
Digital Object Identifier (DOI) https://doi.org/10.1007/s00220-020-03825-x
Commun. Math. Phys. 383, 2021–2067 (2021)

Communications in

Mathematical
Physics

Spectral Truncations in Noncommutative Geometry

and Operator Systems

Alain Connes1,2,3, Walter D. van Suijlekom4

1 College de France, 3 rue Ulm, 75005 Paris, France.
E-mail: alain@connes.org

2 I.H.E.S., 91440 Bures-sur-Yvette, France
3 Department of Mathematics, Ohio State University, Columbus, OH 43210, USA
4 Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen,

Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
E-mail: waltervs@math.ru.nl

Received: 29 April 2020 / Accepted: 26 May 2020
Published online: 13 July 2020 – © The Author(s) 2020

Abstract: In this paper we extend the traditional framework of noncommutative geom-
etry in order to deal with spectral truncations of geometric spaces (i.e. imposing an ultra-
violet cutoff in momentum space) and with tolerance relations which provide a coarse
grain approximation of geometric spaces at a finite resolution. In our new approach the
traditional role played by C∗-algebras is taken over by operator systems. As part of the
techniques we treat C∗-envelopes, dual operator systems and stable equivalence. We
define a propagation number for operator systems, which we show to be an invariant
under stable equivalence and use to compare approximations of the same space. We
illustrate our methods for concrete examples obtained by spectral truncations of the cir-
cle. These are operator systems of finite-dimensional Toeplitz matrices and their dual
operator systems which are given by functions in the group algebra on the integers with
support in a fixed interval. It turns out that the cones of positive elements and the pure
state spaces for these operator systems possess a very rich structure which we ana-
lyze including for the algebraic geometry of the boundary of the positive cone and the
metric aspect i.e. the distance on the state space associated to the Dirac operator. The
main property of the spectral truncation is that it keeps the isometry group intact. In
contrast, if one considers the other finite approximation provided by circulant matrices
the isometry group becomes discrete, even though in this case the operator system is a
C∗-algebra. We analyze this in the context of the finite Fourier transform on the cyclic
group. The extension of noncommutative geometry to operator systems allows one to
deal with metric spaces up to finite resolution by considering the relation d(x, y) < ε

between two points, or more generally a tolerance relation which naturally gives rise to
an operator system.
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1. Introduction

Noncommutative geometry [19] has shown that it is possible to give a fully spectral
description of Riemannian spin manifolds. In fact, the mere knowledge of the spectrum
of the Dirac operator D relative to that of a function algebra A allows one to reconstruct
the full Riemannian spin manifold M [20]. In physical terms this can be phrased by
saying that we can probe the structure of curved spacetime around us by means of
eigenfrequencies and eigenfunctions for a fermion that moves through that spacetime.

For the mathematical reconstruction of M it is crucial to know the full spectrum
of D and A. In practice, however, it is clear that we will only have access to part of
that spectrum. Indeed, we are limited by the power and resolution of our detectors and
typically study physical phenomena up to a certain energy scale. Motivated by this we
pose the following question:

can the framework of noncommutative geometry be extended to the case where
only part of the spectrum of D is available together with, say, a certain truncation
of the algebra A?

This question has been present all along in the development of the relation between non-
commutative geometry and physics with the long term goal of finding testable models
of quantum gravity from truncated versions of the model given by quanta of geometry
in [16,17]. It has been clear from the start that spectral truncation, which means intro-
ducing a cutoff in momentum space truncating the Hilbert space of fermions, respects
all continuous symmetries and is superior to an artificial discretization. The spectral
truncation in relation with the metric aspect has been studied and formalized in the
work [23] and the present paper is directly in line with this development. Our new input
is to put forward the role of operator systems in the general theory and to analyze in
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great details, including the algebraic geometry of the boundary of the positive cone, the
example of the truncated circle with its wealth of structure coming from the theory of
Toeplitz matrices.

The way operator systems naturally arise in the process of spectral truncation is as
follows. Since the self-adjoint Dirac operator D acts in a Hilbert space H , a natural
spectral truncation is given simply by a spectral projection P onto eigenspaces of D;
this is an operator that commutes with D. The natural truncation of the action of the ∗-
algebra A to the Hilbert space P H is given by the space PAP. Since P does not commute
with A, this is not an algebra anymore. Moreover in many interesting examples if one
takes the C∗-algebra generated by PAP one gets a non-informative full matrix algebra.
However, not all is lost: the space PAP is a ∗-closed subspace in B(H), i.e. it is a so-called
operator system [18] (cf. [8,27,39,41]). Such spaces have an extremely rich structure:
they are matrix ordered, they possess cones of positive elements, (pure) state spaces, et
cetera. Moreover, for truncations it turns out that symmetries of the pair (A, D) induce
symmetries of (PAP, PDP). This follows quite easily from the fact that P is a spectral
projection of D.

