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Abstract

A fundamental problem in mathematics and network analysis is to find conditions under which a graph
can be partitioned into smaller pieces. The most important tool for this partitioning is the Fiedler vector
or discrete Cheeger inequality. These results relate the graph spectrum (eigenvalues of the normalized
adjacency matrix) to the ability to break a graph into two pieces, with few edge deletions. An entire
subfield of mathematics, called spectral graph theory, has emerged from these results. Yet these results do
not say anything about the rich community structure exhibited by real-world networks, which typically
have a significant fraction of edges contained in numerous densely clustered blocks. Inspired by the
properties of real-world networks, we discover a new spectral condition that relates eigenvalue powers to a
network decomposition into densely clustered blocks. We call this the spectral triadic decomposition. Our
relationship exactly predicts the existence of community structure, as commonly seen in real networked
data. Our proof provides an efficient algorithm to produce the spectral triadic decomposition. We
observe on numerous social, coauthorship, and citation network datasets that these decompositions have
significant correlation with semantically meaningful communities.

1 Introduction

The existence of clusters or community structure is one of the most fundamental properties of real-world
networks. Across various scientific disciplines, be it biology, social sciences, or physics, the modern study of
networks has often deal with the community structure of these data. Procedures that discover community
structure have formed an integral part of network science algorithmics. Despite the large variety of formal
definitions of a community in a network, there is broad agreement that it constitutes a dense substructure
in an overall sparse network. Indeed, the discover of local density (also called clustering coefficients) goes
back to the birth of network science.

Even beyond network science, graph partitioning is a central problem in applied mathematics and the
theory of algorithms. Determining when such a partitioning is possible is a fundamental question that one
straddles graph theory, harmonic analysis, differential geometry, and theoretical computer science. There is
large body of mathematical and scientific research on how to break up a graph into smaller pieces.

Arguably, the most important mathematical tool for this partitioning problem is the discrete Cheeger
inequality or the Fiedler vector. This result is the cornerstone of spectral graph theory and relates the
eigenvalues of the graph Laplacian to the combinatorial structure. Consider an undirected graph G = (V,E)
with n vertices. Let di denote the degree of the vertex i. The normalized adjacency matrix, denoted A, is
the n×n matrix where the entry Aij is 1/

√
didj if (i, j) is an zero, and zero otherwise. (All diagonal entries

are zero.) One can think of this entry as the “weight” of the edge between i and j.
Let λ1 ≥ λ2 . . . ≥ λn denote the n eigenvalues of the non-negative symmetric matrix A. The largest

eigenvalue λ1 is always one. A basic fact is that λ2 = 1 iff G is disconnected. The discrete Cheeger inequality
proves that if λ2 is close to 1 (has value ≥ 1− ε), then G is “close” to being disconnected. Formally, there
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exists a set S of vertices that can be disconnected (from the rest of G) by removing an O(
√
ε)-fraction of

edges incident to S. The set of edges removed is called a low conductance cut.
We can summarize these observations as:

Basic fact: Spectral gap is zero =⇒ G is disconnected
Cheeger bound: Spectral gap is close to zero =⇒ G can be disconnected by low conductance set

The quantitative bound is one of the most important results in the study of graphs and network analysis.
There is a rich literature of generalizing this bound for higher-order networks and simplicial complices. We
note that many modern algorithms for finding communities in real-world networks are based on the Cheeger
inequality in some form. The seminal Personalized PageRank algorithm is provides a local version of the
Cheeger bound.

For modern network analysis and community structure, there are several unsatisfying aspects of the
Cheeger inequality. Despite the variety of formal definitions of a community in a network, there is broad
agreement that it constitutes many densely clustered substructures in an overall sparse network. The Cheeger
inequality only talks of disconnecting G into two parts. Even generalizations of the Cheeger inequality only
work for a constant number of parts [5]. Real-world networks decompose into an extremely large of number
of blocks/communities, and this number often scales with the network size[6, 11]. Secondly, the Cheeger
bound works when the spectral gap is close to zero, which is often not true for real-world networks[6]. Real-
world networks possess the small-world property[4]. But this property implies large spectral gap. Thirdly,
Cheeger-type inequalities make no assertion on the interior of parts obtained. In community structure, we
typically expect the interior to be dense and potentially assortative (possessing vertices of similar degree).

The main question that we address: is there a spectral quantity that predicts the existence of real-world
community structure?

Our results: We discover a new spectral relationship that addresses these issues. It predicts precisely the
kind of community structure that is commonly observed in real-world networks, based on a quantity called
the spectral transitivity.

Let λ1 ≥ λ2 ≥ . . . λn denote the spectrum (the eigenvalues) of the normalized adjacency matrix A. We
define the spectral transitivity, denoted τ , as follows:

(1)

∑
i≤n λ

3
i∑

i≤n λ
2
i

The demoninator is the standard squared Frobenius norm of the matrix A, while the numerator can be
shown to be a weighted sum over the triangles in G (refer to Claim 0.7 in the supplement). It can be
seen as a weighted version of the standard transitivity, or global clustering coefficient[15]. (Other weighted
versions have been defined in previous work[1].) It can be shown that the spectral transitivity τ is at least
1 − 1/(n − 1). When τ has this maximum value, the graph is a perfect community, the n-clique. We
mathematically prove that when τ is a constant (independent of graph size), then a constant fraction of
the graph can be partitioned in dense, community-like structures. In the next section, we give a formal
mathematical explanation. We summarize, analogous to the classic Cheeger inequality, as follows.

Basic fact: τ is 1− 1/(n− 1) (the maximum) =⇒ A is a perfectly clustered block.
Our discovery: τ is at least constant =⇒ Constant fraction of A is present in dense, clustered blocks.

For network analysis, the spectral transitivity τ takes the place of the spectral gap.
We find it remarkable that the value of a single quantity, the spectral transitivity, actually implies a

global community structure of the graph. Moreover, we discover an efficient algorithm to produce these
densely clustered blocks, which we call the spectral triadic decomposition. For convenience, we refer to a
densely clustered block as a cluster. Unlike most community detection methods designed to a construct a
few blocks, our theorem and algorithm produces thousands of clusters.

2



A toy decomposition

Original Subgraph

Subgraph ordered by extracted clusters

Figure 1: On the left, as a small example, we consider a subgraph induced by 155 vertices and τ = 0.49 from a
coauthorship network of Condensed Matter Physics researchers[9], and show a spectral triadic decomposition
of the largest connected component, which has 49 vertices. Each cluster is colored differently. We see
how each cluster forms a densely connected component within an otherwise sparse graph. Also note that
the clusters vary in size. The gray vertices do not participate in the decomposition, since they do not
add significant to the cluster structure. On the right, we look at the adjacency matrices pre and post
decomposition. The top figure is a spy plot of the adjacency matrix of 488 connected vertices from a Facebook
network ([14],[13]) taken from the network repository[10], a graph with τ = 0.122. As a demonstration, we
compute the spectral triadic decomposition of this subnetwork. We group the columns/rows by the clusters
in the spy plot on the bottom. The latent community structure is immediately visible. Note that there exists
many such blocks of varying sizes.
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1.1 Significance

We give formalism for the decomposition and our main theorem in the next section. In this section, we
explain the significance of our results for network science. The decomposition provided by our theorem
has strong agreement with the conventional notion of a community structure. One gets many blocks, each
with a guarantee on densely clustered internal structure. We notice an important deviation from standard
Cheeger-like inequalities. Such bounds try to separate the graph by removing a few edges (or substructures).
Most real-world networks have a significant fraction of long-rage edges or weak ties, that are not part of
any community[8, 2, 4]. Hence, it makes more sense to try to find a constant fraction of the network within
communities, rather than remove few edges to separate them.

Our insights have direct relevance to network analysis for real data. We observe that the τ -values of
a number of real-world networks are large. This data includes social networks, coauthorship networks,
and citations networks (data in supplement). The τ -values are typically in the range 0.1 - 0.2, even for
networks with hundreds of thousands of edges. (For a random network of comparable size and similar degree
distribution, the τ -value would be < 10−5. That random graphs, even with high average degree, fail to
capture triangle density is a well known fact[11].) We implemented our algorithm to compute the spectral
triadic decomposition, and ran it on all these datasets.

We give pictorial depictions of the spectral triadic decomposition in Fig. 1. The image on the left shows
a small snapshot of 155 vertices of a coauthorship network in Condensed Matter Physics [9] (the τ value is
around 0.2). As a toy example, we compute the spectral triadic decomposition of this network snapshot,
and color the dense, clustered blocks in different colors. We can see how various pockets of density are
automatically extracted by the spectral triadic decomposition. On the right, we show the adjacency matrix
of a portion of a Facebook social network of college students at Rice University ([14, 13]) taken from the
network repository[10] . We apply the spectral triadic decomposition and then order by blocks. The latent
structure becomes immediately visible.

To state our main theorem, we first need to define the notion of approximately uniform matrices.

Definition 1.1. Let α ∈ (0, 1]. A k× k zero diagonal non-negative matrix M is called α-uniform if at least
an α-fraction of non-diagonal entries have value in the range [α/(k − 1), 1/α(k − 1)].

