hyperbolic on periodic points, i.e. if
inf {(z): T"z = z for some neN} > 1,
then T has an invariant probability density.

As a consequence of the general metric theory of S-unimodal maps [ BL3, K4,
Le] it is known that an invariant probability density, if it exists at all, gives rise to
a measure preserving dynamical system which is mixing (and even weakly
Bernoulli) up to a finite rotation. This means that there is a finite disjoint collection
of pintervals I, . . . , I,_; which are cyclically permuted by 7, and T'?, restricted to
any of these intervals, is unimodal and mixing. If p = 1, T is called nonrenormaliz-
able, otherwise we say T is finitely renormalizable.

None of these results, however, answers the following two questions in case
T has an invariant probability density:

1. Suppose T 'is mixing with respect to its invariant density. What is its mixing rate
in terms of correlation decay or coefficients of weak Bernoulliness (= coefficients of
absolute regularity)?

2. How are “typical” periodic orbits distributed?

In this paper we attempt to answer these two questions for S-unimodal maps
satisfying the Collet-Eckmann condition

Ac.> 1, where i.:=liminf’/|DT"(Tc)|, (1.1)

R— Q0

henceforth called Collet—Eckmann maps (C-E maps). Benedicks—Carleson [BC]
proved that the set of parameters a for which the map x+- ax(1 — x) satisfies the
condition (1.1), has positive Lebesgue measure. It is widely believed that these maps
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are very close to uniformly hyperbolic ones, i.e. to maps T for which there is some
k > 0 such that |(T*)'(x)| > 1 uniformly for all xe[0, 1]. Very general transfer
operators and zeta functions for uniformly hyperbolic maps were studied in [BK ],
and the results proved there open the road to answering the above two questions
for such maps (cf. also [K5]). In this paper we apply the same strategy of proof to
Collet-Eckmann maps T satisfying the following additional regularity assum-
ptions:

T(0) = T(1) = 0, and for each B, > 0 there is a constant M > 0 such that
for all [0, Bo1,

— el 1\8
1. M“<<&> <M for all x,

|DT(x)]
|x_cIl—1 B
2. Var[0’1]<_|“D“f(xj’|* < M and (12)
[Tx — Tul |Tx — Tv| .
. s v —_— M if .
3 Varlo’"]<|x—u||DT(x)| , Val|, 1 % — ol DT < ifu<c<vo

These conditions are satisfied e.g. if 7' is a polynomial map with vanishing
derivatives at ¢ of all orders up to [ — 1, but also for T'(x) = a(l — |2x — 1|') with
real I > 1. In both cases conditions 1 and 2 are easily checked. For condition 3 one
should observe that the expressions of interest are bounded by 1 if both, x and
u (respectively v), are close to ¢, and that the derivatives of these expressions have
a bounded number of sign changes.

Our main results determine the spectrum of transfer operators associated with
T (Theorem 2.1) and relate poles of dynamical zeta-functions of T to isolated
eigenvalues of these operators (Theorem 2.2). As it involves the Markov extension
of T, we can give a precise formulation of it only after some preparations in Sect. 2.
Here we formulate some consequences of these theorems, which can be stated more
directly:

Let T be a nonrenormalizable Collet-Eckmann map, and denote Lebesgue
measure on [0, 1] by m. Then T has an invariant probability density h, and for
i = h-m, the dynamical system (7, it} is mixing.

Theorem 1.1. (T, u) has exponentially decaying correlations, namely: There are
constants C > 0 and p < 1 such that for any measurable F, G:[0, 1] - C with F of
bounded variation and [|G(x)|'*’dx < oo for some 6 > 0 and any neN holds

|[F-(GoT")dp — [Fdu-[Gdy) < C-p"var(F) | G(x)ll s
Here var(F) denotes the variation of F over [0, 1].

Remark 1.1. For Misiurewicz maps (maps for which ¢ is not an accumulation
point of (7T"c),~o) an estimate of this type is contained in [Zil]. For maps of
Benedicks—Carleson type (maps with A, > 1 and | T"¢ — ¢} > r" for some r > 0 and
all n =1, see [BC]) LS. Young announced a result like Theorem 1.1 during
a conference on Lyapunov Exponents in May 1990 at Oberwolfach. It is published
in her preprint [ Yo}, which we received, after this paper was submitted. In both
situations also a central limit theorem like our Theorem 1.2.1 is proved.
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Remark 1.2. The invariant density h(x) can be estimated from above as follows:

h(x) < const- Y. |[DT*"}(Tc)|~ | x — Tle|~271D .

i=1

This is proved, even for more general maps, in [N4]. From our construction of the
density h we can derive only a weaker estimate. L.S. Young [Yo], however,
obtained from her construction an estimate similar to the one above. For
Misiurewicz maps an estimate of this type was already obtained by Szewc [Sz].

Now consider F:[0,1] — R of bounded variation or F(x) = log|T'{x)| and
define random variables S,(x) = Z?;Ol F(T'x) on the probability space ([0, 17, m).
It follows from Theorem 1.1 that

0<o#=Var(F)+2:) Cov(F,FeT")< w0,
n=1

where Var and Cov denote variance and covariance respectively (compare e.g.
[Rou]). (If F = log| T}, which is not of bounded variation, one has to approximate
F by F, = max{F, —n}.)

Theorem 1.2. 1. The process (S,).>o Satisfies the following central limit theorem:
Law(n~ 'S, — [Fdu)= A(0,07) .

(A0, 0) denotes the point mass in 0.)
2. Suppose 6% > 0. Then (S,),» o satisfies the following large deviations estimate: For
each sufficiently small ¢ > 0 there is — oo < a(e) < O such that

1

>s}:(x(s).

1
lim - log m {
Remark 1.3. The possible occurrence of ¢ = 0 is discussed in [Rou, PUZ]. In
particular, 6 > 0if F is an indicator function. For Misiurewicz maps (see Remark
1.2) and for F =log|T"| see also [Zi2].

Remark 1.4. Stronger limit theorems such as invariance principles can be proved

along the lines of [HK1] and [Ry]: First use the spectral properties of j,,; (see
Corollary 2.1) to show that the itinerary process (I,),n (defined by I,(x) = L if
T"x < ¢ and L,(x) = Rif T" x > c) is absolutely regular (= weakly Bernoulli) with
exponential mixing rate, and then apply general results from the theory of station-
ary stochastic processes. For Misiurewicz maps this was done in [Zil]. The proof
there relies on a spectral representation theorem for Perron-Frobenius operators
of Misiurewicz maps given in [Sz] which is similar to our Theorem 2.1. However,
we must say that we were not able to follow all the arguments used in [Sz], namely
his assertions (5.30) and (6.18).

Remark 1.5. Using our Proposition 4.1, one can proceed as in [Rou] to prove
convergence rates in the central limit theorem and a local limit theorem.

Remark 1.6. If T is a finitely renormalizable Collet~Eckmann map, then, as we
remarked above, it has a periodic interval I of some period p, and the dynamical
system (I, T?, u|;) is mixing. Theorems 1.1 and 1.2 hold also for this system.
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For the next theorem let Per, = {xe[0, 1]: 7" x = x}. The sets Per, are finite,
and we consider discrete probability distributions v, on Per, with probabilities
va(x) proportional to |[DT"(x)|~ . These distributions reflect the fact that a periodic
orbit is detected all the easier the more stable it is.

Consider again F:[0, 1T — C of bounded variation or F = log|T’|, and define
random variables S, on the probability space (Per,, v,) by

Su(x) = "f F(T'x).
i=0

Theorem 1.3. 1. The process (S}),> o satisfies the following central limit theorem:
Law(n™ 128, — [Fdu) = A4'(0,0%) .

2. Suppose 6} > 0. Then (S,),>o satisfies the following large deviations estimate:
For each sufficiently small ¢ > O there is — o0 < a(g) < 0 such that

1 1
lim —logvn{ ;S;,—deul >8}=oc(s).

Remark 1.7. If F =log|T’|, the theorem says that v,-typical periodic orbits have
Lyapunov exponents very close to the exponent of m-a.e. trajectory.
Analogues of Remarks 1.5 and 1.6 apply also to (S}),en-

Remark 1.8. Dynamical zeta functions and their relations to transfer operators
have been first studied by Ruelle, see e.g. [Rue]. A very complete account of
transfer operators, zeta functions and the distribution of periodic orbits for sub-
shifts of finite type and Axiom A systems is the recent book by Parry and Pollicott
[PP]. Results like Theorem 1.3 for Axiom A flows were obtained without using
zeta functions by Lalley [La].

2. Outline of the Main Results and Scheme of the Proofs

The strategy of proofs is the following: We extend the system ([0, 1], T) to a system
(X, T) (Sects. 2.1, 3), which inherits local properties (such as metric and derivative)
of ([0, 1], T). On X we introduce a new metric (Sect. 6.2) in which some iterate of
T is uniformly expanding (Proposition 6.3). We find isolated eigenvalues of the
Perron-Frobenius operator (a particular transfer operator) in the new metric (2.1)
and deduce mixing properties of the invariant density on X and on [0, 1] (Corol-
lary 2.1 and Appendix B).

In order to prove Theorem 1.3 we use zeta functions (Sect. 2.3) which are related
to the characteristic functions of the measures v, on periodic points. We prove a 1-1
correspondence between poles of zeta functions and isolated eigenvalues of corres-
ponding transfer operators (Theorem 2.2), and using analytic perturbation theory
for linear operators (Proposition 4.2 and Sect. 5)) we deduce Theorem 1.3.

2.1. Markov Extensions. An essential tool in this paper is the Markov exstension
of T, which was used in [ K4] to study Lyapunov exponents of maps with negative
Schwarzian derivative and in [ BK ] to investigate the relation between the poles of
zeta-functions and eigenvalues of transfer operators for 7" in (abstract) hyperbolic
situations.
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The Markov extension of T (more exactly: of the dynamical system ([0, 1], T'))
is a dynamical system (X, T') together with a factor map n: X — [0, 1]. The state
space X is a countable union of intervals D;, (i€ N), which are disjoint copies of
subintervals D; of [0, 1]. One should think of it as an infinite tower of intervals over
the basis [0, 1]. = maps all points X€ X from the same vertical fiber to the same
base point x = n(x). The requirement 7o T = T o7 means that T acts horizontally
just like 7 but may (and will) push a point X from one leyel to another. Hence it
makes sense to talk about the derivative 7’ of T, namely 7' = T'ox. Also, as X is
a_countable union of intervals, it is natural to specify a Lebesgue measure # on
X by myp,on~' =mp,(ieN). Further details of this construction are given in
Sect. 3.