Another viewpoint is obtained when we change our perspective from momentum to
position space. The energy cutoff translates to a consideration of metric spaces with a
certain finite resolution ε, where we say that two points x, y are equivalent if d(x, y) < ε.
This is not an equivalence relation, but it is a so-called tolerance relation. We may imitate
the construction of the C∗-algebra of a foliation or more generally of a groupoid C∗-
algebra with the crucial difference that the convolution product cannot be defined due to
the lack of transitivity. However, given the symmetry and reflexivity, a tolerance relation
does define an operator system. This creates a generalization of the basic construction
of noncommutative geometry which started from analysing the geometric examples of
intractable spaces of leaves of foliations using noncommutative algebras. Here the issue
of the lack of transitivity of the relation is already present in the simplest case where
the generated equivalence relation has a single class i.e. corresponds to the C∗-algebra
of compact operators. Besides the class of examples of operator systems associated
to spectral truncations a whole new class thus appears from tolerance relations. Such
relations appear naturally in the homotopy theory of simplicial complexes which do not
fulfill the Kan-extension property as was shown in [21,22].

In this paper we develop the formalism needed for doing noncommutative geometry
with operator systems. We will focus mainly on the ‘topological properties’ described
by the operator systems and corresponding state spaces. The metric aspect as provided
by spectral triples extends in a straightforward manner to the new framework and in
Sect. 4.6 we analyse the distance function on the truncated circle. For some preliminary
results on the metric aspect, we refer to [7,23]. Computer simulations involving a spec-
tral truncation adopting also the Heisenberg quantization relation of [16,17] have been
reported in [31,32].

The key concepts that we will discuss and introduce here are:

• operator systems: both concrete and abstract (in the sense of [18]);
• duality between operator systems (in the sense of [4,18]);
• enveloping C∗-algebras of operator systems (in the sense of [34]);
• stable equivalence of operator systems;
• propagation number as a new invariant under stable equivalence;
• extreme rays in the cone of positive elements of an operator system;
• pure state spaces of operator systems.



2024 A. Connes, W. D. van Suijlekom

We will give many examples of the theory, based on spectral truncations of the circle
and spaces at finite resolution. This allows to test the above concepts for some concrete
operator systems. We will consider:

• the Toeplitz operator system C(S1)(n) arising from spectral truncations of the circle;
• elements in the group algebra of Z of finite support: C∗(Z)(n);
• the circulant matrices, or, equivalently the group algebra C∗(Cm) of the cyclic group

of order m;
• operator systems E(R) associated to tolerance relations R; in particular describing

metric spaces with finite resolution.

The paper is organized as follows. In Sect. 2 we review and develop some concepts
and techniques for operator spaces and operator systems, including the appropriate maps
between them. This also includes a discussion on the C∗-envelope, first introduced by
Arveson [4] but realized by Hamana in [34]. We introduce a so-called propagation
number which measures how far an operator system is from the C∗-envelope. We show
that this is an invariant under stable equivalence of operator systems.

In Sect. 3 we come to our main motivation: spectral truncations. For the circle we
present a fully detailed analysis of the structure of the state space for the smallest non-
trivial truncation (of rank 3) but which already turns out to be extremely rich.

We continue our analysis in Sect. 4 where the underlying mathematical structure of
Toeplitz operator systems is unveiled and analyzed in full detail. We identify the C∗-
envelope and compute the propagation number. The dual operator system is realized in
terms of functions in the group algebra of Z with support in a fixed interval. Because
of the close relation with old factorization results of positive functions on the circle
by Fejér and Riesz we will call this system the Fejér–Riesz operator system. Using
the duality we reach a full understanding of the pure state spaces and extreme rays,
both for the Toeplitz operator system, as well as for the Fejér–Riesz operator system.
Moreover, the duality allows for a new proof of another old result by Carathéodory on
Vandermonde factorizations of positive Toeplitz matrices. One interesting feature which
arises in the algebraic geometry of the boundary hypersurface of the cone of positive
Toeplitz matrices is the link between the rank of the matrix and the singularity of the
hypersurface (see Theorem 4.15). In Sect. 4.6 we analyse the distance function on the
truncated circle and prove in Theorem 4.20 that it is larger than the Kantorovich distance
of the corresponding probability measures on the circle. Other results in this direction
have been reported in [23,31,32] while further Gromov–Hausdorff convergence results
will be reported elsewhere by the second author.

The relation between Toeplitz and circulant matrices is analyzed in Sect. 5. We realize
the finite Fourier transform in terms of a duality between operator systems.