For s ∈ S, let N(s, S) denote the neighborhood of s in S (we define edges by non-zero entries). An
α-uniform matrix is strongly α-uniform if for at least an α-fraction of s ∈ S, M |N(s,S) is also α-uniform.

Our main theorem is then the following (we restate it in more detail in §2).

Theorem 1.2. Consider any normalized adjacency matrix A such that τ is at least a constant. Then, there
exists a collection of disjoint sets of vertices X1, X2, . . . , Xk satisfying the following conditions:

• (Cluster structure) For all i ≤ k, A|Xi is strongly constant-uniform.
• (Coverage)

∑
i≤k ‖A|Xi‖22 is Ω(‖A‖22).

(All constants are polynomially related, independent of any graph parameter.)

1.2 High-level ideas of the proof

The full proof of Theorem 1.2 is mathematically involved with many moving parts. In this section, we
highlight the key ideas, and make various simplifying assumptions. We note that the ideas are borrowed
from a theoretical result of Gupta-Roughgarden-Seshadhri [3]. Their result talks about decompositions of
triangle-dense graphs, but does not make any spectral connections. Moreover, their result works for the
standard adjacency matrix, and cannot prove either bounds on strong uniformity or Frobenius norms (like
Theorem 1.2). The GRS result does not have the analogies to the Cheeger inequality.

We begin by a combinatorial intepretation of the spectral clustering coefficient. Let E be the set of edges
and T be the set of triangles in G. For a edge e = (u, v), define the weight wt(e) to be 1/dudv. For a triangle
t = (u, v, w), define the weight wt(t) := 1/(dudvdw). Standard equalities show that 2

∑
e∈E wt(e) =

∑
i λ

2
i

and
∑

t∈T wt(t) =
∑

i λ
3
i . We use the term “Frobenius weight” to refer to the squared Frobenius norm,

since it is sum of weights of edges. Thus, the spectral clustering coefficient τ , is the ratio of total weight of
triangles to the total weight of edges (scaled by a factor of 3).
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The premise of Theorem 1.2 is that the total triangle weight of the graph is (τ/3)
∑

e∈E wt(e). In this
discussion, we will assume that τ is at least a constant, independent of graph size. So all dependencies on
τ will be subsumed by the standard O(·),Ω(·) notation. The full proof has explicit dependencies on τ . The
decomposition of Theorem 1.2 is constructed by a procedure that repeatedly extracts the strongly uniform
sets Xi. It maintains a subgraph H = (V (H), E(H)) under consideration. Initially, H is set to the whole
graph G. We use T (H) to denote the set of triangles of T . A crucial definition is the notion of clean edges
of H: an edge e is clean if

∑
t⊃e:t∈T (H) wt(t) ≥ (τ/6)wt(e). Thus, a clean edge is incident to a large amount

of triangle weight, relative to its own weight.
We first prepare for the extraction step by repeatedly removing any unclean edge. Note that the removal

of an unclean edge could remove triangles, which makes other edges unclean. The removals of unclean edges
potentially cascade into many more removals. Nonetheless, observe that the removal of an unclean edge e
only removes at most (τ/6)wt(e) triangle weight at the time of removal. The total triangle weight removed
by all cleaning steps ever done is at most (τ/6)

∑
e∈E wt(e), regardless of the order they are performed in.

By definition, the total triangle weight in G is exactly (τ/3)
∑

e∈E wt(e). Hence, the cleaning steps still
preserve at least half the total triangle weight.

So we end up with a graph H that contains only clean edges. We will extract a strongly uniform set X
of vertices from H. An important decision is to begin the extraction from the lowest degree vertex v that
participates in H. The degree refers to the number of neighbors in the original graph G, not the subgraph
H. The distinction is critical, since all edges/triangle weights are defined with respect to the original degree.
We are trying to find uniform blocks in A (not in A restricted to H).

Pick any neighbor u of v in H. Since the edge (u, v) is clean, the triangle weight that it is incident to (in
H) is at least Ω(1/dudv) (the weight of (u, v) is 1/dudv). Let P (u), the partners of u, be the set of vertices
that form a triangle with (u, v) in H. We get:

(2)
∑

w∈P (u)

(dudvdw)−1 = Ω((dudv)−1) =⇒
∑

w∈P (u)

d−1w = Ω(1)

Since all partners are also neighbors of v, the bound above implies that the average value of d−1w is at least
Ω(d−1v ). Using some algebra, we can prove that there are Ω(dv) neighbors of v whose degree is O(dv). We
call these vertices the low degree neighbors, and denote them by L. An adaptation of the above argument
proves that

∑
w∈P (u)∩L d

−1
w = Ω(1).

We can apply this bound to prove thatA|L is constant-uniform. (Henceforth, we will simply say “uniform”
to mean constant-uniform.) Observe that every edge in L creates a triangle, so endpoints are partners of
each other. Let us sum the weights of all edges in L as follows and apply the bound

∑
w∈P (u)∩L d

−1
w = Ω(1)

twice:

(3)
∑
u∈L

∑
w∈P (u)∩L

(dudw)−1 =
∑
u∈L

d−1u

( ∑
w∈P (u)∩L

d−1w

)
= Ω(

∑
u∈L

d−1u ) = Ω(1)

Thus, the sum of weights of edges in L is Ω(1). Since dv is the lowest degree of any vertex in H, the maximum
weight of an edge is at most d−2v . The size of L is at most dv, and there are at most d2v edges in L. Hence,
at least Ω(d2v) edges in L have weight Ω(d−2v ), implying that L is uniform.

But we cannot extract L as our desired set X, because L might not be strongly uniform. Indeed, we have
no guarantee of what the neighborhood of u ∈ L restricted to L looks like. To achieve strong uniformity, we
need the set X to contain sufficient triangle weight. Since H is clean, all edges (of H) in L are incident to
significant triangle weight; but these triangles might not be contained in L. We add L to the set X to be
extracted. Our next step is to find vertices that are neighbors of L to add to X.

There is a delicate tradeoff here. We need to add vertices that will boost the triangle weight inside X,
but adding too many vertices might affect the uniformity in X. Eventually, we need the matrices A|Xi

to
contain enough Frobenius/edge weight (the coverage condition of Theorem 1.2). Note that the extraction on
X destroys Frobenius weight, because edges leaving X get destroyed. So X has to be chosen carefully to
minimize this effect.
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For all w ∈ V (H), let us define ρw to be the total triangle weight (in H) involving w and an edge in L.
Note that

∑
w ρw is the total triangle weight involving edges from L. If we can capture a significant fraction

of this total by adding a few vertices to X, we can ensure strong uniformity. First, since edges in H are
clean, we observe that

∑
w ρw is large:

(4)
∑
w

ρw =
∑

e⊆L:e∈E(H)

∑
t⊃e:t∈T (H)

wt(t) = Ω(
∑

e⊆L:e∈E(H)

wt(e))

All vertices in L have degree O(dv), because there are all low-degree neighbors of v. Hence, all edge weights
in L are Ω(d−2v ). The uniformity of L implies that there are Ω(d2v) edges in L. Multiplying and plugging in
(4), we deduce that

∑
w ρw = Ω(1). Remarkably, we can show that a few values of ρw dominate the sum,

which is crucial to the construction of X.
We will upper bound the sum

∑
w

√
ρw. The intuition is that when the ρw values are concentrated on a few

vertices, the sum of square roots becomes smaller. We can express ρw as
∑

u,u′∈L:(u,u′,w)∈T (H)(dwdudu′)
−1 ≤

d−3v (
∑

u∈L,(u,w)∈E(H) 1)2 (this is because dv is the smallest degree in H, and we can upper bound the LHS by

a double summation). Let cw be the neighbors of w in L (in the graph H). We just bounded ρw ≤ d−3v c2w, so∑
w

√
ρw ≤ d−3/2v

∑
w cw. Observe that

∑
w cw basically counts edges that leave L, so it is at most

∑
u∈L du.

The latter sum is at most O(d2v). Overall, we conclude that
∑

w

√
ρw = O(d

−3/2
v × d2v) = O(

√
dv).

So we have the bound
∑

w ρw = Ω(1) and
∑

w

√
ρw = O(

√
dv). Using some algebra, we can infer that

there are Θ(dv) vertices w such that ρw = Ω(d−1v ). We add these vertices to the set X; all the triangle weight
corresponding to θw is now inside X. Note that X still has size O(dv), but the triangle weight contained in
X is at least Ω(1).

We can now prove that X is strongly uniform. First, let us upper bound the triangle weight incident to
any edge (w,w′). Let N(w) denote the neighborhood of w in H. The triangle weight is at most

(5)
∑

x∈N(w′)

(dwdw′dx)−1 ≤ (dwdv)−1
∑

x∈N(w′)

d−1w′ = (dwdv)−1

Applying the above bound, the triangle weight incident to a vertex w is at most

(6)
∑

w′∈N(w)

∑
t⊃(w,w′)

wt(t) ≤
∑

w′∈N(w)

(dwdv)−1 = d−1v

Since X contains Ω(1) triangle weight, by the above bound, there must exist Ω(dv) vertices in X incident
to Ω(d−1v ) triangle weight inside X. Pick any such vertex u. The weight of a single triangle is at most d−3v .
So u must participate in O(d2v) triangles inside X. Since |X| = O(dv), this implies that the neighborhood
of u in X is also dense. We can also show that weights of edges in this neighborhood are Θ(d−2v ). Thus,
A|N(u)∩X is a uniform matrix for every u picked above. And A|X is a strongly uniform matrix.