2.2. Transfer Operators. Many aspects of the dynamics of T and T can be de-
scribed by transfer operators £, and %, associated with these transformations. For
@eCl% we define

Lp: CONS N Zofy= Y o(f),

yeT ~1x

and analogously %;: CX — CX for ¢peCX. &, is obyiously a well defined linear
operator, whereas one has to be careful in defining % since its definition involves
a possibly infinite summation (7 is an infinite-to-one transformation). Occasionally
we write £ [¢] instead of .. . R

Of immediate interest are the transfer functions y = 1/|T'| and = 1/|T"].
They not only give rise to positive operators, but %, also has the property that for
any two bounded measurable f,4:[0,1] - C,

[f-(geTydm = {(Z,f)-gdm .

In particular, if / is a probability density on [0, 1] satisfying £, h = h, then u = hm
is a T-invariant measure and mixing properties of the system (7, 1) are reflected
by spectral properties of %, cf. [HK1]. This operator is traditionally called
Perron-Frobenius operator.

_ The same holds for .%; with respect to the measure i, the Lebesgue measure on
X. Also (cf. [K2, Lemma 4.6]),

if h=h and h(x)= Y h(%), then Lh=h. 2.1)
Unfortunately, in the case of maps with critical points, the special transfer

functions ¥ and tﬁ are unbounded and may give rise to transfer operators with very
unpleasant spectral properties. One way to overcome this difficulty is to consider

a transfer function ¥ which is multiplicatively cohomologous to i,

=

Y=y —— (2.2)
v Wo T

with a weight function W, w(x) % 0 for all X. It follows from the definition of
Y¢ that

2500 -f) = W Zo(f) . (2.3)



Collect—-Eckmann Maps 37

In Sect. 4 'we investigate /\.?”; for particular weight function w, for which this

A

operator leaves the space BV of functions of bounded variation f X — Cinvariant.
More precisely, as in [BK] we define

= {feC*:|flm < o0},
where
1 Fl5= Y, <varm (f) + sup 1f|> :

BV equipped with the norm | - ||z7 is Banach space.
Recall that

2. = liminf" /[DT"(Tc)], and let 2.4)
Aper:=Inf{A(z): T"z = z for some neN} > 1, (2.5)

| 1/m.

Ay:=liminf {|n :n is the biggest monotonicity interval of 7"} . (2.6)

Denote
Agi=min{l., A} and Ag:=min{ig", 1,} . 2.7)

In Sect. 6 we discuss the relations between the various A’s, and we see that 1 > 1
follows from our basic assumption 4, > 1.
Along the lines of [BK] we prove the following spectral theorem in Sect. 4.1:

Theorem 2.1. Suppose T is a Collet—-Eckmann_map satisfying (1.2). For each
o> /IE there is a weight function W defining ¥ such that the transfer operator
g\y BV BV is quasicompact with spectral radius 1 and essential spectral radius
CSS < @

This means that, for each © > Ag ! the weight function can be chosen such that the
operator £, can be decomposed as

~ N(®) - . A
Lo= ), p(P+N)+PZL, (2.8)
i=1
where 9@, fori=1,...,N(@),and 2 are prOJectlons commuting with .,Zy and such

that 2P, = PP — Oforlqkjandﬂ-l-Z@—Id Foreach i=1,...,N(O) we
have, | p; | > @, rank(%) < o0, and .4 is nilpotent with Q"/V W P = JV Finally

II?g a7 < const- O™

Remark 2.1. Further special features of the particular transfer function ¥ are:
p1 =1, and the set {p; |p;l =1} is a cyclic group of simple eigenvalues. In
particular, the corresponding .4 are identically O.

Remark 2.2. One cannot expect a better estimate of the essential spectral radius
than re < /Ipe, For the full parabola Tx = 4x(1 — x), which is conjugated to the
tent map with slope 2, the essential spectral radius equals 1/2, and one has

Aper = 2 = /4 = A,
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Although we are quite far from proving it, we conjecture that the essential
spectral radius is equal to 4.} if T'is uniformly hyperbolic on periodic points. Even
more, there might be a functional analytic setting such that this statement makes
sense for any S-unimodal map including those with stable periodic orbits and those
with a solenoidal attractor.

A

Let BV, = {f:fe BV}, and for GeBV; let [|d]la:= g% "l . It is obvious
that (BV;, ||+|lw) is a Banach space, isometrically isomorphic to (BV, | - || z7).
Because of relation (2.3) we obtain immediately

Corollary 2.1. %:ﬁ/w - Ig?/w is quasicompact with spectral radius 1 and essential
spectral radius v, < 1. The spectral decomposition from (2.8) carries over to %.

Theorem 1.1 foliows from Corollary 2.1 by a standard calculation (see Appen-
dix B). The central limit part of Theorem 1.2 can be deduced from Theorem 2.1 as
in [K1], where a central limit theorem of Gordin is applied. There is, however,
a more classical way to do this, which was introduced in [Rou], and which can be
modified to yield a proof of the large deviations part of Theorem 1.2. It uses the
relation between more general transfer operators and Fourier or Laplace trans-
forms of the random variables S, introduced in Sect. 1.

For F:[0, 1] — C of bounded variation and §, teC let

P(x) = YP(x)- & FP, GR) = F(R)- & F, G(R) = PI(R)- e T L (29)

In Sect. 4 we actually prove that, for f close to 1 and sufficiently small |¢|, Theorem
2.1 and Corollary 2.1 remain valid for 3[@] and #[¢] instead of 3[&"] and
& [zp] except that the spectral radius needs no longer be 1. (For arbitrary §, te C it
may happen that the essential spectral radius and the spectral radius coincide, i.e.
that the operator has no isolated leading eigenvalues.) This fact, combined with
general analytic perturbation theory, is used in Sect. 5 to prove Theorem 1.2 from
the Introduction. Let § = 1. The transfer operators are linked to these probabilistic
results by the fact that | g [¢] hdim (which is a function of t) is just the Fourier or
Laplace transform of S, when ¢ is purely imaginary or purely real respectively. For
the function F =log|T’|, which is not of bounded variation, we set t = 0, and
[ Z"[ @1 hdm, as a function of f — 1, is again the transform of S,.

For a more comprehensive discussion of the various approaches to probabilis-
tic limit theorems for mixing transformations see [ K2, Sect. 9].

2.3. Zeta Functions. In order to relate the distribution of typical periodic orbits to
the invariant measure u, we study dynamic zeta functions

ttore =ep( 3 Zao0 ).
n=1
where

Llel= Y (e()-o(Tx)-...-0(T""'x)).

xePern

{[$](2), and {[D](z) are defined analogously. In fact, using ¢ = g o,
{[p] = {11 = (21 (2.10)
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The first equality is a consequence of elementary facts about Markov extensions of
unimodal maps, see (3.5), whereas the second one follows immediately from the

relation
s oo [ PE) Y
@(X)——(p(nx) <‘,'{)(7:A)) s

see (2.9) and (2.2). Our main result is

Theorem 2.2. Suppose T is a Collet—Eckmann map satisfying (1.2). Let ¢ and @ be
transfer functions as in (2.9) depending on parameters § and t, and assume Rf > 0.
Define

9= 9[®] = lim "/supm?()e)-é(fﬁ)-. L B(TR)] .

n— X

Then

1. C[go]/(z) = quﬁ](z) is meromorphic and nonzero in {|z} < 37 '}.

2 %3:BV — BV has essential spectral radius v, < 9, and if |z < 971, then z is
a pole of ¢ with multiplicity k if and only if z~' is an eigenvalue of Lg with
multiplicity k.

3. For each © > Ag ' there is a weight function W such that for small t and f close to
1 holds 9[®P] > O.

Assertions 1 and 2 follow directly from Proposition 4.3. For t = 0 and § = 1, the
third assertion is a direct consequence of Proposition 6.3, and the argument
extends to t and  — 1 close to 0, because I3[ @] depends continuously on ¢ and f.

The probabilistic results on the distribution of typical periodic orbits given in
the introduction follow from this theorem similarly as Theorem 1.2 follows from
the spectral representation: Defining ¢, as in (2.9), it is easily checked that
Lo 1/C. ] (as a function of £) is just the Fourier respectively Laplace transform
of the random variable S, defined in the introduction. Theorem 2.2 allows to
expand this transform in powers of the isolated eigenvalues of ¥ [(p,] and % [x//]
and analytic perturbation theory for isolated cigenvalues links these facts to the
probabilistic statements made in Theorem 1.3. More details are given in Sect. 5,
and a general account of these ideas (presumably a kind of folklore knowledge) is
[K5].

3. Markov Extensions

In this section we define the Markov extension of the dynamical system ([0, 1], T).
As a purely topological construction it was introduced in a series of papers by
Hofbauer, see e.g. [Hol, Ho2]. A piecewise smooth version of it was used in [K2]
and [BK] for investigating transfer operators and zeta functions of piecewise
expanding maps, and that proved also useful for studying ergodic properties of
S-unimodal maps.

Compared to ([0, 1], T') the Markov extension has two advantages: The critical
trajectory has no accumulation points, and the extension has a countable Markov
partition, where each member of the partition is an interval and is mapped onto
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a finite union of intervals from the partition. The price one must pay for these
convenient properties is the non-compactness of the state space.

Before we start the construction of the Markov exstension, we must, for
technical reasons, modify our original system ([0, 1], T) on the countable set
of points | J,>0 T ~"{c}. We can either double all these points and extend T
to the enlarged space by taking one-sided limits (see e.g. [BK, Sect. 1]),
or we delete this set from the state space (cf. [ K4, Sect. 3]). In neither case
the zeta functions are affected, because the critical point cannot be periodic
under the C-E assumption. Also the spectral properties of transfer operators
are unchanged by this procedure, see [BK, Prop. 1.1]. Therefore, abusing
slightly the notations, we shall forget this doubling. We write (a, b) for any intervals
with endpoints a and b.