In the final Sect. 6 we explain how the framework proposed in this paper i.e. using
operator systems rather than C∗-algebras, allows one to apply the fundamental idea of
noncommutative geometry of associating a noncommutative C∗-algebra to a quotient
space which is intractable by standard topological methods, to situations where the
equivalence relation defining the quotient is no longer assumed to be transitive. The
detailed development of this idea will be done in a forthcoming paper.

2. Preliminaries on Operator Systems

In this section we review and develop some of the general concepts and techniques on
operator systems that are needed in the later sections.
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2.1. Operator spaces and operator systems. We start by briefly recalling the theory of
operator spaces and operator systems, referring to [8,27,39,41] for more details.

2.1.1. Operator spaces Operator space theory can be considered as a “quantum” or
noncommutative version of Banach space theory in the sense that one extends the usual
norms on a vector space E to so-called matrix-norms, i.e. norms on Mn(E) for every
n ∈ N. Let us make this more precise (c.f. [27, Section 2.1] for more details).

Definition 2.1. Let E be a vector space. A matrix norm ‖ · ‖ on E is an assignment of a
norm ‖ · ‖n on the matrix space Mn(E) for each n ∈ N.

An (abstract) operator space is a linear space E together with a matrix norm ‖ · ‖ for
which

(1) E is complete as a normed vector space.
(2) ‖x ⊕ y‖m+n = max{‖x‖m, ‖y‖n}
(3) ‖αxβ‖n ≤ ‖α‖‖x‖m‖β‖

for all x ∈ Mm(E), y ∈ Mn(E) and α ∈ Mnm(C), β ∈ Mmn(C).

From the first condition it actually follows that all Mn(E) are complete with respect to
the norm ‖ · ‖n (cf. [27, Section 2.1]).

Given two operator spaces E and F and a linear mapping ϕ : E → F , for each
n ∈ N there is a corresponding linear map ϕn : Mn(E) → Mn(F) from matrices with
coefficients in E to matrices with coefficients in F , given by

ϕn(x) =
(
ϕ(xi j )

)
; x = (xi j ) ∈ Mn(E).

To each ϕn we may associate its operator norm and the completely bounded norm is
defined to be

‖ϕ‖cb := sup{‖ϕn‖ : n ∈ N}.

There are the following notions of morphisms between operator spaces and operator
systems.

Definition 2.2. Let ϕ : E → F be a linear map between operator spaces.

(1) We say that ϕ is completely bounded (respectively, completely contractive) if
‖ϕ‖cb < ∞ (respectively, ‖ϕ‖cb ≤ 1).

(2) We say that ϕ is completely isometric if each ϕn is isometric.

The prototypical example of an operator space is given by a closed subspace of B(H)

for some Hilbert space H . Indeed, there is a natural inclusion Mn(E) ⊆ Mn(B(H)) =
B(Hn) which determines a norm ‖·‖n on Mn(E). We call such an E a concrete operator
space. It follows from Ruan’s representation theorem [47] (cf. [27, Section 2.3] that any
abstract operator space is completely isometrically isomorphic to a concrete operator
space.
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2.1.2. Operator systems We now focus our attention on operator systems, with the
crucial property that they possess cones of positive elements. Again there is a notion of
abstract operator system and concrete operator system, in fact both originating from the
seminal work by Choi and Effros [18]. Let us briefly sketch these notions, referring to
the original [18] and e.g. [39, Chapter 13] for more details.

Let E be a vector space equipped with a conjugate linear involution x 
→ x∗. We call
such a space a ∗-vector space and we set Eh = {x ∈ E : x∗ = x}. For (xi j ) ∈ Mn(E)

we set (xi j )
∗ = (x∗

j i ) so that Mn(E) is also a ∗-vector space. In order to talk about
positive elements we need a notion of ordering.

Definition 2.3. We say that a ∗-vector space is matrix ordered if

(1) for each n we are given a cone of positive elements Mn(E)+ in Mn(E)h ,
(2) Mn(E)+ ∩ (−Mn(E)+) = {0} for all n,
(3) for every m, n and A ∈ Mmn(C) we have that AMn(E)+ A∗ ⊆ Mm(E)+.

We will write x ≥ 0 and call x positive whenever x ∈ Mn(E)+. A map from Mn(E) to
Mn(F) is then called positive if it maps Mn(E)+ to Mn(F)+.

Definition 2.4. Let ϕ : E → F be a linear map between matrix-ordered ∗-vector spaces.

(1) We call ϕ completely positive if each ϕn is positive.
(2) We call ϕ a complete order isomorphism if ϕ is invertible with both ϕ and ϕ−1

completely positive.

We also say that ϕ : E → F is a complete order injection if it is a complete order
isomorphism onto its image.