The final procedure extracts this X from the graph H and removes all edges leaving X. Then, the
cleaning is performed again to prepare the “next” H, from which the next X is extracted, and so on.

Proving the coverage bound: Note that the edge weight is precisely the contribution to the squared
Frobenius norm. During the decomposition process, edge weight (which is Frobenius weight) is lost by edges
that are cleaned, and by edges removed by the extraction process. We only preserve the Frobenius weight
from edges completely contained in some Xi. We do not know how to directly bound the edge weight of the
edges lost by cleaningFor an individual edge e that is removed by cleaning, the triangle weight removed at
that time will be much smaller than the edge weight.

But (as argued in the beginning of this section), we can bound the total triangle weight lost by cleaning.
It turns out that, instead of tracking coverage through Frobenius/edge weight, it is easier to compute the
triangle weight preserved. Using standard inequalities, we can then convert those bounds back in Frobenius
weight.

Each set X extracted has O(dv) vertices and contains Ω(1) triangle weight. (Note that dv is the minimum
degree vertices in the subgraph H where X was extracted. The value dv will change with each extraction.)
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Since any vertex in H is incident to at most d−1v triangle weight, the set X is incident to at most O(1)
triangle weight. The ratio of triangle weight contained in X to the triangle weight incident to X is Ω(1).
As argued in the beginning of this section, cleaning removes at most half the triangle weight. Thus, we
can prove that the extracted sets contains an Ω(1) fraction of the total triangle weight. For each set Xi,
standard bounds imply that the Frobenius weight is at least the triangle weight inside Xi. By the properties
of spectral clustering coefficient, the total triange weight is at least the Frobenius weight. Putting it all
together, the Frobenius weight inside the Xis is at least to the total Frobenius weight of A.

2 The Main Theorem

Our focus is entirely on non-negative matrices with zeroes on their diagonals. We are interested in the
variation of values within submatrices of A. Towards that, we define the following notion of approximately
uniform matrices. We use ‖M‖2 to denote the Frobenius norm of a matrix. We restate our definition of
approximately uniform matrices.

Definition 1.1. Let α ∈ (0, 1]. A k× k zero diagonal non-negative matrix M is called α-uniform if at least
an α-fraction of non-diagonal entries have value in the range [α/(k − 1), 1/α(k − 1)].

For s ∈ S, let N(s, S) denote the neighborhood of s in S (we define edges by non-zero entries). An
α-uniform matrix is strongly α-uniform if for at least an α-fraction of s ∈ S, M |N(s,S) is also α-uniform.

In an approximately uniform matrix, there are many entries of roughly the same (squared) value. Note
that a 1-uniform non-negative matrix has exactly the same value in all off-diagonal entries. A normalized
adjacency matrix is 1-uniform iff it represents a clique on n vertices; hence, we can think of the uniformity
parameter α as a measure of how “clique-like” an adjacency matrix is.

To motivate our main theorem, let us a prove a basic spectral fact regarding τ(A).

Lemma 2.1. Consider normalized adjacency matrices A of dimension n. The maximum value of τ(A)
is 1 − 1/(n − 1). Moreover, this value is attained for a unique strongly 1-regular matrix, the normalized
adjacency matrix of the n-clique.

Proof. First, consider the normalized adjacency matrixA of the n-clique. All off-diagonal entries are precisely
1/(n− 1) and A can be expressed as (n− 1)−1(11T − I). The matrix A is 1-regular. The largest eigenvalue
is 1 and all the remaining eigenvalues are −1/(n− 1). Hence,

∑
i λ

3
i = 1− (n− 1)/(n− 1)3 = 1− 1/(n− 1)2.

The sum of squares of eigenvalue is
∑

i λ
3
i = 1 + (n− 1)/(n− 1)2 = 1 + 1/(n− 1). Dividing,∑

i≤n λ
3
i∑

i≤n λ
2
i

= 1− 1/(n− 1).

Since the matrix has zero diagonal, the trace
∑

i λi is zero. We will now prove the following claim.

Claim 2.2. Consider any sequence of numbers 1 = λ1 ≥ λ2 . . . ≥ λn such that ∀i, |λi| ≤ 1 and
∑

i λi = 0.
If
∑

i λ
3
i ≥ (1− 1/(n− 1))

∑
i λ

2
i , then ∀i > 1, λi = −1/(n− 1).

Proof. Let us begin with some basic manipulations.∑
i

λ3i ≥ [1− 1/(n− 1)]
∑
i

λ2i =⇒ 1 +
∑

i>1 λ
3
i ≥ [1− 1/(n− 1)] · (1 +

∑
i>1 λ

2
i )

=⇒
∑

i>1 λ
3
i ≥ [1− 1/(n− 1)]

∑
i>1 λ

2
i − 1/(n− 1)(7)

For i > 1, define δi := λi + 1/(n − 1). Note that
∑

i>1 λi = −1, so
∑

i>1 δi = 0. Moreover, ∀i > 1,
δi ≤ 1 + 1/(n− 1). We plug in λi = δi − 1/(n− 1) in (7).∑
i>1

[
δi − 1/(n− 1)

]3
≥ [1− 1/(n− 1)]

∑
i>1

[
δi − 1/(n− 1)

]2
− 1/(n− 1)

=⇒
∑
i>1

[
δ3i − 3δ2i /(n− 1) + 3δi/(n− 1)2 − 1/(n− 1)3

]
≥ [1− 1/(n− 1)]

∑
i>1

[
δ2i − 2δi/(n− 1) + 1/(n− 1)2

]
− 1/(n− 1)

7



Recall that
∑

i>1 δi = 0. Hence, we can simplify the above inequality.∑
i>1

δ3i − (3/(n− 1))
∑
i>1

δ2i − 1/(n− 1)2 ≥ [1− 1/(n− 1)]
∑
i>1

δ2i + 1/(n− 1)− 1/(n− 1)2 − 1/(n− 1)

=⇒
∑
i>1

δ3i ≥ [1 + 2/(n− 1)]
∑
i>1

δ2i (Canceling terms and rearranging)

Since δi ≤ (1 + 1/(n − 1)), we get that
∑

i>1 δ
3
i ≤ [1 + 1/(n − 1)]

∑
i>1 δ

2
i . Combining with the above

inequality, we deduce that [1+2/(n−1)]
∑

i>1 δ
2
i ≤ [1+1/(n−1)]

∑
i>1 δ

2
i . This can only happen if

∑
i>1 δ

2
i

is zero, implying all δi values are zero. Hence, for all i > 1, λi = −1/(n− 1).

With this claim, we conclude that any matrix A maximizing the ratio of cubes and squares of eigenvalues
has a fixed spectrum. It remains to prove that a unique normalized adjacency matrix has this spectrum. We
use the rotational invariance of the Frobenius norm: sum of squares of entries of A is the same as the sum
of squares of eigenvalues. Thus,

(8)
∑

(u,v)∈E

2

dudv
= 1− 1/(n− 1) = n/(n− 1)

Observe that 2
dudv

≥ 1/(du(n − 1)) + 1/(dv(n − 1)), since all degrees are at most n − 1. Summing this
inequality over all edges,∑

(u,v)∈E

2

dudv
≥
∑
v∈V

∑
u∈N(v)

1

dv(n− 1)
=
∑
v∈V

dv
dv(n− 1)

= n/(n− 1)

Hence, for (8) to hold, for all edges (u, v), we must have the equality 2
dudv

= 1/(du(n− 1)) + 1/(dv(n− 1)).
That implies that for all edge (u, v), du = dv = n− 1. So all vertices have degree (n− 1), and the graph is
an n-clique.

Our main theorem is a generalization of Lemma 2.1. Since we focus on an arbitrary fixed matrix A, we
will simply use τ to denote τ(A). We prove that when the ratio of powers of eigenvalues is at least a constant,
a constant fraction of the (Frobenius norm of the) matrix A is contained in approximately uniform matrices.
Thus, all matrices having a large spectral triadic content possess a decomposition of A into approximately
uniform matrices.

Theorem 2.3 (Main Theorem). There exist absolute constants δ > 0 and c > 0 such that the following
holds. Consider any normalized adjacency matrix A. There exists a collection of disjoint sets of vertices
X1, X2, . . . , Xk satisfying the following conditions:

• (Cluster structure) For all i ≤ k, A|Xi
is strongly δτ c-uniform.

• (Coverage)
∑

i≤k ‖A|Xi
‖22 ≥ δτ c‖A‖22.

3 Preliminaries

We use V,E, T to denote the sets of vertices, edges, and triangles of G, respectively. For any subgraph H of
G, we use VH , EH , TH to denote the corresponding sets within H. For any edge e, let TH(e) denote the set
of triangles in H containing e.