3.1. Cylinders and Their Images. Let %, be the partition of [0, 1] into maximal
intervals of monotonicity of T". We call elements of %, cylinders of order n and
denote them by #. 5,[x] is the cylinder of order n containing x. Note that cylinders
are open-closed after doubling ¢ and its preimages. In particular, #,[x] is unam-
bigously defined in this modified state space.

If ne%,, then (with two exceptions) 1 = («, f8), with DT"(x) = DT*(f) = 0,
and there exist r*+s, 0=r,s<n such that T"(a) =c = T°(f). Therefore
T"(n) = (¢,—,, Cn—s), Where ¢,, denotes T™(c). The two exceptions are the first
and the last cylinder (in the sense of the order on the interval [0, 1]) which
are of the form (0,z) and (z/,1) with T" " 1(z) = T" 1(z') = ¢ and T"0,z)=
T"(Z', 1) = (0, ¢y).

Let us call the intervals 4, [c* ] and #,[c¢~ ] the central cylinders (of order k > 0),
where ¢t and ¢ are the points obtained from ¢ by doubling. The images of these
two cylinders

Dy:= T*(mlc*]) = T*(milc™]) = (e, cx)

coincide, k being well defined for any k > 1. Namely we have n,[c*] = (¢, &) with
TSa = c* for some s <k, and k =k — s < k. As T* is monotone on n,[c*], it
follows that T* is monotone on T* *y,[c* ], which contains c¢*. But this means
that T* *y,[c*] is contained in #;[c* ] or in nz[c~]. Hence

Dy = T*melc*]) < T*mlc*]) = Dr and ceDy_;. (3.1

Additionally we denote Dy = [0, 1], D, = (0, ¢; } and ¢; = 0. It follows that for the
two exceptional cylinders of order n, T"(y) = D,. For any other n € &, there exist
0= r < s <nwith T"() = (¢,-,, ¢,—s) and such that T'(y) is a central cylinder of
ordern —r, T"(g) = D,-,andn—r=n—s.

Consider ne %, with T"(n) = D;, = (cr, i), 0 <k < n. If ce Dy, then n¢ %, 41,
but # =5 Uy~ (up to doubling of the endpoints). Both #*, %~ are in Z,,, and
LH('?Jr) = Dy11 = (Ck+1,€1), T"*'(n™) = Dg+1 = (ck+1,¢1). In  this case
k+1=1=k+ 1. On the other hand, if c¢D,, then ne%,, 1, T" () = Dys1
=(Ck+1sCeer)and k+ 1=k + 1.

3.2. The Extension. Now we define the extension of T acting on the tower
X <[0,1]xN. Let X:= U,‘f’:o D, be the union of disjoint copies of the intervals
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Dy, where ﬁk = {{x, k)|xeD,}. Denote 9 = {ﬁk}kgo. We define T: X — X in the
following way: Let £ = {x, k> eD,,

(Tx, 1>, ifk=0,
X =< {Ix,k+ 1>, ifk>0and cé¢D, or xe(c,c) = Dy,
(Tx,k+ 1), ifk>0andceD,and xe(c, cz) .

Recall that 7" is well defined, because we doubled ¢ and all its preimages. Let us
call the two natural pI‘O_]eCtIOIlS 7 and k, so that X = {n(x), k(X)). We say that
X is climbing if K(T X)=k(x)+ 1 and jumping otherwise (then rc(T X)
=k(%) + 1 < k(x), equality possible only for x = 1 or 2). If ce Dy, k > 0, then we
say that D, is a splitting level — both climbing and jumping are here possible. D, _; is
always a splitting level.

As T acts locally just like T(modulo climbing and jumping), T’ (X) = T'(n(x)),
and the critical points of T are the preimages of the critical point of 7" under =~ 1.
The critical values of T are the endpoints of D,, 1 < k < n and the point {c;, 1.
One of the endpoints of D, namely {cy, k), is climbing for ever, the other ({cg, k)
is climbing to the next splitting level, say D;, and then jumps back to {c;+ 1,5 + 1.

So all critical points of T", n > 0, are eventually climbing forever and they are
the only points with this property, because 7 and hence T has no homtervals
(= intervals on which all iterates of 7" are monotong).

The notion of cyhnders extends as follows: e %, iff 4 = Dk nn~'n for some
k and ne Z,. Such #’s are maximal intervals of monotonicity of T

The system (X T) has Markov property in the following sense: By definition

-~

X:= U_@Dk and TD,c Dk+1 if there is no sphttlng or TDk DkH U DkH if Dk is

a splitting level. For a cylinder 1§ = Dk A7~ 'ne %, this means that Th 0= D , where
D; = T(Dy n#y), and by induction one infers:

Ifg= ﬁkmn‘ln with ne &, then f""ﬁ = lijeg and D; = T"(D,nn). (3.2)
We note the following consequences of this assertion for later reference:
T e for ne %,. (3.3)

If nfi = mi)’ for #, /' e &,, then T"; = T"#". (If ¢ is eventually

periodic with period p, then it might be necessary to restrict to

n > p. Otherwise D; + D; whenever i % j.) Any Xe# has a

brother X'e#]’ such that nX = nx’ and T"x = T"X’ and hence
DT*x)=DT"(x"). (3.4)

Hence the trajectories of two points of the same fiber (i.e. in ™ *x for some
x€[0, 1]) which are in the interior of the tower (i.e. are not endpoints of an interval
D,) will collapse after some iterations. As a consequence we have:

If T"% = %, then T"(nX) = nX, and conversely, if 7"x = x, then

there is a unique Xen~'x such that T"% = % . (3.5)
The first of théseAassertions is trivial. The second one is proved as follows: If x = 0,
then 7<{x, 0y = T<{x, 1) = {x, 1), and for k > 1 either {x, k) ¢ Dy, or (in the case of
a full unimodal map) x = ¢, and hence T<{x, k) = (x,k + 1). So suppose x = 0
and consider {x,0)eD,. As ¢ is not periodic, x ¢ U,@O T ~*{c}, and as the only
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points in Do which are mapped under some iteration of Tto an endpoint of some
D, are of the form {z, 0) with ze { Ji3 o T ~*{c}, the orbit of {x, 0) is disjoint from
the set of endpoints of the intervals D,. Now (3.4) 1mphes that there is some p > 0
such that T#"(x, 0} = T"”(T”(x 0>), which means that x:= T""(x 0> is perlodlc
upder T" and n(x) = T™x = x. Suppose there is a further point jen™'x with
T"y = j. By the same arguments as above, there is some p’ >0 such that
x—T‘”‘x—T‘”‘y:fz

The following is obtained from [ HK2, Lemma 4.i] as in [ BK, Lemma 3.2]. The
proof is easy, and we suggest the reader to try it on its own in order to see, whether
he understood the basic features of Markov extensions:

If fe Z, and T 2 4, then x(7) < 2n . (3.6)

Consider now the splitting levels. For any Dy,e@ with k> 0 there exist
r < k < s such that D, and D, are splitting levels (i.e. ceD,, D;) and there is no
splitting level in between. In particular, if k > 1, thenr =k — k=5 — 5.

We call D; the subinterval of D, which climbs onto (c, ¢;) and Dy its
complement which climbs onto (c;, c), where D;, as just mentioned,

is the first splitting level above (or equal to) Dy. Clearly D, =

(z, ¢x) and Dy = (c, z) with T %(z) = ¢, for a well defined z ,

which is the preimage of ¢ of smallest order in D,. (3.7

We may also speak in an obvious way about DE. Then T(D{)= D, for
r < k < s. Following this line we write for Xe Dy,

k(%) = k if #e D and k(%) = k if £ D; . Observe that if 4 is a
cylinder, §j = D, fj # Dy, then k is the same for all Xe# and one
can talk about k(%) . (3.8)

Finally we define for k > 1,
$_i:= <y, k—k> with yenz[c*Junz[c™] such that T*({y, k — k> = % .
(3.9)

The point y is not always unambigously defined, it may be to the left or to the right
of c. If this happens, we choose yenk[c ]; but note that T(y, k— k> is the same
for either choice. For xeDO let £5 = X, and for xeD let X7 =<{», 0>, ye[0,c7]
such that 7(y, 0> = x.

The motivation for these definitions is that we want a point to shadow the
critical trajectory %. For X € D, there are two candidates in %, namely ¢ and cj to
be shadowed. From them we select the closer one c, closer in the dynamically
defined D* sense, so that after the next splitting X may still shadow c; as they jump
or climb together.

This is important, because by the C-E condition we control only initial
segments of ¥. As it will be explained later on, the trajectory of X will stick to a new
initial segment of 4 as soon as it can, i.c. at the first time it reaches a D~ part after
some splitting level. Then it shadows & through consecutive D~ to the next
splitting and further through all following D* till the next opportunity (new D~
after splitting), when it sticks to a new initial segment of ¥ again.

We use the notation X, = T"X, but simple arithmetic make sense only on
positive indices. By X_j,, we mean T"(X_3), defined only for XeD;. Similarly
X,_i = (T"X)_; makes sense only for x,eD,.
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Remark 3!1. We want to point out that the sets 150 and D, are dynamically
unimportant. Namely:

fﬁo = DAb T(ﬁl N 10,c7]) = DAI: f(ﬁl na e e )= 152, and

f(uﬁk>=uﬁk.

kz2 k=2

4. Transfer Operators and Zeta Functions

The aim of this section is a proof of slight generalizations of Theorems 2.1 and 2.2.
We proceed as in [ BK] and approximate iterates £” at an exponential rate by
some compact operators. This yields the spectral decomposition (2.8), which
depends analytically on the parameters § and ¢ of #. Finally we relate the
eigenvalues of the operators & to the poles of corresponding zeta functions.

4.1. The Essential Spectral Radius. For a transfer function ¢: X — C and ne N let
$ul%) = 9(R)- (T5)-. . .- H(T" ' %)

and

9[¢] = lim \/sup{|$,(¥)]: e X} .
As in Sect. 2 denote l/f()%) = 1/|f’()2)|. In Sect. 6 we define a weight function
w:X =70, + oo for which we prove that the cohomologous transfer function

P = - Y satisfies:
WwoT

9[¥]<1 and sup{varp(¥*)} < o0 (4.1)

for any feC with Rf > 0 (see Propositions 6.3 and 6.2). It follows immediately
that for each F:[0,1] - C of bounded variation and each teC the transfer
function @ = ¥F#.exp(tF), where F = F o i, satisfies:

sup{varbi(da) + sup | 9| :ﬁieg} =V t,F)<w , (4.2)
D;

and because of Proposition 6.2 V(f,t, F) is a locally bounded function of the
parameters § and ¢t.