Finally, let us address the role that 1 plays in an operator system. Let E be an ordered
∗-vector space. We call e ∈ Eh an order unit for E if for each x ∈ Eh there is a t > 0
such that −te ≤ x ≤ te. It is called an Archimedean order unit if −te ≤ x for all t > 0
implies that x ≥ 0.

Definition 2.5. An (abstract) operator system is given by a matrix-ordered ∗-vector
space E with an order unit e such that for all n

In =

⎛
⎜⎜⎜⎜⎝

e 0 · · · 0

0
. . .

. . .
...

...
. . .

. . . 0
0 · · · 0 e

⎞
⎟⎟⎟⎟⎠

is an Archimedean order unit for Mn(E).

There is a relation between operator systems and operator spaces and, in fact, a matrix
order induces a matrix norm (cf. [39, Proposition 13.3]):

‖x‖n = inf

{
t :

(
t In x
x∗ t In

)
≥ 0

}

for any x ∈ Mn(E). This relationship respects the morphisms between operator systems
and operator spaces, as the following result shows.

Proposition 2.6. Let ϕ : E → F be a linear map between operator systems.
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(1) If ϕ is completely positive, then it is completely bounded with

‖ϕ‖cb = ‖ϕ‖ = ‖ϕ(1)‖.

(2) A unital map ϕ is completely positive if and only it is completely contractive.
(3) A unital map ϕ is a complete order injection if and only if it is completely isometric.

Proof. The first two statements can be found in [27] as Lemma 5.1.1 and Lemma 5.1.2,
respectively, the third follows then directly from the second (cf. [9, §1.3.3]). ⊓⊔

We may summarize this by saying that there is a functor from abstract operator
systems to abstract operator spaces. The obtained abstract operator spaces have naturally
a unit and involution, and as discussed below in the concrete case, this additional structure
is the only nuance between the two notions. In fact the role of the unit in passing from
operator spaces to operator systems was fully clarified by the work of D. Blecher and
M. Neal [10] who found the norm identities that qualify an element of an operator space
as a unit of an operator system with the given underlying operator space.

Definition 2.7. We say that a subspace E ⊆ B(H) is a (concrete) operator system if it
is self-adjoint in the sense that E∗ = E where E∗ = {x : x∗ ∈ E} and contains the
identity 1 in B(H).

The cone of positive elements in E is defined to be

E+ := E ∩ B(H)+,

and, more generally, we write for any n ∈ N:

Mn(E)+ := Mn(E) ∩ B(Hn)+.

This turns a concrete operator system in an abstract operator system. In the other direc-
tion, the celebrated Choi–Effros Theorem shows that any abstract operator system is
completely order isomorphic to a concrete operator system [18].

We also note that a unital complete order isomorphism ϕ : A → B between two
unital C∗-algebras is a ∗-isomorphism (see [27, Corollary 5.2.3] for a proof).

We also have the following result.

Proposition 2.8. Let ϕ : E → F be a completely isometric, completely positive iso-
morphism between unital operator systems. Then ϕ is unital.

Proof. This follows since the unit of a unital operator system is characterized uniquely
as the largest element among positive elements of norm ≤ 1. ⊓⊔

2.1.3. States on operator systems One of the advantages of working with operator sys-
tems is that there is a notion of states, defined as positive linear functionals of norm 1.
Since for linear functionals ϕ : E → C we have ‖ϕ‖cb = ‖ϕ‖ (cf. [27, Corollary 2.2.3]
or [39, Proposition 3.8]), Proposition 2.6 above implies that a state on E can equivalently
be defined to be a linear functional ϕ : E → C such that

‖ϕ‖ = ϕ(1) = 1.

This is completely analogous to the case of C∗-algebras (see for instance [8, Propo-
sition II.6.2.5]) and, in fact, for states we automatically have complete positivity ([39,
Proposition 3.8]).
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In any case, we may talk about the state space S(E) of the operator system E ; it is a
convex space which is compact for the weak ∗-topology, so that Choquet theory applies
[40]. The pure states are then given by the extreme points in S(E). We call the weak
∗-closure of the set of extreme points in S(E) the pure state space; it will be denoted
by P(E).

We also record from [8, Section II.6.3] that if E ⊆ A with A a C∗-algebra, and ϕ is
a state on E , then by the Hahn–Banach Theorem ϕ extends to a functional ψ on A of
norm one. Since ψ(1) = 1, ψ is a state on A. For pure states on E there is the following
well-known result (cf. [11, Proposition 2.3.24]):.

Fact 2.9. Let ϕ : E → C be a pure state. The set Vϕ of extensions of ϕ to states on A
is a compact convex subset of S(A) (in the weak-∗-topology) and any extreme point of
this set is a pure state on A. In particular, ϕ allows for an extension to a pure state on
A.