For any vertex v, let dv denote the degree of v (in G).
We first define the notion of weights for edges and triangles. We will think of edges and triangles as

unordered sets of vertices.

Definition 3.1. For any edge e = (u, v), define the weight wt(e) to be 1
dudv

. For any triangle t = (u, v, w),

define the weight wt(t) to be 1
dudvdw

.
For any set S consisting solely of edges or triangles, define wt(S) =

∑
s∈S wt(s).
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We state some basic facts that relate the sum of weights to sum of eigenvalue powers. Let S ⊂ V be
any subset of vertices, and let A|S denote the submatrix of A restricted to S. We use λi(S) to denote the
ith largest eigenvalue of the symmetric submatrix A|S . Abusing notation, we use ES and TS to denote the
edges and triangles contained in the graph induced on S.

Claim 3.2.
∑

i≤|S| λ
2(S)i = 2

∑
e∈E(S) wt(e)

Proof. By the properties of the Frobenius norm of matrices,
∑

i≤|S| λ
2
i =

∑
s,t∈S A2

s,t Note that As,t =

As,t/
√
dsdt. Hence,

∑
s,tA2

s,t = 2
∑

e=(u,v)∈E(S) 1/dudv. (We get a 2-factor because each edge (u, v) appears

twice in the adjacency matrix.)

Claim 3.3.
∑

i≤|S| λ
3(S)i = 6

∑
t∈T (S) wt(t).

Proof. Note that
∑

i≤|S| λ
3(S)i is the trace of (A|S)3. The diagonal entry (A|S)3ii is precisely

∑
s∈S

∑
s′∈S AisAss′As′i.

Note that AisAss′As′i is non-zero iff (i, s, s′) form a triangle. In that case, AisAss′As′i = 1/
√
dids ·1/

√
dsds′ ·

1/
√
ds′di = wt((i, s, s′)), We conclude that (A|S)3ii is 2

∑
t∈T (S),t3i wt(t). (There is a 2 factor because every

triangle is counted twice.)
Thus,

∑
i≤n λ

3(S)i =
∑

i 2
∑

t∈T,t3i wt(t) = 2
∑

t∈T
∑

i∈t wt(t) = 6
∑

t∈T wt(t). (The final 3 factor
appears because a triangle contains exactly 3 vertices.)

Claim 3.4.
∑

t∈T (S) wt(t) ≤ ‖A|S‖22/6.

Proof. By Claim 3.3
∑

t∈T (S) wt(t) =
∑

i≤|S| λ
3(S)i/6. The maximum eigenvalue of A is 1, and since A|S is

a submatrix, λ(S)1 ≤ 1 (Cauchy’s interlacing theorem). Thus,
∑

i≤|S| λ
3(S)i ≤

∑
i∈|S| λ

2(S)i = ‖A|S‖22.

As a direct consequence of the previous claims applied on A, we get the following characterization of the
spectral triadic content in terms of the weights.

Lemma 3.5. τ =
3
∑

t∈T wt(t)∑
e∈E wt(e) .

We will need the following “reverse Markov inequality”.

Lemma 3.6. Consider a random variable Z taking values in [0, b]. If E[Z] ≥ σb, then Pr[Z ≥ σb/2] ≥ σ/2.

Proof. In the following calculations, we will upper bound the conditional expectation by the maximum value
(under that condition).

(9) σb ≤ E[Z] = Pr[Z ≥ σb/2] ·E[Z|Z ≥ σb/2] + Pr[Z ≤ σb/2] ·E[Z|Z ≤ σb/2] ≤ Pr[Z ≥ σb/2] · b+ σb/2

We rearrange to complete the proof.

4 Cleaned graphs and extraction

For convenience, we set ε = τ/6.

Definition 4.1. A connected subgraph H is called clean if ∀e ∈ E(H), wt(TH(e)) ≥ εwt(e).

The main theorem of this section follows.

Theorem 4.2. Suppose the subgraph H is connected and clean. Let X denote the output of the procedure
Extract(H). Then ∑

t∈T (H),t⊆X

wt(t) ≥ (ε8/2000)
∑

t∈T (H),t∩X 6=∅

wt(t)

(The triangle weight contained inside X is a constant fraction of the triangle weight incident to X.)
Moreover, A|X is strongly δε12-uniform.
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Algorithm 1 Extract(H)

1: Pick v ∈ V (H) that minimizes dv.
2: Construct the set L := {u|(u, v) ∈ E(H), du ≤ 2ε−1dv} (S is the set of low degree neighbors of v in H.)
3: For every vertex w ∈ V (H), define ρw to be the total weight of triangles of the form (w, u, u′) where
u, u′ ∈ L.

4: Sort the vertices in decreasing order of ρw, and construct the “sweep cut” C to be the smallest set
satisfying

∑
w∈C ρw ≥ (1/2)

∑
w∈V (H) ρw.

5: Output X := {v} ∪ L ∪ C.

We will need numerous intermediate claims to prove this theorem. We use v, L, and C as defined in
Extract(H). We use N to denote the neighborhood of v in H. Note that L ⊆ N .

For any vertex u ∈ N , we define the set of partners P (u) to be {w : (u, v, w) ∈ TH}.

The following lemma is an important tool in our analysis.

Lemma 4.3. For any u ∈ N ,
∑

w∈P (u)∩L d
−1
w ≥ ε/2.

Proof. Let e = (u, v). Since H is clean, wt(TH(e)) ≥ εwt(e). Expanding out the definition of weights,

(10)
∑

w:(u,v,w)∈TH

1

dudvdw
≥ ε

dudv
=⇒

∑
w∈P (u)

d−1w ≥ ε

Note that L (as constructed in Extract(H)) is the subset of N consisting of vertices with degree at most
2ε−1dv. For w ∈ N \ L, we have the lower bound dw ≥ 2ε−1dv. Hence,

(11)
∑

w∈N\L

d−1w ≤ |N \ L|(ε/2)d−1v ≤ dv × (ε/2)d−1v = ε/2.

In the calculation below, we split the sum of (10) into the contribution from L and from outside L. We
apply (11) to bound the latter contribution.

ε ≤
∑

w∈P (u)

d−1w ≤
∑

w∈P (u)∩L

d−1w +
∑

w∈N\L

d−1w ≤
∑

w∈P (u)∩L

d−1w + ε/2

Claim 4.4. |L| ≥ εdv/2

Proof. SinceH is connected, there must exist some edge e = (u, v) ∈ E(H). By Lemma 4.3,
∑

w∈P (u)∩L d
−1
w ≥

ε/2. Hence,
∑

w∈L d
−1
w ≥ ε/2. Since v is the vertex in V (H) minimizing dv, for any w ∈ V (H), dw ≥ dv.

Thus,

ε/2 ≤
∑
w∈L

d−1w ≤
∑
w∈L

d−1v = |L|d−1v

Claim 4.5.
∑

e∈E(H),e⊆L wt(e) ≥ ε2/8.

Proof. By Lemma 4.3, ∀w ∈ L,
∑

w′∈P (w)∩L d
−1
w′ ≥ ε/2. We multiply both sides by d−1w and sum over all

w ∈ L. ∑
w∈L

∑
w′∈P (w)∩L

(dwdw′)
−1 ≥ (ε/2)

∑
w′∈L

d−1w′

By Lemma 4.3,
∑

w′∈L d
−1
w′ ≥ ε/2. Note that w′ ∈ P (w) only if (w,w′) ∈ E(H). Hence,∑

w∈L
∑

w′∈L,(w,w′)∈E(H) wt((w,w′)) ≥ ε2/4. Note that the summation counts all edges twice, so we divide
by 2 to complete the proof.
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We now come to the central calculations of the main proof. Recall, from the description of Extract, that
ρw is the total triangle weight of the triangles (w, u, u′), where u, u′ ∈ L. We will prove that

∑
w ρw is large;

moreover, there are a few entries that dominate the sum. The latter bound is crucial to arguing that the
sweep set C is not too large.

Claim 4.6.
∑

w∈V (H) ρw ≥ ε3/8.

Proof. Note that
∑

w∈V (H) ρw is equal to
∑

e∈E(H),e⊂L wt(TH(e)). Both these expressions give the total

weight of all triangles in H that involve two vertices in L. Since H is clean, for all edges e ∈ E(H),
wt(TH(e)) ≥ εwt(e). Hence,

∑
e∈E(H),e⊂L wt(TH(e)) ≥ ε

∑
e∈E(H),e⊂L wt(e). Applying Claim 4.5, we can

lower bound the latter by ε3/8.

We now show that a few ρw values dominate the sum, using a somewhat roundabout argument. We
upper bound the sum of square roots.

Claim 4.7.
∑

w∈V (H)

√
ρw ≤ 2ε−1

√
dv

Proof. Let cw be the number of vertices in L that are neighbors (in H) of w. Note that for any triangle
(u, u′, w) where u, u′ ∈ L, both u and u′ are common neighors of w and v. The number of triangles (u, u′, w)
where u, u′ ∈ L is at most c2w. The weight of any triangle in H is at most d−3v , since dv is the lowest degree
(in G) of all vertices in H. As a result, we can upper bound ρw ≤ d−3v c2w.