Having established this property we can apply the results of [BK, Sect. 2] to the
operator %, which we denote in this section often just by #. For readers who
want to check the use of these results carefully we note that V' = V(§, ¢, F) is related
to the constant M in Eq. (2.3) of [BK] by M < 2V.

Lemma 4.1. (Corollary 2.4 in [BK]) For each © > 3[@] there exists a constant
C > 0 such that

[ ;fAZ;XﬁHﬁ/, var,;((I;,,), sup |®,| < C-0" foralln>0and heZ,.

i
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The constant C is locally uniform in the parameters § and t.

The local uniformity of C is indeed not explicitly stated in [ BK], but can be
checked easily by following the (simple) proofs of these estimates.

We need some further notation: For each n > 0 and each /i € Z, fix £; €7 in such
a way that T "Xy =X;if ) < T "11 and arbitrarily otherwise. (Note that the Markov
property of (X T) implies that 4 and T"# are disjoint if 4 & T"#4.) Then

fi = T" for some #e %, if and only if X; is the only fix point for
T"in 4 . (4.3)

Denote by &2” the set of those ﬁe:@%, which are not among the two leftmost or the
two rightmost # in the interval D; they belong to. Then

sup card{ﬁefn:ﬁ =D, n¢sd, }<4 4.4
and
if 4 Ae&i,, is contained in &;, then it is separated from the endpoints
of D; by a distance of at least min{|4|: #' € Z,} which depends
on n but not on i . 4.5)
As &, =n"'%, v 9, we have
n(f)e &, and hence T"4 < Dy u. .. D, for each fie 7, . {4.6)

For feﬁ/ define

&,f= Z S &) -
fied/n

&,: BV — BV is linear, |[4,] 5 < 1, and

Y 1 Gzl = X 207G < 2-card(#,)- | flgw < o0 . @4))
HeEdn A€ stn
We remark that the particular choice of the grid {X,:7j e ,sz{A,,} for the approximation
operator 4, is important for estimations on the zeta function but not for the
investigation of the spectral properties of Z.

Lemma 4.2 (Proposition 2.7 in [BK]). For each © > 9[43] there is a constant
C > 0 such that

| Lo, — Lolls7 < C-O" foralln>0.
The constant C is locally uniform in the parameters f and t.

The local uniformity follows again from the proof in [BK].

If the operators d, had finite rank, this lemma would imply immediately that the
essential spectral radius 3 of #g does not exceed $[@]. (For more details see the
discussion in [ K2, Sect. 2.A/B].) If @ = & o =, this is actually the case as is shown in
[BK, Lemma 4.2]. Unfortunately our transfer functions do not have this property,
and we have to modify the approach of [BK] in order to prove

Proposition 4.1. The operators L% o8- BV - BV are compact. Therefore, in view of
Lemma 4.2, the essential spectral radius 3 of P does not exceed D], and P has
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a spectral' decomposition as in (2.8). (If 9 coincides with the spectral radius of 5!2‘5,
then N(©@) =0 in (2.8).)
Proof. For notational convenience, we prove the proposition only for f =t = 1.
However, exactly the same proof works for general 8, te C with RS > 0.

For ne %, denote

Aol) = {fe by mih =1} .
Suppose. T = D for some ﬁe&?,,(n) and some De 2. Then T"n = D, and by (3.4),
T = D for eachﬁe%,,(n). .
Let & = P[]. For fe BV
2"a(f)= ¥ G- L= X (),

€ n ned,

where

2N ="3Y fG) L1

fie nln)

= Y ) A (Buo T

€ s (1)
Here T'; " denotes the inverse of (T ")| ;.- Now it suffices to prove the compactness of

2, for fixed ne Z,, because Z, is finite.
As Yy =yeomand F = Fon, it follows

£ ., i F W oAjn
Z f(xﬁ) 14)) <'ﬁe Wof)n Tfl

e dn(n)

2,(f)
N 1 N ~
= 3y f(fﬁ)'Xﬁ'@'((lﬁeF)oﬂ)no Ti"-(WoTi")
i€ dnln)
1 ~ -
= Xﬁ'@'((WF)nC’ T, "om)- Z JE)-(WoTi").
Hesdnln)

If </,(n) + 0, let ip = Do A~ '#, and define for #e.oZ,(y) with # < D;
W({x, 1))

Uy —)R, Uﬁ(X) = m .
Then
(e W(L 00 o Tmoms Y f(%y) (0o Ty "om)

A€ sdn(n)

9,f) = 15°

| =

= z"xﬁo-( 5 f@w-vﬁ)oﬂ;"on -
fie sdn(n)
As varp (& "Xﬁo) < o0 and as T, "em:D — y is monotone, it suffices to prove that

G BV BV(), F(f)= Y FGi)ev;

e ()
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is compact, and as Z | f =l f | 57, it is enough to show that the family
(vi: e A,u(n)) is relatlvely compact in BV (n), see [Rud, Theorem 3.257:
In Sect. 6 we define w(<{x,i>) fori> 1 as

w(x, 1)) = (LW)‘H—Q"[E' DT (%5505,

le; — ¢

where & = 1/l and Zis defined in (3.8). g can be any number in JAg, 1[.
Consider #fes/,(y) such that # < D;,. With the notation of Sect.3,
D; = (¢;, ¢;) = Dy = (0, 1). Hence

Ix —alfx —eil - [T =017 5 ar -
(%) = g~ |DT? 3 ¢
03 ) (lci—c;|-|x—0|-lx—1| g7 DT (7))

=ple, e x) g IDT ™ %o )78, (4.8)

where

o(u, v, x)1= <—lu*——vl—--x(1 — x))l_é.

[x —ul+|x —v]
Observe that by (4.5),
dist(c;, n), dist(c;, n) 2 §:= min{length(y'): n' € Z,} ,

8 depending on n but not on i. Let I = [0, 1]\ {x:dist(x, ) < é}. I is a compact set,
and it follows easily that

I:IxI—BV(y), (uv)—puv;-)

is continuous. Hence {p(u, v; +): (u,v)eIx I } is compact in BV ().

As the supremum and the variation of ¢ DT Y (%744) % over 1 is expo-
nentially decreasing in i by Corollary 6.2, it follows that the family (v;: /e < (1)) 1s
relatively compact in BV (y). 0

Proof of Theorem 2.1. Theorem 2.1 is the special case f =1 and F = 0 of this
proposition, for in this case ¢ = ¥, and it follows from Proposition 6.3 that, given
@e)igt, 1[, the constant g involved in the definition of the weight function W can

be chosen such that 9[43] = S[Sf’] < 6. j@:ﬁf/—»@ has spectral radius 1, as
[Lo(NHWdim = [ Lj(f-w)dm = [ f-Wwdn for all fe BV, see (2.3). O

4.2. Analytic Perturbations of the Spectrum. The operator 5,543 depends via the
function @ on the parameters § and t. In order to be able to apply analytic
perturbation theory to it, we show that this dependence is holomorphic.

Lemma 4.3. (j[‘ﬁ’*e’ﬁ] :B,teC, BB > 0) is, as a function of B and as a function of
t, a holomorphic family of operators on BV in the sense of [Ka] and

5 A A Al o A A
dﬁ"g [P7e7] = LT(log Py - 0], -2 LIVIT) = LLVP-F7¢T] .
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Proof. We prove the assertion for f. The proof for ¢ is practlcally the same.

Fix f e BV which is different from 0 only on one level De9.ForueC, |u| small,
we have:

U o A
ll;(a?[q’””e”](f) — ZL[¥YPeTNS) — LTog ¥ - PPeT1(f)

BV

- Hé[@’e‘fj G(ﬁ?“ )~ flog 'P)

BV

< LI ) v

f-<1(e“‘°g"; —1) ~log ‘I7>
u

BV

Now, on a fixed D €9, ¥ is bounded away from 0 and + o0, and as Y7| ﬁeBV(Ij ),
lim
lu|—0

As | P[¥P T3 < 6- V(B t, F) by [BK, Lemma 2.2], and as V(B, t, F) varies

continuously with B and ¢ (see 4.2), the family (L[P#e]:B,teC, RB > 0) is
locally bounded. Therefore

f-(l(e“l"g'i' —1)—log 'ﬁ)
u

BV=O'

L P eFY(f) - DTV — DTiog #- 0 F1(f)| =0,

BV

lim
|u|—0

and in view of [ Ka, Ch. 7.1.1], this proves the analyticity of the family of operators.
The formulae for the higher derivatives follow from the observation that

Z[F-81(f) = L[D](F -f). O
As a first consequence of Proposition 4.1 we note

Proposition 4.2. Let B,,t,eC, RBy > 0. For each © > (P (,Bo, to,*)) there are
a neighbourhood U < C x C around (B, to), a positive integer N, and a real constant
C > 0 such that for each & [®(B,t,-)] with (B, t)e U holds:_

There is a projection P[®(B,t,+)] commuting with L[P(p, t,-)] such that

rank(Id — Z2[®(8,1,-)]) = N
12LD(B, 1,-)]L"[D(B, t,-)]l v < C-O", and
(Id — 97[43([3, t,-)]).,??[dg(ﬂ, t,+)] has no eigenvalues of modulus < O .

The projections ﬁ[é(ﬁ, t,«}] and Id — Qg[d;(ﬁ, t,)] are analytic functions of  and

t, (B, t)e
Of course, Id — # = Zﬂ from (2.8).

Proof. Everything follows from Proposition 4.1 and [ Ka, Ch. VII.1.3], except for
the uniformity of the constant C. The argument to prove this is classical: Denote by
R(B, t,z) = (Id — ZS’[(D(B t,-)]) " ! the resolvent ofﬁf[cb(ﬁ t,+)] and observe that

o0

R(Bt,2)= Y (zR(Bo, to, )(Z[D(B, t,:)] — L[B(Bos to,)))*R(Bo, 1, 2)

k=0
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and

Z?[ds(ﬁ,t,-)]"j[d;(ﬁ,t,-)]=——ﬁ { z"R(B,t,2)dz .

|z|=0@

As the resolvent is analytic in (S, t)e U (see [ Ka, Ch. VIL.1.3]) and analytic in z in
a neighbourhood of {|z| = @}, the uniform estimate for C follows. O

4.3. Zeta Functions. As our transfer function @ does not have the form @ = don,
we cannot treat the zeta functions exactly the same way as in [BK]. The necessary
modifications are, although crucial, of techmcal nature, and we can basically follow
the proof from [BK].