2.2. Non-unital operator systems. For non-unital operator systems we shall use the
results of Werner [50] together with the following correction needed since it is wrongly
stated in that paper that the state space Sn(E) of any operator space equipped with a
matrix order is compact. This fails even for C∗-algebras such as the algebra of sequences
tending to 0 at ∞. However the problem is fixed using the following fact:

Lemma 2.10. Let Sn(E) be the state space consisting of positive linear functionals on
Mn(E) of norm 1. The rescaled state space S̃n(E) := {λϕ|ϕ ∈ Sn, λ ∈ [0, 1]} is weakly
compact. Any continuous functional homogeneous of degree 1 on S̃n(E) reaches its
maximum on Sn(E) ⊆ S̃n(E).

Werner considers matrix-ordered operator spaces. These are defined to be operator
spaces E with a matrix order as in Definition 2.3 with the additional properties that

(1) the cones Mn(E)+ are all closed, and,
(2) the involution is an isometry on Mn(E).

He then constructs “partial unitizations” for arbitrary matrix-ordered operator spaces
after proving their uniqueness (op.cit. Lemma 4.3). His construction proceeds as follows:

Definition 2.11. Let E be a matrix-ordered operator space and define Aε = A + εIn for
every matrix A ∈ Mn(C). On the space E ⊕ C we define

(1) (x, A)∗ = (x∗, A∗) for all (x, A) ∈ Mn(E) ⊕ Mn(C),
(2) for any (x, A) ∈ Mn(E ⊕ C)h we set

(x, A) ≥ 0 iff A ≥ 0 and ϕ(A−1/2
ε x A−1/2

ε ) ≥ −1

for all ε > 0 and ϕ ∈ Sn(E).

We denote by E♯ the space E ⊕ C equipped with this order structure.

When E is the matrix-ordered operator space associated to a possibly non-unital C∗-
algebra B this construction agrees with the traditional adjunction of a unit B ⊂ B♯ (see
op.cit. Corollary 4.17). As shown in op.cit. Lemmas 4.8 and 4.9, one has

Proposition 2.12.

(i) Let E be a matrix-ordered operator space. The space E♯ defined above is a (unital)
operator system.
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(ii) Let T : E → F be a completely contractive and completely positive map between
matrix-ordered operator spaces E, F. Then the natural unital extension T ♯ : E♯ →
F♯ is completely positive.

For x ∈ E one lets ν0
E (x) := sup{|ϕ(x)| : ϕ ∈ S(E)}. The number ν0

E (x) is the so-
called numerical radius of x ∈ E ; it also makes sense more generally for x ∈ Mn(E).
Moreover, it allows to introduce a norm on Mn(E) as follows ([50, Lemma 3.1]).

Lemma 2.13. Let ν0
E be the numerical radius.

(i) The map νE : x 
→ ν0
E

(
0 x
x∗ 0

)
defines a norm on Mn(E) and we have νE (·) ≤ ‖ · ‖.

(ii) The inclusion map ıE : E → E♯ is completely contractive and completely positive.
(iii) The inclusion ıE is a complete isometry when considered as a map from (E, νE ) to

E♯.

In fact, in [50, Lemma 4.5] it is shown that if the embedding E → E♯ is completely
positive, then it is completely contractive if and only if it is a complete isometry between
(E, νE ) and E♯. It is here that Lemma 2.10 should be used to conclude (in line 7 of the
proof of [50, Lemma 4.5]) that the supremum ν0

E is actually attained by a ϕ ∈ Sn(E).

Corollary 2.14. Let T : E → F be a completely isometric, complete order isomor-
phism. Then T ♯ : E♯ → F♯ is a (unital) complete order isomorphism.

In line with the result in [50] we will make the following definition.

Definition 2.15. A non-unital operator system is given by a matrix-ordered operator
space for which the norm νE (·) coincides with the norm ‖ · ‖.

For a non-unital operator system the inclusion ıE : E → E♯ is a complete isometry,
and E♯ will be called a unitization of E .

The main result of [50] is then an analogue of the Choi–Effros Theorem for non-
unital operator systems. Indeed, since E♯ is an (abstract) unital operator system it can be
realized as a concrete operator system in B(H) for some Hilbert space H . It then follows
that if νE (·) and ‖ · ‖ coincide on Mn(E), then we can also realize E via the (completely
isometric) inclusion map E → E♯ as a (concrete) non-unital operator system in B(H)

(see [50, Corollary 4.11]).
Note that in the definition of a matrix-ordered operator space there is no requirement

of non-triviality of the positive cone. In particular starting with an operator space E (with
isometric involution) one can consider the trivial matrix order Mn(E)+ = {0} for all n.
The norm νE is then the same as the original norm on E since positivity of functionals
is automatic. But then the Choi–Effros Theorem applied to the partial unitization E♯

implies Ruan’s result for operator spaces.
In all the examples of matrix-ordered operator spaces considered in this paper, the fol-

lowing non-triviality condition holds: the cones Mn(E)+ span Mn(E), or more precisely
(and for all n)