Taking square roots and summing over all vertices,

(12)
∑

w∈V (H)

√
ρw ≤ d−3/2v

∑
w∈V (H)

cw

Note that
∑

w∈V (H) cw is exactly the sum over u ∈ L of the degrees of u in the subgraph H. (Every edge

incident to u ∈ L gives a unit contribution to the sum
∑

w∈V (H) cw.) By definition, every vertex in L has

degree in H at most 2ε−1dv. The size of L is at most dv.
Hence,

∑
w∈V (H) cw ≤ 2ε−1d2v. Plugging into (12), we deduce that

∑
w∈V (H)

√
ρw ≤ 2ε−1

√
dv.

We now prove that the sweep cut C is small, which is critical to proving Theorem 4.2.

Claim 4.8. |C| ≤ 144ε−5dv.

Proof. For convenience, let us reindex vertices so that ρ1 ≥ ρ2 ≥ ρ3 . . .. Let r ≤ n be an arbitrary index.
Because we index in non-increasing order, note that

∑
j≤n ρj ≥ rρr. Furthermore, ∀j > r, ρj ≤ ρr.

∑
j>r

ρj ≤
√
ρr
∑
j>r

√
ρj ≤

√∑
j≤n ρj

r

∑
j≤n

√
ρj =

[ ∑
j≤n
√
ρj

√
r ·
√∑

j≤n ρj

]∑
j≤n

ρj(13)

Observe that Claim 4.7 gives an upper bound on the numerator, while Claim 4.6 gives a lower bound on (a
term in) the demonimator. Plugging those bounds in (13),

∑
j>r

ρj ≤
2ε−1

√
dv√

r · ε3/2/
√

8

∑
j≤n

ρj ≤
1√
r
· 6
√
dv

ε5/2
·
∑
j≤n

ρj

Suppose r > 144ε−5dv. Then
∑

j>r ρj < (1/2)
∑

j≤n ρj . The sweep cut C is constructed with the smallest

value of r such that
∑

j>r ρj < (1/2)
∑

j≤n ρj . Hence, |C| ≤ 144ε−5dv.

An additional technical claim we need bounds the triangle weight incident to a single vertex.

Claim 4.9. For all vertices u ∈ V (H), wt(TH(u)) ≤ (2dv)−1.
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Proof. Consider edge (u,w) ∈ E(H). We will prove that wt(TH((u,w))) ≤ δ−1u d−1v . Recall that dv is the
smallest degree among vertices in H. Furthermore, |TH((u,w))| ≤ dw, since the third vertex in a triangle
containing (u,w) is a neighbor of w.

wt(TH((u, v))) =
∑

z:(z,u,w)∈T (H)

1

dudwdz
≤ 1

dudv

∑
z:(z,u,w)∈T (H)

1

dw
≤ 1

δudv
× dw
dw

=
1

dudv

We now bound wt(TH(u)) by summing over all neighbors of u in H.

wt(TH(u)) = (1/2)
∑

w:(u,w)∈E(H)

wt(TH((u,w))) ≤ (1/2)
∑

w:(u,w)∈E(H)

1

dudv
=

1

2dv

∑
w:(u,w)∈E(H)

1

du
≤ 1

2dv
×du
du

=
1

2dv

4.1 The proof of Theorem 4.2

Proof. (of Theorem 4.2) By construction of X as {v} ∪ L ∪ C, all the triangles of the form (w, u, u′), where
w ∈ C and u, u′ ∈ L, are contained in X. The total weight of such triangles is at least

∑
v≤n ρv/2, by the

construction of C. By Claim 4.6,
∑

v≤n ρv/2 ≥ ε3/16.
Let us now bound that total triangle weight incident to X in H. Observe that |X| = 1 + |L|+ |C| which

is at most 1 + dv + ε−5144dv, by Claim 4.8. We can further bound |X| ≤ ε−5146dv. By Claim 4.9, the total
triangle weight incident to a vertex is at most (2dv)−1. Hence, the total triangle weight incident to all of X
is at most 73ε−5.

Thus, the triangle weight contained in X is at least ε3/16
73ε−5 times the triangle weight incident to X. The

ratio is at least ε8/2000, completing the proof of the first statement.
Proof of uniformity of A|X : We first prove a lower bound on the uniformity of A|X . For convenience,

let B denote the set {e|e ∈ E(H), e ⊆ L. By Claim 4.5,
∑

e∈B wt(e) ≥ ε2/8. There are at most
(
dv

2

)
≤ d2v/2

edges in B. For every edge e, wt(e) ≤ 1/d2v. Let k denote the number of edges in B whose weight is at least
ε2/16.

ε2

8
≤

∑
e∈B

wt(e)≤ε2d−2
v /16

wt(e)+
∑
e∈B

wte≥ε2d−2
v /16

wt(e) ≤ |B|×ε2d−2v /16+kd−2v ≤ d2v×ε2d−2v /16+kd−2v = ε2/16+kd−2v

Rearranging, k ≥ ε2d2v/16.
Hence, there are at least ε2d2v/16 edges contained in X with weight at least ε2d−2v /16. Consider the

random variable Z that is the weight of a uniform random edge contained in X. Since |X| ≤ ε−5144dv, the
number of edges in X is at most ε−10(144)2d2v. So,

E[Z] ≥ ε2d2v/16

ε−10(144)2d2v
× ε2d−2v /16 ≥ 2δε14d−2v

The maximum value of Z is the largest possible weight of an edge in E(H), which is at most d−2v . Applying
the reverse Markov bound of Lemma 3.6, Pr[Z ≥ δε14d−2v ] ≥ δε14. Thus, an ε14 fraction of edges in |X| have
weight at least δε14d−2v ≥ δεc/|X|2. Moreover, every edge has weight at most d−2v ≤ 1/(δεc|X|2). So we
prove the uniformity of A|X .

The largest possible weight for any edge in E(H) is d−2v . The size of |X| is at least dv and at most
ε−5144dv. Hence, A|X is at least δε12-uniform.

Proof of strong uniformity: For strong uniformity, we need to repeat the above argument within
neighborhoods in X. We prove in the beginning of this proof that the total triangle weight inside X is at
least ε3/16. We also proved that |X| ≤ 146ε−5dv. Consider the random variable Z that is the triangle weight
contained in X incident to a uniform random vertex in X. Note that E[Z] ≥ (ε3/16)/(146ε−5dv) ≥ 2δ′ε8d−1v .
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By Claim 4.9, Z is at most (2dv)−1. Applying Lemma 3.6, Pr[Z ≥ δ′ε8d−1v ] ≥ δε8. This means that at least
δ′ε8|X| vertices in X are incident to at least δ′ε8d−1v triangle weight inside X.

Consider any such vertex u. Let N(u) be the neighborhood of u in X. Every edge e in N(u) forms a
triangle with u with weight wt(e)/du. Hence, noting that du ≥ dv,∑

e⊆N(u)

wt(e)d−1u ≥ δ′ε8d−1v =⇒
∑

e⊆N(u)

wt(e) ≥ δ′ε8

There are at most |X|2 ≤ ε−10(146)2d2v edges in N(u). Let Z denote the weight of a uniform random
edge in N(u). Note that E[Z] ≥ δ′ε8/(ε−10(146)2d2v) ≥ 2δε18d−2v . The maximum weight of an edge is at
most d−2v . By Lemma 3.6, at least δε18 fraction of edges in N(u) have a weight of at least δε18d−2v . Since
|N(u)| ≤ |X| ≤ ε−5146dv, this implies that N(u) is also δεc-uniform. Hence, we prove strong uniformity as
well.

5 Obtaining the decomposition

Algorithm 2 Decompose(G)

1: Initialize X to be am empty family of sets, and initialize subgraph H = G.
2: while H is non-empty do
3: while H is not clean do
4: Remove an edge e ∈ E(H) from H such that wt(TH(e)) < (ε)wt(e).
5: end while
6: Add output Extract(H) to X.
7: Remove these vertices from H.
8: end while
9: Output X.

We first describe the algorithm that obtains the decomposition promised in Theorem 2.3.
We partition all the triangles of G into three sets depending on how they are affected by Decompose(G).

(i) The set of triangles removed by the cleaning step of Step 4, (ii) the set of triangles contained in some
Xi ∈ X, or (iii) the remaining triangles. Abusing notation, we refer to these sets as TC , TX , and TR
respectively. Note that the triangles of TR are the triangles “cut” when Xi is removed.

Claim 5.1. wt(TC) ≤ (τ/6)
∑

e∈E wt(e).

Proof. Consider an edge e removed at Step 4 of Decompose. Recall that ε is set to τ/6. At that removal, the
total weight of triangles removed (cleaned) is at most (τ/6)wt(e). An edge can be removed at most once, so
the total weight of triangles removed by cleaning is at most (τ/6)

∑
e∈E wt(e).

Proof. (of Theorem 2.3) Let us denote by H1, H2, . . . ,Hk the subgraphs of which Extract is called. Let the
output of Extract(Hi) be denotedXi. By the uniformity guarantee of Theorem 4.2, eachA|Xi is δτ c-uniform.