Lemma 4.4. For each finite rank operator 3:BV - BV and each n > 0, X% "&, is
of finite rank and hence of trace class and

tr(2L",) = ¥ (S8 1) (%)
e sn
where the right-hand side converges absolutely.

Proof. Because of the linearity of the trace functional, it is sufficient to prove the

lemma for rank 1 operators. Then rank(2.#"4,) < rank(2) = 1,and, if 2 maps BV
to the one-dimensional subspace spanned by the function f, say, then

(@24, -f= 22"3,(f) = Y. f(%)- 28"

A€ .dn

with an absolutely converging right-hand side, see (4.7). Define d; s C by
:Q:??nx;l = d,*, 'f.

Then
(@S ) = Y &) -di= Y I8
e on feodn
with an absolutely converging right-hand side. [

In view of Proposition 4.1, .iﬁq; has a spectral decomposition as in (2.8), i.e. for
e > 9[o],

N(®)
$¢—Zp(9+ﬂ)+9’$¢, (4.9)

i=1
where #,, for i = 1,. N(®), and # are projections commuting with h £ and
such that Z,%; = g’.@ 0for1#1and9+29—ld Foreachi=1,, ( )

l%)
§

we have lp:il > O, rank(%;) < oo, and 4 is nilpotent with 9 Ny = ,/1?
Finally | PP Il 7 < const- O".

Proposition 4.3. Let D(%) = P(£)P-F® B teC, RB>0. For each O >
(B, t,+) 1,

N(®) fes) Zn N(®)
{é1- [1 (I—pzra“‘“g’"—exp{ Y (c (6] Y. rank(ﬁ)pl)}

i=1 =1 i=

is analytic and nonzero in {z: |z < @7}
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As the‘gf‘ are projections and the ./V QJV are nilpotent, rank(@) = tr(@)
and tr((@ + ./V) } = tr(#,) for all n > 0. Therefore

N(©) N@©®) n

[T (1= pizy™ P =exp 3, 3 == pitr()
i=1

i=1n=1

© 1 N{(©) R n
=exp Y, —;tr( > pz-’(%mc)")
n=1

i=1

Hence, in view of the definition of {, [dgj(z), the proposition follows from

Lemma 4.5.

~ . NO -
L[] — Y rank(2)p!

i=1

.. Ne)
= C,,[@]—tr( > PP > < const- @"

i=1

with a constant uniform in n and locally uniform in the parameters f and t. (Indeed, the
uniformity is not necessary for the proof of Proposition 4.3, but will be used in
Sect. 5.)

Proof. In the course of the proof, estimates by terms of the form n-©®" or

(1 + ¢)-©" will occur. In order to simplify our notation, we shall replace them

tacitly by const - @". This is possible, because ® > I[P] is arbitrary. Observe also

that all constants can be chosen such that they are locally uniform in § and ¢.
Let

(0= Y eI = Y B (k).
fiedn, i€ T4 feFn\Adn, AS T4
Then {[9] =C@ + {0 by 4.3). As {{? is a finite sum (see (4.6)) and as
L"yi(9) =0 for y¢ T"#, we have (observing of Lemma 4.4 for the last equality)
[© = D (@ 2) e T3 (%)

Aedn, 1S T

= ). (j")(ﬁ)()eﬁ)z Y (L") (Ra)

e/, nE T A

=Y @L )+ Y (PHL ) (%)

ne.on nefn

Y. @PL ) ) + (P LS,)
festn
where #L =1d — 2 = ZN‘@’,@
For ) we have the estimate (observe (3.6) and (4.4))

1] < Y |D,(X;)]
e T\ dn, A Trh

<4-2n + 1)-sup|®,| < const- @" . (4.10)
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so the lemma will follow, if we show that

tr(PHL Gy — L +| T (PL 2 ()| £ const-O" . @.11)

fie n
By Lemma 4.2 and Proposition 4.2,
(P (L6, — L")| S rank(P)- | P | gy | £780 — 2" i
< const- @"

and the proof must be finished by showing that

Y (PZ" 1) (%) < const- 0" (4.12)

A

with a constant locally uniform in f§ and ¢.
As the proof of this estimate is very similar to the corresponding one in [BK],
we defer it to Appendix A. O

5. Probability Transforms and Zeta Functions

In this section we prove Theorems 1.2 and 1.3 on asymptotic normality and
large deviations both for Lebesgue typical trajectories and for typical periodic
orbits.

Further Consequences from Analytic Perturbation Theory. Suppose T is a non-
renormalizable C-E map, i.e. (7, u) is mixing, where u = hm, see Sect. 2.2. Then the
spectral representation for . reduces to

L= pi Py + Pt Ly, where 2((f) = [fdm-hand h(x)= Y h(x). (5.1

Xen 1x
Here #+ =1d — #,, p, = 1, and
||3?$9;f lw < const-r" forsomer<1.

This follows e.g. from (LM, Theorem 5.5.3] together with [K3, Lemma 1].

Consider now L[] where & = ¥F.¢F depends on the parameters (f, t}e
U,U a neighbourhood of (1,0) in CxC. For (f,0)=(1,0) we have
o%; = :.%, Because of the conjugation (2.3) between ;.SP,,, and 3’.,,, the operator
Py has p; = 1 as a simple, isolated eigenvalue with the rest of the spectrum
contained in {|z| < r}. Hence, as stated in Proposition 4.2, p; is an analytic
function of § and ¢, (5, t)e U. Kato [Ka, Ch. VIL.1.5 and Ch. 11.2.2] gives explicit
expressions for the first and second derivatives of p; with respect to the parameters.
These expressions can be evaluated explicitly using the formulas of Lemima 4.3 for
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the derivatives of & [(5]. The calculations are tedious but straightforward, and we
give only the results:

ilo
dt gpl

d2
< dt2 IOg P1 )
and similarly

<dﬁ l°gp1>
(e
dﬂz ngl

F the Valuatlon of the derlvatlves with respect to  one must use the fact that
hem=w f w for some feBV and therefore

[ Fdi=]Fd,
p=1,t=0

=0}, (5.2)
f=1,=0

=jloglﬁdﬁ:jlog<13dﬂ= — flog|T"|du,

p=1,t=0

=alz<)g|T’|- (53)

f=1,t=0

II

[ llogwldi = [ [Wilogw|-fdit < sup | |wlogwldi| - || g < + oo
i 131-
by Proposition 6.1.
A more direct calculation of such derivatives, which does not rely on analytic
perturbation theory, can be found in [Roul].

Proof of Theorem 1.2. The central limit part of Theorem 1.2 can now be proved as
in [Rou], the large deviations part as in [ K4, 9.6].

Proof of Theorem 1.3. In [ K5] it is shown how Theorem 1.3 can be derived from

our results on spectra and zeta functions. As this reference is not very well

accessible, we repeat its proof here. Without loss of generality we assume that
Fdu=0.

j The distributions v, on the sets Per, = {xe[0, 1]: T"x = x} defined in the

Introduction are related to zeta functions in the following way: For F:[0, 1] - C,

Si(x)=Y"20 F(T'x) and t€C,

Y ceren @)™ LIpe™] [P ]
erl’ernlpn(x) gn[l//] 5;;['{7]

where F = For. In view of Lemma 4.5 and the special spectral representation (5.1)

chosen in this section it follows that for small ||,

PiLYer]
P1¥]

for some ¥ < 1 and a constant not dependmg on t. Here pl[cP] denotes the
eigenvalue p, of the operator .,Sﬁ[d)] (If F is of bounded variation, then we work
with L[&(1,7,-)], if F =log|T’|, we use 3[(13(1 +1,0,:)])

[eidv, =

ey, — < const-7" (5.4
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In particular, if 7, is a sequence of sufficiently small complex numbers, then

) . n g tnF
lim | e dy, = lim gl[—eA—]
n— o0 n— o p'{ ['P]
if the limit on the right hand side exists.

The Central Limit Theorem. Let 1, = itn” */2, 1eR. Then, in view of (5.4) and (5.2),

lim log [ e **Sidy, = lim n-(logp,[¥e™ "*¥] —logp,[¥])

n— o0 n—oo

. 2 . 1
lim n-(logpl[‘l’] + ir-n‘”z-de,u——%-a%—logpl[?’] + 0<;>>

n—w

and it follows that the characteristic functions of n~1/2S/ converge to that of
A0, 52). 0

The Large Deviations Estimate. Let 7, = e R. Then
1 , . - A -
lim —log [ =S dv, = lim (log p, [P e ] — logp;[¥]) = logp:[PeT],

and the assertion of Theorem 1.3 follows from general large deviations theory,
as the function t+>logp,[We¥] is strictly convex at t=0 if o}=

d? o
<F logp, )l > 0. For an account of general large deviations see e.g. [PS] or
t=0

[CG]. 3

6. Estimates on Derivatives and Distortions

In this section we define the weight function w. This function induces a new
geometry on the levels of the tower by setting for %, e D;,

p(X, 9) = | wdi .

> Sy

The new metric p increases the distance near the endpoints of each D;, where the
singularities of w are of order 1 — 1/I. On the other hand the new length of the levels
stays bounded. In this way 7" near critical points loses nonlinearity. Due to some
additional factor in w the derivative of 7" in the new metric is bounded from below
by const-g™" for some g < 1. The exponential bound is possible because of
hyperbolic properties of C-E maps. The inverse of this derivative is the transfer
function ¥ defined in (2.2). .

In order to prove spectral properties of the corresponding transfer operator on
an appropriate Banach space we need to verify some estimates on 7, w and ¥.
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Hyperbolic Properties of C-E Maps. If the map T fulfills C-E, then there are
constants K, > 0 and A, > 1 such that

IDT"(c,)] 2 KA~

It is known [ N1, N3, NvS1] that in this case there are constants 4., > 1, K, > 0,
and 4, > 1, such that for any » and any pe Per, and 5, Z,,

|IDT"(p)| > Aper» and diam %, = max|n,| < K, A, ".