Mn(E)+ − Mn(E)+ = {x ∈ Mn(E)|x = x∗}. (1)

To understand the meaning of this condition in terms of the partial unitization E♯ note
the following

Fact 2.16. Let A be a unital C∗-algebra and ϕ a pure state on A. Then, with the notations
Ker(ϕ)+ := Ker(ϕ) ∩ A+ and Ker(ϕ)sa := Ker(ϕ) ∩ Asa one has

ϕ(xy) = ϕ(x)ϕ(y) , ∀x, y ∈ A ⇐⇒ Ker(ϕ)+ − Ker(ϕ)+ = Ker(ϕ)sa .
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Proof. If ϕ is a morphism ϕ : A → C and x = x∗ ∈ A fulfills ϕ(x) = 0 then with
|x | =

√
x∗x one has ϕ(|x |) = 0 and x = |x | − y where also y ∈ Ker(ϕ)+. Conversely

if the irreducible GNS representation (Hϕ, πϕ, ξϕ) is of dimension > 1 one finds a self-
adjoint element a ∈ A such that πϕ(a)ξϕ �= 0 but πϕ(a)ξϕ ⊥ ξϕ . Then one has ϕ(a) = 0
but a /∈ Ker(ϕ)+ − Ker(ϕ)+ since elements b ∈ Ker(ϕ)+ all fulfill πϕ(b)ξϕ = 0 since
‖πϕ(b1/2)ξϕ‖2 = ϕ(b) = 0 ⇒ πϕ(b)ξϕ = 0. ⊓⊔

Thus one can define in general a character of a unital operator system as a pure state
ϕ such that Ker(ϕ)+ − Ker(ϕ)+ = Ker(ϕ)sa . Then condition (1) on a matrix-ordered
operator space means that the canonical state on the partial unitization E♯ is a character.

2.3. Duals of operator systems. Already in [18] Choi and Effros analyzed the notion
of duality for operator systems, which we now briefly discuss here. See also [29] for
a more recent perspective. In general, duals of operator systems are only matrix-order
vector spaces, but in the finite-dimensional case also an Archimedean order unit can
be constructed. Since our main interest in this type of duality is for finite-dimensional
Toeplitz matrices (cf. Section 4.3 below) we will here restrict to this case.

So let E be a finite-dimensional (abstract) operator system E . We let Ed be the dual
vector space of E and let Mn(Ed) be paired component-wise with Mn(E):

ϕ(x) = (ϕi j )(xi j ) =
∑

i j

ϕi j (xi j )

where ϕ = (ϕi j ) ∈ Mn(Ed) and x = (xi j ) ∈ Mn(E). We define a matrix order on Ed

by

Mn(Ed)+ =
{
ϕ ∈ Mn(Ed) : ϕ(x) ≥ 0 for all x ∈ Mn(E)+

}
.

One quickly checks that this is a matrix-order, since for any A ∈ Mmn(C) we have

(Aϕ A∗)(x) = ϕ(At x(At )∗)

so that Aϕ A∗ ∈ Mn(Ed)+ if ϕ is, because Mm(E)+ is closed under conjugation by a
scalar-valued matrix.

Let us now consider the existence of an Archimedean order unit. The notion of faithful
state makes sense for any operator system: a state ϕ is faithful if ϕ(x) > 0 for x > 0.

Proposition 2.17 (Choi–Effros). let E be a finite-dimensional (abstract) operator system
E. Let Ed be the dual vector space of E, equipped with the above matrix-ordering. A
state χ on E defines an order unit on Ed if and only if it is faithful. Then diag(χ, . . . , χ)

is an Archimedean order unit on Mn(Ed). Faithful states exist and endow Ed with the
structure of an operator system.

Proof. The result follows from the existence of a compact base K for E+. For any x ∈ K
there exists ϕ ∈ Ed

+ with ϕ(x) > 0 thus, by compactness there exists a faithful state
χ : E → C. It is an order unit for Ed since the compact set χ(K ) ⊂ (0,∞) is bounded
away from 0 while ϕ(K ) is bounded for any ϕ ∈ Ed

h . It is also Archimedean since if
ϕ + tχ ∈ Ed

+ for all t > 0 one, has for any x ∈ E+, that ϕ(x) + tχ(x) ≥ 0 for all t > 0
and thus ϕ(x) ≥ 0. The extension to Mn(Ed) is straightforward. ⊓⊔
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Lemma 2.18. Let E be a finite-dimensional (abstract) operator system E. There is a
complete order isomorphism of operator systems (Ed)d ∼= E.