It remains to prove the coverage guarantee. We now sum the bound of Theorem 4.2 over all Xi. (For
convenience, we expand out ε as τ/6 and let δ′ denote a sufficiently small constant.)∑

i≤k

∑
t∈T (H),t⊆X

wt(t) ≥ (δ′τ8)
∑
i≤k

∑
t∈T (H),t∩X 6=∅

wt(t)

The LHS is precisely wt(TX). Note that a triangle appears at most once in the double summation in the
RHS. That is because if t ∩ Xi 6= ∅, then t is removed when Xi is removed. Since Hi is always clean, the
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triangles of TC cannot participate in this double summation. Hence, the RHS summation is wt(TX)+wt(TR)
and we deduce that

(14) wt(TX) ≥ δ′τ8(wt(TX) + wt(TR))

Note that wt(tc)+wt(tx)+wt(tr) =
∑

t∈T wt(t). There is where the definition of τ makes its appearance.
By Lemma 3.5, we can write the above equality as wt(Tc) + wt(Tx) + wt(Tr) = (τ/3)

∑
e∈E wt(e). Applying

Claim 5.1, (14), and the relation of edge weights to the Frobenius norm (Claim 3.2),

(δ′τ8)−1wt(TX) ≥ (τ/6)
∑
e∈E

wt(e) =⇒ wt(TX) ≥ δτ c‖A‖22 (by Claim 3.2)

By Claim 3.4,
∑

i≤k ‖A|Xi
‖22 ≥ wt(TX), completing the proof of the coverage bound.

6 Algorithmics and implementation

We discuss theoretical and practical implementations of the procedures computing the decomposition of
Theorem 2.3. The main operation required is a triangle enumeration of G; there is a rich history of algorithms
for this problem. The best known bound for sparse graph is the classic algorithm of Chiba-Nishizeki that
enumerates all triangles in O(mα) time, where α is the graph degeneracy.

We first provide a formal theorem providing a running time bound. We do not explicitly describe the
implementation through pseudocode, and instead explain the main details in the proof.

Theorem 6.1. There is an implementation of Decompose(G) whose running time is O((R+m+ n) log n),
where R is the running time of listing all triangles. The space required is O(T ) (where T is the triangle
count).

Proof. We assume an adjacency list representation where each list is stored in a dictionary data structure
with logarithmic time operations (like a self-balancing binary tree).

We prepare the following data structure that maintains information about the current subgraph H. We
initially set H = G. We will maintain all lists as hash tables so that elementary operations on them (insert,
delete, find) can be done in O(1) time.

• A list of all triangles in T (H) indexed by edges. Given an edge e, we can access a list of triangles in
T (H) containing e.

• A list of wt(TH(e)) values for all edges e ∈ E(H).
• A list U of all (unclean) edges such that wt(TH(e)) < εwt(e).
• A min priority queue Q storing all vertices in V (H) keyed by degree dv. We will assume pointers from

v to the corresponding node in Q.

These data structures can be initialized by enumerating all triangles, indexing them, and preparing all
the lists. This can be done in O(R) time.

We describe the process to remove an edge from H. When edge e is removed, we go over all the triangles
in T (H) containing e. For each such triangle t and edge e′ ∈ t, we remove t from the triangle list of e′. We
then update wt(TH(e′)) by reducing it by wt(t). If wt(TH(e′)) is less than wt(e), we add it to U . Finally,
if the removal of e removes a vertex v from V (H), we remove v from the priority queue Q. Thus, we
can maintain the data structures. The running time is O(|TH(e)|) plus an additional log n for potentially
updating Q. The total running time for all edge deletes is O(T + n log n).

With this setup in place, we discuss how to implement Decompose. The cleaning operation in Decompose

can be implemented by repeatedly deleting edges from the list U , until it is empty.
We now discuss how to implement Extract. We will maintain a max priority queue R maintaining the

values {ρw}. Using Q as defined earlier, we can find the vertex v of minimum degree. By traversing its
adjacency list in H, we can find the set L. We determine all edges in L by traversing the adjacency lists of
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all vertices in L. For each such edge e, we enumerate all triangles in H containing e. For each such triangle
t and w ∈ t, we will update the value of ρw in R.

We now have the total
∑

w ρw as well. We find the sweep cut by repeatedly deleting from the max
priority queue R, until the sum of ρw values is at least half the total. Thus, we can compute the set X to
be extracted. The running time is O((|X|+ |E(X)|+ |T (X)|) log n), where E(X), T (X) are the set of edges
and triangles incident to X.

Overall, the total time for all the extractions and resulting edge removals is O((n + m + T ) log n). The
initial triangle enumeration takes R time. We add to complete the proof.

Practical considerations: In our code implementation, we apply some simplifying heuristics. Instead
of repeatedly cleaning using a list, we simply make multiples passes over the graph, deleting any edge that
is unclean. On deletion of edge e, we do not update the TH(e) values. We only perform the update after a
complete pass over the graph. We do two to three passes over the graph, and leave any unclean edges that
still remain. Typically, the first two passes remove almost all unclean edges, and it is not worth the extra
time to find all remaining unclean edges.

7 Empirical Validation

7.1 Datasets

We now present an empirical validation of Theorem 2.3 and the procedure Decompose. We show that spectral
triadic decompositions exist in real-world networks; moreover, the clusters of the decompositions are often
semantically meaningful. We perform experiments on a number of real-world networks, whose details are
listed in Tab. 1. Most of our graphs are undirected, and the network names are indicative of what they
are: names beginning with ‘ca’ refer to coauthorship networks (ca-CondMat is for researchers who work
in condensed matter, ca-DBLP does the same for researchers whose work is on DBLP, a computer science
bibliography website), ones beginning with ‘com’ are social networks (socfb-Rice31 is a Facebook network,
soc-hamsterster is from Hamsterster, a pet social network), and ‘cit’ refers to citation networks. While
citation networks are in reality directed graphs, we consider any directed edge to be an undirected edge for the
purposes of our experiments. Graphs have been taken from the SNAP dataset at https://snap.stanford.
edu/data/ [7] and the network repository at https://networkrepository.com/ [10]. The exceptions to
this are the cit-DBLP dataset, which has been taken from https://www.aminer.org/citation [12] and the
ca-cond-matL dataset, which has been taken from [9] ; the L is for labelled. Not all graphs are used for
all tasks and datasets have been specified with the associated experiments; the majority of the quantitative
evaluation has been done on the first four graphs. The ground truth results have been performed on the
ca-DBLP graph, and the last two are used to exhibit semantic sensibility of the extracted clusters.

Implementation details: The code is written in Python, and we run it on Jupyter using Python 3.7.6
on a Dell notebook with an Intel i7-10750H processor and 32 GB of ram. The code requires enough storage
to store all lists of triangles, edges and vertices, and may be found on github at https://bitbucket.org/

Boshu1729/triadic/src/master/. We set the parameter ε to 0.1 for all the experiments, unless stated
otherwise. In general, we observe that the results are stable with respect to this parameter, and it is
convenient choice for all datasets.

The τ(G) values and spectral triadic decompositions: In Tab. 1, we list the spectral triadic content,
τ(G), of the real-world networks. Observe that they are quite large. They are the highest in social networks,
consistently ranging in values greater than 0.1. This shows the empirical significance of τ(G) in real-world
networks, which is consistent with large clustering coefficients.

In Tab. 2 we list the minimum and 10th percentile uniformity of the clusters in the decomposition (if the
uniformity is, say 0.1, it means that at least a 0.1-fraction of entries in the submatrix have value at least
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0.1 times the average value). We discuss these results in later sections as well; but the high uniformity in
extracted clusters is a good indicator of the efficacy of the algorithm.

Relevance of decomposition: For the ca-DBLP graph, we do a detailed analysis of the clusters Xi of
the decomposition with respect to a ground truth community labeling. We consider the first 10000 clusters
extracted and investigate their quality. The ground truth here is defined by publication venues, and we
restrict the evaluation to the top 5000 ground truth communities as described in [16], where the authors
curate a list of 5000 communities that they found worked well with community detection algorithms.

For each set Xi, we find the ground truth community of highest Jaccard similarity with Xi. We plot
the histogram of Jaccard similarities in Fig. 4. We ignore clusters that have fewer than 5 vertices for the
purposes of this experiment; this accounts for only 42 of the total clusters extracted. For the remainder, we
observe that the mean Jaccard density is 0.3, and 46 communities have a perfect value of 1. Moreover, we
plot a similar histogram for size of intersection of our clusters with the ground truth. Here too we observe
that the mean is 6.48. We look at how this average varies with sizes of the extracted clusters in Fig. 5.
While there is no clear trend observed in Jaccard density by cluster size, the mean intersection size clearly
grows as we look at larger clusters.