Both Ay = min{/,, A, } and 2z = min{1}', 1,} as defined in (2.7) are bigger than
one. (Observe that the constants A., 4,, and Ag are not exactly the same as those
with the same names defined in Sect. 2 but can be chosen arbitrarily close to them.)

The relations between the different expansion coefficients (A’s) are not yet
completely clear. Arguing along the lines of [N1] one can show that

|DT™(p)| = const-(diam Z;,)” " for j > 0 and
diam &, < const-(min {4}, 10})™",

where A, > 1 depends on how close the above 4, is chosen to the one from Sect. 2.
Moreover lim sup, ., | DT"(c,)|*" = lim inf, , | DT"(p)|*/". It is unfortunately

still unknown whether a uniformly hyperbolic structure on periodic points (i.e.

Aper > 1) implies the C-E condition.

6.1. Distortions and Variations Related to T.

Expansion Due to the Negative Schwarzian.

Lemma 6.1. (Crossratio expansion) [MS]. Suppose that Sg < 0 and Dg|; + 0 on
some interval J. If J is a disjoint union of three intervals L, M, R, (M is the middle
one), then

19711gM] _ gL1|gR|
7] M =L] [R]

In particular, when M is reduced to a point x, then

lgLI|gR| |J]

R AITIR

For xeJ = (a, b) let us define

|b— x[[x —af

05(x) = b al

d5(x) describes the distance from x to the endpoints of J in the following sense:
1
5min{|b —x|,|x —al} £ 05(x) Emin{|b — x|, |x —al}, (6.1

and if xe[a, f] = [a, b], then
O, p1(X) = Opa, p7(%) - 6.2)
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The second inequality from Lemma 6.1 can be now written as
|Dg (x)| = 4 (gx)/05(x) . (6.3)
Now we come back to the map 7. We can speak about 9;(X) on the tower when
xeJ < D; and x =nxen(J)=[a,b] c D;. Then 0;(X):= 0,(x). Suppose that
xeDjand T"%eD,. Define
0n(X):= Og11(%) ,

where #,[%], the cylinder of order n containing £, is mapped by T" onto Dy. Define
moreover

Then
|DT"(%)| Mg 1, (6.4)
oHT"%)
and, by (6.2), for any n > 0,
9(X) Z 6,(%) . (6.5)

Corollary 6.1. Suppose that ieﬁj and T"%eD,. Assume that both components of
D;\{x} and both components of D,\{T"x} have length bigger than e. Then for any

¢elo, 1,
A ax) ¢
|DT (X)’<8(f’">€)> = const Gam Z, -

Proof. This follows from the following decomposition of the left-hand side of the
inequality: By (6.1} and (6.4),

2o n®) T R) (AR : ¢ \1-¢
[‘DT(X)'ame)]énoe)( a(ﬁ)) 1W<7> S

Lemma 6.2. (Koebe Lemma) [vS]. Suppose that Sg =0 and Dg|; = 0 on some
interval J = (a, b). Then for xeJ one has

1Dg()] <lgx - gb|>2
IDg(a)l = \lga—gbl) ~

In particular, if |T"x — T"a| £|{T"x — T"b|, then |DT"(x}| = |DT"(a)|/4, other-
wise |DT"(x)| = |DT"(b){/4. O

More generally one may say that a map ¢ satisfies the Koebe Lemma if for
any o > 0 there is a 7 > 0 such that for any n and any interval {a, b) on which
g" is monotone holds: if xe(q, b) and |g"x — ¢g"b|/|g"a — ¢"b| > o, then |Dg"(x))
/IDg™(a)| > 7.

Remark 6.1 (See [NvS1]). It may be interesting to point out that general C-E
maps (not necessarily S-unimodal) have also the above described properties con-

cerning hyperbolicity, expanding the crossratio (perhaps with some constant
smaller than one but uniform in n) and the Koebe Lemma.

Bounds Related to the Nonflatness of T.

v
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Lemma 6.3. For each B, > 0 there is a uniform bound on SUP(q,p) ald Vary y, of
( a(Ta, o)(TX) >ﬂ
[DT(x)|0a,5(x)
for Be[0, Bo] and for any interval (a, b) on which T is monotone.

Proof. Denote the expression under consideration by F(x). Then sup, F < 1 by
(6.3). We may assume that be(qa, ¢). Then

Fl) = |Tx — Ta| \* |Tx — Tb| ¢ [|DT(a)||la — b| \*

“\x —al|DT(a)| |x — b||DT(x)| | Ta — Tb| '
The suprema of all three factors and the variation of the second factor are bounded
by M, see (1.2). The third factor is constant, and the first one has at most two

monotone branches by negative Schwarzian. Hence its variation is bounded by
2M. O

Estimations on the Shadows. In this part we prove two technical lemmas which give
exponential estimations for the weight function. ¢ may denote ¢* or ¢™.

Lemma 6.4. Suppose that yen = ny[c], and that there is some v such that x = T%e
(v, ¢) = (¢4, €) < (cq, cq) = T%n. Let By > 0. Then there exists a constant K indepen-
dent of d,y and v such that for all B[O, Bo],

d Ocarear(X) pe-n d
G(0)?:= [DTHTy)| | easa > Kifs
a(v,c)(x)

and
var L <K '/ly_ﬁd
(v,¢) Gﬂ = i

Proof. Assume first that |c; — x| < |x — ¢gj] and write

|x — czllx —cal \' 71

_ DT ()] 1DT(0] | Jes— e
G0 = P  pra=(cy) [DT (e | T = ellx —o
vl

DT (yi)| IDT(x)] feq—c|!

= |DT%Cc,)| - 4
D1y x = oL [DT(ea)]
o S S J
e Y
=:Gy(x) =:G,(x)

x—cal e —x]lc — o]\

lca —cal  lea—cllx — 0]
. J X J
v v

=:G3(x) ::G4(x)
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G# = 1/4%° by the Koebe Lemma and as 1/G, has at most two monotone branches,
var1/G4 < 2-.4%°. G5 and 1/G%4 are bounded by M?#° and are also of bounded
variation uniformly in d (see (1.2)). G; = 1/2 by the assumption on the position of
xe(cy, cg) such that var 1/G4 < 2%0 because of its monotonicity, and finally G, is
monotonically decreasing and not smaller than 1, whence var 1/G4 < 1. In view of
the definition of A5 we thus obtain

1
G(x)? z const- A% and var Gi s < const-1z# .

Assume now that |¢; — x| > |x — c¢z|. By Lemma 10 in [ IN2] there exist peri-
odic points p, p; = Tp of period d such that p = T?pe(c, cz). Write G(x) as

G(x) =

DTy RT T )l DT Ip—CIZ_l(Ix—cdl.ICa—XIlc—v|>l_1
IDT*~ Y (p)lIx —cl'™" IDT(p)| \lca—cal |p—clix—v| ’

which can be estimated as before. O

Lemma 6.5. There exsists a constant K such that for any X,
IDTF 1 )l 2 KA

Proof. Assume first k = k, so that £€ D; . We shall reduce the other case to this one
later on. If {x — ¢;| = |x — ¢z|, then the assertion follows from the Koebe Lemma
with K = K /4, because Ay £ 1. So we may assume |x — ¢;| > |x — ¢z| and in
particular | D | > [Dy |. ~
Consider # = n;,_z[c] such that T** is decreasing on 5. D,z = T* ¥y is the
highest splitting level below D,. Hence there exist ae# and pe(c, o) such that
T* %y = ¢ and p is periodic with period k — k, cf. [N2, Lemma 10]. (Thenp, = Tp
is also periodic with the same period.) Observe that c¢ T(]p,«[) for

i=0,...,2(k—k)as T** is monotone on (p, a) and on (p, ¢) = T* ¥(p, ). On
the other hand, as T has no sinks, there is f e (p, ¢) such that T*~*(f) = a. Therefore
there are ye(c, ) and k < s < 2(k — k) such that T°y = ¢, D, is a splitting level,
nsLc] = (¢, ), and the trajectory (y;:i=k —k + 1,...,s) defines the partition of
D/s into D* and D~ parts, which are monotonically mapped one onto another.
Therefore D;" = (¢;, ;) and p;eD; = (y, o) (i=k —k+1,...,5).

By the Koebe Lemma (or by more elementary consequences of negative
Schwarzian) one has for ye(c, ),

DT ()| 2 min{| DT e)], DT (py) }/4

for i as above. In particular this holds for i = k and y = x_,, and we have to
estimate |[DT*~!(p,)| from below. ~

As p; is periodic with period k—k we have |DT* (p,)
= |DT* *(p,)||DT* *(p1)|. The first factor can be estimated by A% *. For the
second one we use the observation D, < Di, which gives [pr — ¢zl = |pr — | <
[x — cil £ 1x — el £ |px — el < |pi — cil. We apply the Koebe Lemma to 75!
on (ps, ¢;) « Tzlcl, and obtain [DT*~*(p,)| = |[DT* '(c,)|/4. This ﬁmshes the
estimation in the case k = k.



Collect-Eckmann Maps 57

Suppose now that k =k, i.e. £ D;. Remark that, as before, D, < Dz, but also
D; < Dj . This is due to the fact that the next splitting after k can appear not later
than the next one after k. (Dy is longer, it includes more preimages of ¢.) If it occurs
earlier, then the splitting point must lie in Dz\D, and in this case D, = Df,
otherwise D = D, . Now we can_estimate the derivative at X by the identical
derivative at hlS brother %’eDi and use the first part of the proof
(K(X') = k(X') = k = ©(x) = (X)) O

Corollary 6.2. Let k > 0. Then

sup [DT* (%4 1)1 + varp, |DTH Y% pa 1) "' S SK 1Akt
D
where K is the constant from Lemma 6.5.

Proof. This follows_from Lemma 6.5 and the fact that by negative Schwarzian
derivative £~ |DT* !'(X_;,;)|! has at most two monotone parts on each of
D/ and D, . U

6.2. Construction of the New Metric. We want to find such w that

A

w
Wo T”DT"
for some nand g < 1. In other words we want to change the geometry in such a way
that 7" becomes uniformly expanding. As already said, C-E transformations
exhibit a lot of expanding features, and also the negative Schwarzian gives some
expansion. Those two properties are sufficient away from critical points.

On the other hand the C-E condition provides the expansion near the critical
trajectory. So one has to combine these two contributions taking care of the
passage through neighbourhoods of the critical point, which must be visited, as the
C-E condition gives expansion only along initial segments of the trajectory of ¢;.
Therefore one has to estimate derivatives of 77" in arbitrary points by derivatives of
carefully chosen initial parts of the critical trajectory.