Proof. This is a straightforward application of the bipolar theorem, stating in the finite-
dimensional case that ((Ed)d)+ = E+. ⊓⊔

Let us now consider maps between operator systems and their duals. Clearly, if
ϕ : E → F there is the induced map ϕd : Fd → Ed given by

ϕd( f )(x) = f (ϕ(x)); ( f ∈ Fd , x ∈ E).

Proposition 2.19. If E and F are operator systems. A linear map ϕ : E → F is
completely positive if and only if ϕd : Fd → Ed is completely positive.

Proof. In view of Lemma 2.18 it is sufficient to prove one implication. So suppose that
ϕ is completely positive, i.e. ϕ(n) ≥ 0 for all n ≥ 0. Then ϕ(n) : Mn(Fd) → Mn(Ed)

satisfies

ϕd
(n)(ψ)(x) = ϕd

(n)(ψi j )(xi j ) =
∑

i j

ϕd( fi j )(xi j ) =
∑

i j

fi j (ϕ(xi j )) = ψ(ϕ(n)(x))

for ψ = (ψi j ) ∈ Mn(Fd), x = (xi j ) ∈ Mn(E). Hence if ψ ≥ 0 it follows that
ϕd

(n)
(ψ) ≥ 0. ⊓⊔

Corollary 2.20. Extreme rays in the cone E+ are in one-to-one correspondence to the
pure states of Ed and, vice versa, pure states of E are in one-to-one correspondence to
extreme rays in the cone (Ed)+.

2.4. C∗-envelopes of operator systems. In [4] Arveson introduced the notion of a C∗-
envelope of an operator system. Their existence and uniqueness was established in full
generality by Hamana [34] based on the theory of injective envelopes (see also [39,
Ch. 15] and [9, Section 4.3]). More recently, in [2,3] Arveson revisited his original
approach (using so-called boundary representations) to the problem of C∗-envelopes,
basing himself on the work of Dritschel and McCullough [26]. In this context, we also
mention the paper by Arveson’s student and grand-student [25]. We here briefly recall
some of these notions and the main result. We allow for non-unital operator systems.

Definition 2.21. Let E be an operator system. A C♯-extension κ : E → A of E is given
by a completely isometric and completely positive map such that A = C∗(κ(E)) and
κ♯ : E♯ → A♯ is a complete order isomorphism onto its range.

The above definition contains the usual one of a C∗-extension in the case of unital
operator systems (i.e. a unital order isomorphism onto its range, c.f. [34, Definition 2.1]
as we show now:

Lemma 2.22. Let E be a unital operator system. Then any C∗-extension of E is a C♯-
extension.

Proof. The proof is based on the fact that states on unital operator systems, in the sense of
positive linear functionals of norm 1, are automatically unital. Thus given a C∗-extension
κ : E → A states on E are restrictions of states on A and one obtains that κ♯ : E♯ → A♯

is a complete order isomorphism onto its range. ⊓⊔
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In fact in the special case of unital operator systems the notion of C♯-extension is
more general than the usual notion, as shown by the following:

Example 2.23. Let E be the smallest unital operator system consisting of scalar multiples
of the unit 1E . Let A := C0([0,∞)) be the C∗-algebra of continuous functions vanishing
at ∞ on [0,∞). Let κ : E → A be given by κ(1E ) = h with h(x) := exp(−x). By
construction κ is a completely isometric and completely positive map and its range
generates A as a C∗-algebra. Moreover the map κ♯ : E♯ → A♯ is a complete order
isomorphism onto its range since evaluation at 0 ∈ [0,∞) gives a completely positive
retraction σ : A → E of the map κ .

Let ϕ : E → F be a completely isometric, complete order isomorphism of operator
systems. We will say that two C♯-extensions κ : E → A and λ : F → B are equivalent
if there is a ∗-isomorphism ρ : A → B such that ρ ◦ κ = λ ◦ ϕ.

Definition 2.24. Let E be an operator system. A C♯-envelope is a C♯-extension κ : E →
A with the following universal property: for every C♯-extension (B, λ) there exists a
unique surjective ∗-homomorphism ρ : B → A such that ρ ◦ λ = κ .

Existence of the C∗-envelope for unital operator systems was shown by Hamana in [34]
and we refer to that paper and [39, Ch. 15] and [9, Section 4.3] for the proof. We now
deal with the non-unital case.

Theorem 2.25. (i) The C♯-envelope of a non necessarily unital operator system E
exists and is unique (up to equivalence).

(ii) If the system is unital the C♯-envelope is equal to the C∗-envelope.