Details of clusters: A spectral triadic decomposition produces a large number of approximately uniform
dense clusters, starting from only the promise of a large τ(G) value. In Fig. 7 and Fig. 8, we show a scatterplot
of clusters, with axes of cluster size versus uniformity across various networks. We see that there are a large
number of fairly large clusters (of size at least 20) and of uniformity at least 0.5; further discussion on the
clusters and their sizes is in Tab. 3. These plots are further validation of the significance of Theorem 2.3 and
the utility of the spectral triadic decomposition. The procedure Decompose automatically produces a large
number of approximately uniform (or assortative) blocks in real-world networks. We summarize the data
with some numbers in Tab. 2. We also plot the edge density and triangle density of these clusters, which
are more standard parameters in network science. Refer to the first two rows of Fig. 6 respectively for these
plots. Since edge density is at least the uniformity, as expected, we see a large number of dense clusters
extracted by Decompose.

In Fig. 2, we show graph drawings of two example clusters in a co-authorship network of (over 90K)
researchers in Condensed Matter Physics. The cluster on the left has 16 vertices and 58 edges, and has
extracted a group of researchers who specialize in optics, ultra fast atoms, and Bose-Einstein condensates.
Notable among them is the 2001 physics Nobel laureate Wolfgang Ketterle. The cluster on the right has
18 vertices and 55 edges, and has a group of researchers who all work on nanomaterials; there are multiple
prominent researchers in this cluster, including the 1996 chemistry Nobel laureate Richard Smalley, who
discovered buckminsterfullerene. We stress that the our decomposition found more than a thousand such
clusters. Similar extracted clusters of research papers and articles extracted from the DBLP citation network
can be seen in Fig. 3. In this case, one cluster is a group of papers on error correcting/detecting codes, while
the other is a cluster of logic program and recursive queries papers.

It is surprising how well the spectral triadic decomposition finds fine-grained structure in networks,
based on just the spectral transitivity. This aspect highlights the practical relevance of spectral theorems
that decompose graphs into many blocks, rather that the classic Cheeger-type theorems that one produce
two blocks.

Total content of decomposition: Even though Decompose does not explicitly optimize for it, the clusters
capture a large fraction of the vertices, and triangles. In Tab. 3, we see the latter values for all the decomposi-
tions constructed. A significant fraction of both vertices and the total triangle weight is preserved. Coverage
is also impressive across the board; this is the total Frobenius norm of the decomposition, as a fraction of the
total Frobenius norm of A.. The cluster sizes vary with the dataset; the Facebook network shows especially
large clusters; it also exhibits lower triangle weight retention, which may be an artefact of the fact that it is
easier to retain triangle density in smaller clusters. A distribution of cluster sizes across datasets in shows
in the histograms in the bottom row of Fig. 6.
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(a) Condensed Matter Physics: Cluster of researchers
working on optics, ultra fast atoms, and Bose-Einstein
condensates

(b) Condensed Matter Physics: Cluster of researchers
working on graphene, nanomaterials and topological in-
sulators

Figure 2: We show two example clusters from a spectral triadic decomposition of coauthorship network of
researchers in Condensed Matter Physics [9], a graph with τ = 0.25. The left cluster is a set of 16 researchers
(58 edges) working on optics and Bose-Einstein condensates (notably, the cluster has the 2001 Physics Nobel
laureate Wolgang Ketterle). The right cluster has 18 researchers (55 edges) working on nanomaterials,
including the 1996 Chemistry Nobel laureate Richard Smalley.

Variation of ε: The algorithm Decompose has only one parameter, ε, which determines the cleaning
threshold. We vary the value of ε from 0.1 to 0.5 on the network ca-HepTh. When ε is smaller, the cleaning
process removes fewer edges, but this comes at the cost of lower uniformity. For the mathematical analysis
in §5, we require ε to be smaller than τ . On the other hand, the algorithm works in practice for large values
of ε. The output of Decompose on fairly large values of ε is quite meaningful.

We carry out the same experiments for four values of ε: 0.1, 0.2, 0.3, and 0.5. The primary takeaway
is that cleaning is far more aggressive for higher values of ε, and clusters extracted at higher values of are
sparser. This is especially more pronounced for ε = 0.5. We summarize the data and provide charts in a
similar manner as before in Fig. 9, Fig. 10, Fig. 11 and Tab. 4.

7.2 Examination of Metadata Asssociated with Real Communities

In this last section, we look at a DBLP citation network from aminer.org: citation network V1 [12]. While
the usual interpretation of a citation network is a a directed graph, we interpret it as an undirected graph
with each directed edge in the graph corresponding to a corresponding undirected edge. While this dataset
too gives us similar favorable statistics, the most compelling evidence provided by it is the corresponding
metadata associated with the citation network. Given this, we evaluate it to see if the extracted clusters
are semantically meaningful. This is strongly corroborated by the data: we exhibit an extracted cluster
and the metadata associated to exhibit our case. Given that edges here are actual citations (agnostic to
the direction), this shows that the internal density is an important metric to keep track of, as opposed to
methods that find minimum edge cuts irrespective of what internal density of the components may look like.
The results are listed in Tab. 5, Tab. 6, Tab. 7 and Tab. 8, where we lit the paper title, venue of publication,
and the year of publication.
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(a) DBLP: Cluster of papers on error correcting codes (b) DBLP: Cluster of papers on logic programs and recursive
queries

Figure 3: We show example clusters from a spectral triadic decomposition of a DBLP citation network,
involving papers in Computer Science [16]. For ease of viewing, we label each vertex with relevant phrases
from the paper title. The left cluster involves 16 papers (47 edges) on the topic of error correcting codes.
The right cluster of 24 papers (69 edges) are all on the topic of logic programs and recursive queries, from
database theory. Observe the tight synergy of topic among the vertices in a cluster; our procedure found
thousands of such clusters.

Dataset #Vertices #Edges #Triangles τ

soc-hamsterster 2,427 16,630 53,251 0.215
socfb-Rice31 4,088 184,828 1,904,637 0.122

caHepTh 9,877 24,827 28,339 0.084
ca-cond-matL 16,264 47,594 68,040 0.255
ca-CondMat 23,133 93,497 176,063 0.125
cit-HepTh 27,770 352,807 1,480,565 0.122
cit-DBLP 217,312 632,542 248,004 0.087
ca-DBLP 317,080 1,049,866 2,224,385 0.248

Table 1: Summary of datasets used for different experiments. Most of our graphs are undirected, and the
network names are indicative of what they are: names beginning with ‘ca’ refer to coauthorship networks
(ca-CondMat is for researchers who work in condensed matter, ca-DBLP does the same for researchers
whose work is on DBLP, a computer science bibliography website), ones beginning with ‘com’ are social
networks (socfb-Rice31 is a Facebook network, soc-hamsterster is from Hamsterster, a pet social network),
and ‘cit’ refers to citation networks. While citation networks are in reality directed graphs, we consider
any directed edge to be an undirected edge for the purposes of our experiments. Graphs have been taken
from the SNAP dataset at https://snap.stanford.edu/data/ [7] and the network repository at https:

//networkrepository.com/ [10]. The exceptions to this are the cit-DBLP dataset, which has been taken
from https://www.aminer.org/citation [12] and the ca-cond-matL dataset, which has been taken from
[9] ; the L is for labelled. For cit-DBLP, the τ value is for the 2-core of the graph.
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Figure 4: This figure looks as the quality of our extracted clusters compared with ground truth data. We
compare results for the first 10000 communities extracted by our algorithm, and look at intersection size,
excluding clusters with fewer than 5 vertices. We compare our clusters with the 5000 ‘high quality’ clusters
from [16].

(a) Mean Jaccard density by cluster size (b) Mean intersection by cluster size

Figure 5: Here we look at the mean values of Jaccard density and intersection size across clusters of different
sizes. We compare results for the first 10000 communities extracted by our algorithm, and look at Jaccard
density and intersection size, excluding clusters with fewer than 5 vertices. We compare our clusters with
the 5000 ‘high quality’ clusters from [16].

Dataset Mean Uniformity 10th percentile Min uniformity

soc-hamsterter 0.68 0.26 0.15
socfb-Rice31 0.24 0.08 0.04

ca-HepTh 0.61 0.31 0.12
ca-CondMat 0.55 0.25 0.06

ca-cond-matL 0.86 0.57 0.27
cit-HepTh 0.41 0.14 0.01
cit-DBLP 0.50 0.24 0.04
ca-DBLP 0.67 0.33 0.07

Table 2: Summary of data about the extracted clusters across datasets: number of clusters, percentage of
total number of vertices preserved in clusters, total triangle weight preserved in clusters, minimum of cluster
sizes, maximum of cluster sizes, average of cluster sizes when ε− 0.1..
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(a) ca-CondMat (b) socfb-Rice31 (c) soc-hamsterster

(d) ca-CondMat (e) socfb-Rice31 (f) soc-hamsterster

(g) ca-CondMat (h) socfb-Rice31 (i) soc-hamsterster

Figure 6: Scatter plot for edge density (top, (a)-(c)), triangle density (center, (d)-(f)) as a function of cluster
size, and histogram of cluster sizes (bottom, (g)-(i)) for ca-CondMat, socfb-Rice31, and soc-hamsterster
respectively, for ε = 0.1.