Let ge]Az !, 1[. Define w: X — R by

WE) = W,(®):= (¢ DT (R g )M (&)L fori>1,

where | = x(x) and i was defined in (3.8). On the level DO let w(X) = 1, and on the
level D, let W(%) = (c; — x)" "D As the levels D, and D, are dynamlcally
transient (see Remark 3.1), we shall skip in the sequel the details of estimates
concerning these two sets.

The factor 0 guarantees expansion near critical points, ¢ gives artificial expan-
sion on levels without splitting, where there is a mean natural expansion but not
necessary on each step, and the derivative part allows to shadow the critical
trajectory from its start at c,.

<

Y, =

1
Proposition 6.1. For any 56[0, l—1|: there is a constant C = Cs > 0 such that
f Wit dm < Co(qAf)™" 4% forallk>1,
Dre
where (gAg') 1+ < 1.
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Proof. By Lemma 6.5,

1 1 (1-1/DH(1+9)
[ Wit®dm < const-(gAg") Y f —+ dx .
- X — Cg Cp— X
D
. it 1
The assertion follows from gAy; > 1 and | 1 —7 (1+48)<1. |

6.3. Bounds on the Transfer Function ¥, For ﬁeDj and %, = T"te D, we have

W, (%)
Wy (T"%)+|DT™(%)|

P, q)=

_ o O IDTE () i)
g IR IR DT (R g0 M DTS

It is clear that we want to bound the quotient.

Bounds on 'f’l.

Proposition 6.2. For each o > 0,

sup sup (varm(‘ﬁ’f) + sup ‘ﬁ’{) < © .

0<f<po Dieg Dy

Proof. Let£eD ;and T% e D,. We consider only the case j > 1. The cases j = 0 and
j =1 can be treated similarly.

Denote j = j(X) and k = k(T%). There are several possibilities:

L. D is not a splitting level.
Thenk j+1land k=j+1,(T%)_; =X_j+1-

2. D is a splitting level, xeD and T D
Thenk k= ]+1—]+1 (T%) 41 =>€_;+1.

3. D;is a splitting level, £ D} and Txe Dy .
Thenk=j+ L k=1,j=j,(T%) -5+, = TX.

4. D, is a splitting level, £eDj and TteDy .
Thenk =k =j+1=7+ l,and (T%)_z+; = " €D, isa brother of y = %_j, €
D; j (ie. mp=mny). Their trajectories meet at level D, after
k—1 = j steps.

5. D is a_splitting level, xeD and TxeDk .
Then Ig =1,j=j,and (Tx) 1 = X'eDy_, is a brother of xeD They meet at
level D, after one step.
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We have '

i ) <a( ))1-1“<|Df"-1((f>e>_,;ﬂ)|>1” s
WIRHIDTR) \ OR) IDTNE )l /) IDTR) ¢

1-1/1 - 5 (£)>1—1/1
(G+1-k 1
q<51 x)|DTx)|> [q (8(32)

DTk 1((Tx ) k+1) l/l}

DT} 1 XAJ+ I)DT(X)
We simplify the derivatives (taking brothers if necessary) and obtain in cases 1, 2, 4,

. 3(T%) a1 (51()3))/}(1—1/1)
ql/l; = o AN Ay . A .
“(zowra) (s

Supremum and variation over ﬁk of the first factor are uniformly bounded by
Lemma 6.3 (i.e. uniformly in fe[0, b] and D, e 2). The second one is identically
equal to 1 in case 1 and is monotone and bounded by 1 on D; in cases 2 and 4.
In cases 3 and 5,
1 /] jl/x

G _ . < 5(f)e) >ﬂ(1~1/z)[q_;<51(@)1—1/1
C 6 ®)IDT ) 3(%) DT 5,1)

The first factor is the same as before. The bound on the [ ] factor follows from
Lemma 6.4, as ¢~ % < A3/". O

Bounds on 5’7,,.

Proposition 6.3. For any qe Az !, 1[ there exists C > 0 such that the estimate

¥, (%,q) < C-q"
holds uniformly in n > 0 and X.

In order to prove this proposition we have to decompose carefully the traject-
ory of X from — j to n.

The Trajectory. We divide the trajectory of a point ﬁeljj up to %,€D, in parts
corresponding to the initial segments of the critical trajectory. Let y = X_5 and
y = . Set ty = 0 and define ¢, to be the minimal ¢ = j such that J, is on a splitting
level (i.e. ceDy,)), and J,,4 is in the D™ part. Analogously, if ¢; is defined, let
t;+1 be the minimal ¢ > ¢; such that J is on a splitting level and y,,, €D ~. Let r be
the maximal index i such that L < Jj + n.(Observe that r depends on n.) This defines
to, - .. Finally let t,,, = + n.

Put d =t —t for 0<i<r Then j, +1ED,, for 0 < i < r. The trajectory
Ti Viir (0 < j < d), first follows one block of D ~’s between two splitting levels, then
jumps down and climbs through consecutive blocks of D*’s, until it reaches at
j=4d;+1anew D-

Let (c, o) be an interval which is mapped by T% monotonically onto (cg,, ¢).
(Observe that (c,a) =1ny,4+1[c*].) Then y,e(c,®). Analogously there is an
o' €(cq,, ) such that T4+ 1o’ = c and y,,, , €(c, ). We pull back the interval (cg,, @)
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by T ™% into the interval (c, y,,) and we obtain a cylinder of order d; + d;, + 1
on one side of y,,. On the other side of y,, (but still in D,,_,) we can pull back
the analogous cylinder from near y,,, and obtain a cylinder of order
di + di+1 + di+2 + 1. Hence

The point y,, divides D,, | into two parts each of which contains
one of the finitely many cylinders for T of order at
most di + di+1 + di+2 +1. (66)

Any §,, has a brother ;€ D, such that they meet after the first jump of §,, and climb
together thereafter.

Remember that £, e ﬁk.

If k(%) = k for, then ¥, is a brother of X,_, and if k =k then
P =(%)-z. Inboth cases j + n=1t, + k . 6.7)

In particular d, =7+ n—t, = k.
The Estimation.

Lemma 6.6. Suppose that €(X) = 1 and K(X,,) = 1. Then

= s 0(X) \"* [ om(X)
nos(5e) ()
Proof. In this case

by — O ) 2[ 0(5n) Ha(@]“’[émm}
T gty pTm %) L OnFIDT™R)] | 0Gm) o(%) |

The first factor is smaller than 1 by (6.4). |

Corollary 6.3. For any N there exists a constant C = C{N) such that if in the
situation of the previous lemma the three consecutive d;'s after X and the three
consecutive d;'s after X,, are smaller than N, then

¥, (%) < C-diam Z,, < C-K,- 4™ .

Proof. Let ¢:= min{|n|:ne %35+, }. By the assumption on the d;’s and (6.6) we
find, to both sides of £ and X,,, cylinders of order not exceeding 3N + 1 and hence

of length not smaller than & The corollary follows from (6.1) taking C = (2/
gL, O

Lemma 6.7. There exists a constant K such that
R r—1 -1
Y. (%) < 61”[ I1 K(i};”q)‘“] .
i=0
Proof. Recall from the decomposition of the trajectory that y = X_5,

DT* !yt 1) 1/’<a(>en)>1—1” !
(%) IDT"()|g"*

DT (% j41)

'ﬁn()e) =q"
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By (6.7), y4+,-i is a brother of £,_;. Therefore

~ N 8(x,,) 1-171 N L L
Y.xX)=gq <8(>€)> ADTI*nk(H )| DT (§5) "1+ L g GHnh)

Gonety T (pfadgy - O0ue) )
=q”-[q T [T IDTH(TS,)] ”’< x ) ]
i=0 6d;+1(yli+1)

6, -3(97) 0(P3) J‘””’
(V) 64 —3(93)

' ARG }/
|DT”' —= .
[ H a(yti+1)

-[wf“-f(ﬁm

By (6.4) and (6.5) the two last factors are bounded by 1. For the first factor we
use Lemma 6.4 with (c, v) = ,,,,[c] and observe that t, = ) [Z5 ldi=j+n— k.
O

Proof of Proposition 6.3. Fix N such that (A4'q)¥ > K3, where K is the constant
from Lemma 6.7. Let t' = ¢;, > to, be minimal such that the three consecutive d’s,
di,,d; +, and d;, ,, are smaller than N. Let ¢' =t;, < ¢, be maximal with this
property. Remembering that y = X_5, so that y;,, = X,, we write

i+1

lﬁn()’é) = .I’;t’—;'-fl(ij)q;t”—t’();t’+l)q}n+7—t”—1(j}t”+1) .

The middle factor starts and ends just after splitting levels with three consecut-
ive small d;’s. Therefore j,.,; and j,., are separated from the endpoints of their
levels D at least by a distance depending only on N, see (6.6). In the first factor there
are no three consecutive small d;’s and in the third one such d;’s appears only once,
namely at the beginning.

We estimate the middle factor by Corollary 6.3 and the two other factors by
Lemma 6.7. Using the definition of N we obtain

‘ﬁ,, < const-q" . O

A. Appendix

We prove the estimate (4.12) for {?:= Y iean (PP x3) (X3). The proof, which relies
heavily on an estimation technique due to Haydn [Ha], is very similar to the
corresponding one in Sect. 5 of [BK]. But since_the changes which are necessary
are crucial for our more general setting where @ is not of the form & -, we give
a complete proof.

For each D e % we fix some yDeD Ifneff and Tfn = D, we denote by j; the
unique Ti- -preimage of yped.