Dataset #Clusters % Vtx % Tri-Wt Coverage % Cluster Sizes
Min Max Avg

soc-hamsterster 208 76.09 80.94 85.34 3 81 8.88
socfb-Rice31 86 86.84 24.71 36.76 3 230 41.27

ca-HepTh 849 77.46 71.43 73.79 5 47 9.01
ca-CondMat 2049 95.45 71.61 58.84 5 68 10.78
ca-condmatL 1566 75.57 77.90 78.64 3 47 7.85

cit-HepTh 1664 73.74 53.81 58.84 3 79 12.31
cit-DBLP 7265 27.57 70.04 77.15 3 111 8.25

Table 3: Summary of data about the extracted clusters across datasets: number of clusters, percentage of
total number of vertices preserved in clusters, total triangle weight preserved in clusters, coverage, and cluster
sizes (minimum, maximum and average). We observe great diversity in the nature of clusters extracted; most
datasets have average cluster sizes between 7 and 13, with the exception of socfb-Rice31, where the average
is as high as 41. Number of vertices preserved is consistently high except for the cit-DBLP network, which
had remarkably low edge and triangle density to begin with. Triangle weight preserved and coverage are
also remarkably high across all datasets; albeit a bit lower in socfb=Rice31.
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ε #Clusters % Vtx % Tri-Wt Cluster Min Cluster Max Cluster Avg

0.1 849 11.13 58.63 5 47 9.01
0.2 866 10.56 59.04 5 57 8.39
0.3 652 8.08 54.99 5 48 8.52
0.5 296 3.85 36.00 5 61 8.95

Table 4: Summary of data about the extracted clusters on caHepTh for ε ∈ {0.1, 0.2, 0.3, 0.5}: number
of clusters, percentage of total number of vertices preserved in clusters, total triangle weight preserved in
clusters, minimum of cluster sizes, maximum of cluster sizes, average of cluster sizes.

Paper Title Venue Year

Some comments on the aims of MIRFAC Communications of the ACM 1964

MIRFAC: a compiler based on standard mathematical notation
and plain English

Communications of the ACM 1963

MIRFAC: a reply to Professor Djikstra Communications of the ACM 1964

More on reducing truncation errors Communications of the ACM 1964

The dangling else Communications of the ACM 1964

MADCAP: a scientific compiler for a displayed formula textbook
language

Communications of the ACM 1961

Further comment on the MIRFAC controversy Communications of the ACM 1964

An experiment in a user-oriented computer system Communications of the ACM 1964

Automatic programming and compilers II: The COLASL auto-
matic encoding system

Proceedings of the 1962 ACM na-
tional conference on Digest of tech-
nical papers

1962

Table 5: Metadata for cluster extracted from cit-DBLP: Cluster of size 9, edge density of 0.472
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Paper Title Venue Year

Measurement-based characterization of IP VPNs IEEE/ACM Transactions on Net-
working (TON)

2007

Traffic matrices: balancing measurements, inference and modelingProceedings of the 2005 ACM SIG-
METRICS international conference
on Measurement and modeling of
computer systems

2005

Data streaming algorithms for accurate and efficient measurement
of traffic and flow matrices

ACM SIGMETRICS Performance
Evaluation Review

2005

An information-theoretic approach to traffic matrix estimation Proceedings of the 2003 conference
on Applications, technologies, archi-
tectures, and protocols for computer
communications

2003

Atomic Decomposition by Basis Pursuit SIAM Review 2001

Solving Ill-Conditioned and Singular Linear Systems: A Tutorial
on Regularization

SIAM review 1998

Structural analysis of network traffic flows ACM Sigmetrics performance evalu-
ation review

2004

How to identify and estimate the largest traffic matrix elements
in a dynamic environment

Proceedings of the joint interna-
tional conference on Measurement
and modeling of computer systems

2004

Relative information: theories and applications Book 1990

Estimating point-to-point and point-to-multipoint traffic matri-
ces: an information-theoretic approach

IEEE/ACM Transactions on Net-
working (TON)

2005

Traffic matrix tracking using Kalman filters ACM Sigmetrics performance evalu-
ation review

2005

Towards a meaningful MRA of traffic matrices Proceedings of the 8th ACM SIG-
COMM conference on Internet mea-
surement

2008

Table 6: Metadata for cluster extracted from cit-DBLP: Cluster of size 12, edge density of 0.83
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Paper Title Venue Year

A Cell ID Assignment Scheme and Its Applications Proceedings of the 2000 Interna-
tional Workshop on Parallel Pro-
cessing

2000

High-Performance Computing on a Honeycomb Architecture Proceedings of the Second Interna-
tional ACPC Conference on Parallel
Computation

1993

Optimal dynamic mobility management for PCS networks IEEE/ACM Transactions on Net-
working (TON)

2000

Higher dimensional hexagonal networks Journal of Parallel and Distributed
Computing

2003

Addressing and Routing in Hexagonal Networks with Applications
for Tracking Mobile Users and Connection Rerouting in Cellular
Networks

IEEE Transactions on Parallel and
Distributed Computing

2002

Addressing, Routing, and Broadcasting in Hexagonal Mesh Mul-
tiprocessors

IEEE Transactions on Computers 1990

Performance Analysis of Virtual Cut-Through Switching in
HARTS: A Hexagonal Mesh Multicomputer

IEEE Transactions on Computers 1990

HARTS: A Distributed Real-Time Architecture Computer 1991

Cell identification codes for tracking mobile users Wireless Networks 2002

Table 7: Metadata for cluster extracted from cit-DBLP: Cluster of size 9, edge density of 0.33
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Paper Title Venue Year

Classical linear logic of implications Mathematical Structures in Com-
puter Science

2005

Logic continuations Journal of Logic Programming 1987

Axioms for control operators in the CPS hierarchy Higher-Order and Symbolic Compu-
tation

2007

Formalizing Implementation Strategies for First-Class Continua-
tions

Proceedings of the 9th European
Symposium on Programming Lan-
guages and Systems

2000

Linearly Used Effects: Monadic and CPS Transformations into
the Linear Lambda Calculus

Proceedings of the 6th International
Symposium on Functional and Logic
Programming

2002

On Exceptions Versus Continuations in the Presence of State Proceedings of the 9th European
Symposium on Programming Lan-
guages and Systems

2000

What is a Categorical Model of Intuitionistic Linear Logic? Proceedings of the Second Interna-
tional Conference on Typed Lambda
Calculi and Applications

1995

Using a Continuation Twice and Its Implications for the Expres-
sive Power of call/cc

Higher-Order and Symbolic Compu-
tation

1999

From control effects to typed continuation passing Proceedings of the 30th ACM
SIGPLAN-SIGACT symposium on
Principles of programming lan-
guages

2003

Continuations: A Mathematical Semantics for Handling
FullJumps

Higher-Order and Symbolic Compu-
tation

2000

Comparing Control Constructs by Double-Barrelled CPS Higher-Order and Symbolic Compu-
tation

2002

Linear Continuation-Passing Higher-Order and Symbolic Compu-
tation

2002

Definitional Interpreters for Higher-Order Programming Lan-
guages

Higher-Order and Symbolic Compu-
tation

1998

Essentials of programming languages Book 1992

Glueing and orthogonality for models of linear logic Theoretical Computer Science 2003

Frame rules from answer types for code pointers Conference record of the 33rd
ACM SIGPLAN-SIGACT sympo-
sium on Principles of programming
languages

2006

Table 8: Metadata for cluster extracted from cit-DBLP: Cluster of size 16, edge density of 0.42
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(a) Scatter plot for uniformity (b) Histogram for uniformity

soc-hamsterster

(c) Scatter plot for uniformity (d) Histogram for uniformity

socfb-Rice31

(e) Scatter plot for uniformity (f) Histogram for uniformity

cit-HepTh

Figure 7: A look at uniformity across clusters in the decomposition obtained from various networks as
labelled. The figures on the left are straightforward scatter plots that looks at uniformity across clusters of
varying sizes. Those on the right are complementary cumulative histograms for the uniformity values. The
x-axis is the uniformity value, and the y axis the fraction of clusters with at least that uniformity value.
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(a) Scatter plot for uniformity (b) Histogram for uniformity

ca-CondMat

(c) Scatter plot for uniformity (d) Histogram for uniformity

ca-cond-matL

(e) Scatter plot for uniformity (f) Histogram for uniformity

cit-DBLP

Figure 8: (Continued)A look at uniformity across clusters in the decomposition obtained from various
networks as labelled. The figures on the left are straightforward scatter plots that looks at uniformity across
clusters of varying sizes. Those on the right are complementary cumulative histograms for the uniformity
values. The x-axis is the uniformity value, and the y axis the fraction of clusters with at least that uniformity
value.
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(a) ε = 0.1 (b) ε = 0.2

(c) ε = 0.3 (d) ε = 0.5

Figure 9: Scatter plot for edge density for ca-CondMat with varying values of ε.
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(a) ε = 0.1 (b) ε = 0.2

(c) ε = 0.3 (d) ε = 0.5

Figure 10: Scatter plot for triangle density for ca-CondMat with varying values of ε.
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(a) ε = 0.1 (b) ε = 0.2

(c) ε = 0.3 (d) ε = 0.5

Figure 11: Histogram of cluster sizes for ca-CondMat with varying values of ε.
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