For fje &; define

G _ {g’xn—‘D()’)ff’lra ifj22,
T L ifj=1.
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Observe that T9; = ;. Hence, for e %, and j = 2,
Yi= 27 ay @0 T30 — 0(53)) = sy @510 T 0) (@0 T3 — (93))
so that
varf,-;,(f’;,) < varfﬁ(@j_l)-varﬁ(@) + supl@j_l | -var;,(@)
and
sup| f’;,] =< sup\@j_ll -var;,(@) .
Therefore, in view of Lemma 4.1,
| Y357 = varzs;(¥;) + sup| ¥y
< vary(®)- (varz,(®;_,) + 2-sup|®;_,|)
< const - @/ - var;(®) (A1)

with a constant which is locally uniform in the parameters § and t.
In the next lemma we show that all sums occurring in the following decomposi-
tion of (¥ are absolutely convergent,

0P= % (22L& — Y (2L (%), (A2)
neZn 7€ Ln\s/n
L —~ " /) N W(Z) J
=1, =5

n—1 .~
Vﬁl)—_— Z Z (pk(ﬁr‘,)gYi‘ki’(XAﬁ)

nedn k=0

n—1 R R
= Y Y GNP Yii(Rs) — P Yini( D))

neZn k=0
<
L
n—1 R R
+ ) D (D)) P Vi (D3) (A3)
nedn k=0
[N—
-
=y

=>
m
3>
in
it
<

C

where we use the convention @, = 1. Finally, defining FE= {
... uD,}, we have

n—1

W= Y ¥ &0)@T00)

k=0 #'eFn, fedn

U Teq=4 J
pee
n—1 R A
Y Y, 29N 2Yi) (i) - (A.4)
k=0 f'eZn -1\ Nedn
f‘k;’:;l’
— ~— J
=y

The estimate for {2 follows from
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Lemma A.1 (Compare Lemma 5.1 in [BK]).

1. v converges absolutely.

2. y$? converges absolutely and |y®| < const- @".
3. ¥ converges absolutely and |y¥| < const - @".
4. |y| £ const- O".

5. |y!®] < const- O™
All constants are uniform in n > 0 and locally uniform in the parameters f and t of .

Indeed, the absolute convergence of 7 and y{* implies that of (! and shows
that all equahtles of (A.2)—(A.4) are correct. Thus we only need to use

121 192) + 121 + 1982 + 1)

to obtain the desired inequality.

Proof of Lemma A.l. In the proof we W111 often use the decomposmon

=Id — #* and the fact that there are f € BV and linear functionals G BV~ C
(] =1,...,d:=rank(#')) such that #*f= - G{(f)-f;. As the projection
P depends analytically on the parameters § and ¢ (seec Proposition 4.2), d is locally
constant in f and t, and the é and fj can be chosen such that their norms are
locally uniformly bounded in [3 and t.

We use the notations lyl for ,?[ldil] and D(z) for D
1.

n—1

Y Y @)@ Vi) (33)]

nedn k=0

n—1
=2 Z Z | D (I P Y| (95)
k=0 f'eZn-x HeEXn
T‘kﬁ:,;f

n—1 N .~ n
YooY (LY ()

k=0 ' eFn-x

n—1

Y Y S ALHADOIG I Yy s

k=0 f'edn-1\FE j=1
L

{AN

.
i

YOS 1LMBTN Gy

k=0 f'ed i
(N

~

— B

Remark. For the last inequality we used the fact that the support of Y is Tk 7
such that ({$| |Y M; #0 if and only if T"n’ = 4#’. Hence # eff,f”k by (3.6).
Therefore the term corresponding to the Id part in the decomposition
2 =1d — 2* is zero in the sum for BV,
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Now, by (A.1) (and here we deviate for the first time essentially from [ BK]),

ﬂgl)gni S |G| -const-@ "¢ ¥ % (L F1fl) (i) vary (§)

k=0 j=1 i=0fi'eZn_x
ﬁ'Ebi
n—1 d R o] A n
<Y Y Gl -const-0"* ¥ sup (ILHf) Y vary (@)
k=0 j=1 i=0 D; 'edn—1k
r}’Eﬁi
< Vby (42
n—1 d ~ n -
< ) Y UGl -const-0" H[|L | fil l s < o0,
k=0 j=1

and B < oo as card(Z",) £ 2n-card(%,_,) < ©.

2. Again we use the decomposition 2 = Id — #*:

PP Y 18I + Y, 1 PEL )
neJ’n\dn ﬂeJn\Mn
J J

Y
o = pi®

Now, by the same reasoning as in (4.10),

BY< Y sup|d,| < const-0",
;75"%:71\&{:1 [
RET"H

and in view of Lemma 4.1 and assertion (4.4) we have

d ~ -~ ~
PPy Y 1G(L M) 1S

j=1 neZ\on

= Z Y. iG;ll-const- @"-| fi(%;)]
ji= lns,)f,.\d,.
d a
< const-O" ) Z 4. suplfjl <const-@" Y || fill s
j=1i=0 j=1
< const-O" .

3. Let 0 £ k < n. We first study

Yaki= Y, vary(@Yix;)
e Zn
= Y ¥ @Y+ Y Y var (PY;).
i G-Z%n 3 '15571 r[e.”Z’n k\Jﬁn k ﬂejn
AN Tk" " J % Tk” ” J

e |

P
=g =
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In view of (A.1) and (4.2), the first term is bounded by

CIEPYED) var(#Y;)

07'e J ek
7’ D(i)
2n N
<y | 2]l - const- @" k. Y vary(9)
i=0 WeFFy
' sD)
2n R R
< Y 2| -const- @ *-varp (P) < const-(2n + 1)- O" .
i=0

< const-O" % .
For the other term we use the remark of part 1 and obtain

d -~ -~ -~
=Y % L 1Gi(Yy)-vari(f))

j=1 R eFn i \F2, HePn

=i

d [=¢]

=Y Gl X Z 1 Y5 Nl v - vary(f;)

j=1 i=0 i'edni\TTx  Hedn

Trij=#",7< D(i)

d

<X Z Y 1Yl -varpe(f)

ji=1 i= Onsﬂﬂ(nki)

d o]

<const-©@" 7 Y |G;l- ), varp (f)- Z var; (P),

ji=1 i=0 n'ednk,i)

where .@(n k, i) denotes the family of those 1§’ € ZZ,, k\g’ " . which are contained in

T*D,.
Now we use the following fact which is proved as Lemma 3.3 in [BK]:

Given e &,_; and ﬁi, there are at most two EQ;,, such that
A<D, TeZ,_ \Z>", and n(T*7) = 1 . (A.5)
Observe also:

Suppose T"n < D for such an #. Then r > 2n and T* D, 2 D,, whence
r=it+korr=i+k (Otherw1se there were 0 < s < t < k such that T4
and T‘n are contained in splitting levels D,+s and D,+, respectlvely, from

which they jump back. In partlcular T+ < Dm+1 Asi+s+1=1

(see Sect. 3), it follows that i + t < t — s < k < n, which contradicts » > 2n.)
(A.6)

Now we can continue the above estimate as follows:

B < const-O" z 16,0 Y. vars (7)-(athg (@) + varpg.o(®)

j= i=0
< const- @k Z 1G;l- 2 varpg (f;)-2V
i=1 i=0

d
< const-©@"* 3 Gl - Il fill &
i=1
< const-O"F .
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We have thus proved that {7} < const- @"~*. Therefore

n—1 n—1
|y < Z Y | Dy ($3)] - var,,(g’YTk,,)< Z const - @+ y{7)
r,ei"nk Q k=
< const-@" .

This proves at the same time the absolute convergence of p(>.
4. The definition of % yields:

| = Z Y (Z*2Y) ()
k=0 7' eFin,

n—1
< 3 const-@%- Y ||Y;|s by Proposition 4.2,

k=0 qeFI

2n
Sconst-0" ) Y var, (d) by(Al),

i=0 ﬁ’ef{n»k

FE=510)

<const-V-(2n+ 1)- O"
< const- ®@" .

5. We use again the remark in 1 and obtain

n—1 o
=12 > > ) O (93) (P Y3) (D)
k=0i=0 ' eFn-r\F2" ed
Tei=i, i< D(i)
d n—-1 o
<3y Yy ¥ Z ) Z const - @
j=1k=0i=0 rpe:}ank\;’Z'fl'Lk nedn

Tri=4'.nsD(i)

SFACAIE nén Nl 5
n—1 oo

< const-@" Z 1G,1 - Z Z > var; ()

> ()
fledn
Tky=7’ nci)(t)
n—1 oo N
< const-@" z ||G -3y suplfj Y 2-vary(9),
k=0i=0 D; 7 ed(n, ki)

where .%;(n, k,i)1s deﬁned as in the proof of 3, and we used again (A.5). Observing
also (A.6) we can thus continue

n—1 o
ly$?| < const- @”" Z HG - z sup 'f]l -2 (varD(z+k)((p) + VarD(1+k)((p))
j= k=0i=0 Dy
< const-©"-4nV - Z IG;I- ¥ sup |f;] by (4.2)
j=1 i=0 D;

d
< const-©" Y |Gl fills»
j=1
< const- ©@" . O
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B. Appendix

Proof that Corollary 2.1 implies Theorem 1.1. If T is nonrenormalizable, ie. if
(T, p) is mixing, u = hm, then the spectral representation for £ ;: BV, — BV, with
norm || + ||, reduces to (see the beginning of Sect. 5)

Lh= P+ Pt L, where 2 (f) = [fdn-h and h(x)= Y k().
Here #+ = Id — #, and
||j',},,?7f||;v < const-r" forsomer <1.
Write Fo(x) = F(x) — [ Fdm, Fy = Fyor, and analogously for G. Then
P (Fo-h) -
%zj(Foon)-hdm=jF0-hdm=jF0du=O. (B.1)
Hence, observing that mo 7" = T"o,
|| F-(GoT"du — [ Fdu-[ Gdu| = || Fo-(Goo T")- hdm|
= [ For(Goo T")- hai| = | | Ly(Fo - h)- Go d
= | £} P1(Fo-h)-Godri| by (B.1)
|l

- j |Go|W d, Wheref,,:= jﬁjﬂﬁo'ﬁ) .

[eel
< ) sup
i=0 p, D;

Here w is the weight function introduced in Sect. 6. Now

f iéo|Wd7h = j [Go()] - W(Lx, iY)dx £ [|Golly+se “W(<',i>)“(l+a)/(l—1+a)
bi D:

< const-[|Golli+s

by Proposition 6.1, and
|

Foh

A

w

S

nl

< | fills < const-#"- || Fo-h|l; = const-r"-

s

sup
0 Di

=

BV

13

~

(5.

D;

o0
=const-+"+ 3 (| Folp,ll 5+
i=0

Py

BY

< const-r"-var(Fo)- ||l

B

= const - - var(F)- | hlls ,
such that

|fF(GoT"ydu — {Fdu-{Gdyu| < const-r"-var(F)- |Goll1+5 - O
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