Proof. (i) Let us show existence of a C♯-envelope in the case that E ⊆ B(H) is non-
unital. Let E♯ = E ⊕C be the unitization of E as defined in Definition 2.11; it is a unital
operator system and so it has a C∗-envelope; let us denote this by κ : E♯ → B. We
claim that A = C∗(κ(E)) ⊂ B is a C♯-envelope of E . First by Corollary 4.17 of [50]
the unitization C∗(κ(E))♯ is the usual C∗-algebra unitization. The map ıE : E → E♯

is completely isometric and completely positive and so is α = κ ◦ ıE : E → A. To
show that α is a C♯-extension one needs to prove that α♯ : E♯ → A♯ is a complete order
isomorphism on its range. Since B is a unital C∗-algebra and A ⊂ B a C∗-subalgebra
one has a canonical morphism β : A♯ → B. It extends the inclusion by sending the
adjoined unit of A♯ to 1B . Moreover

β ◦ α♯ = κ

If an element x ∈ α♯(E♯), is positive in A♯ then β(x) ∈ B is positive and since
κ : E♯ → B is an order isomorphism on its range there exists uniquely a positive
element y ∈ E♯ with κ(y) = β(x). Let z ∈ E♯ with α♯(z) = x , one has

κ(z) = β ◦ α♯(z) = β(x) = κ(y)

and hence z = y since κ is an injection, so that z is positive. The same argument applies to
matrices and shows that α is a C♯-extension. Now suppose that λ : E → C is some other
C♯-extension. Then C♯ is the C∗-algebra unitization of C and λ♯ : E♯ → C♯ is a (unital)
C∗-extension by Definition 2.21. Hence there exists a surjective ∗-homomorphism ρ :
C♯ → B, with B as defined above, such that ρ ◦λ♯ = κ . The ∗-homomorphism given by
the restriction ρ|C : C → B lands in A = C∗(κ(E)) since C = C∗(λ(E)) by Definition
2.21. Thus we find that ρ′ = ρ|C : C → A is a surjection, and that ρ′ ◦ λ = κ ◦ ıE = α

as desired.
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For uniqueness, assume that κ : E → A and λ : E → B are two C♯-envelopes of
E . The universal property of both give two surjective ∗-homomorphisms σ : A → B
and ρ : B → A such that σ ◦ κ = λ and ρ ◦ λ = κ . As a consequence ρ ◦ σ ◦ κ = κ ,
that is to say, ρ ◦ σ is the identity when restricted to κ(E) ⊂ A. But since ρ and σ are
∗-homomorphisms and A is generated by κ(E) it follows that ρ ◦ σ = idA. Similarly,
we find σ ◦ ρ = idB so that A ∼= B, compatibly with the extension maps κ and λ.
(i i) Let E be a unital operator system, and ıE : E → C∗

env(E) its C∗-envelope. Let
κ : E → A be the C♯-envelope of E . Then by Lemma 2.22, ıE is a C♯-extension.
Thus by the universal property of the C♯-envelope, there exists a unique surjective ∗-
homomorphism ρ : C∗

env(E) → A such that ρ ◦ ıE = κ . Since the C∗-algebra C∗
env(E)

is unital it follows that A is unital, with unit 1A equal to ρ(1). Let 1E be the unit of the
operator system E . It follows that

κ(1E ) = ρ ◦ ıE (1E ) = ρ(1) = 1A.

This shows that κ : E → A is a C∗-envelope. Thus by the universal property of C∗-
envelopes there exists uniquely a surjective ∗-homomorphism ρ′ : A → C∗

env(E) such
that ρ′ ◦ κ = ıE . One then concludes that ρ′ is the inverse of ρ since both C∗

env(E) and
A are generated by the image of the operator system E . ⊓⊔
Corollary 2.26. Let E be a unital operator system. Then C∗

env(E) is the C∗-algebra
generated by E in C∗

env(E♯).

Proof. By construction the C∗-algebra generated by E in C∗
env(E♯) is the C♯-envelope

of E and by (i i) of Theorem 2.25 it coincides with the C∗-envelope: ıE : E → C∗
env(E).

⊓⊔
Remark 2.27. It is important in Definition 2.21 to assume that the associated map κ♯ is
an order isomorphism with its range. The following example shows that if one drops this
hypothesis the C♯-envelope no longer exists. Consider the non-unital system S formed
of a single self-adjoint H with ‖H‖ = 1, and where the positive cone is {0}. Then if one
weakens definition 2.21 by dropping the requirement on κ♯, a C∗-extension κ : E → A
is simply a self-adjoint generating element h ∈ A of norm ‖h‖ = 1. In particular one
can have h > 0 and one sees that this rules out the existence of a C∗-envelope since h
does not contain −1 in its spectrum. But the system S♯ does have a C∗-envelope which
is the C∗-algebra C({±1}) and where H is the function H(±1) := ±1.

Part (i i) of Theorem 2.25 shows that we can drop the distinction between C∗-envelope
and C♯-envelope. In the following, we will use the terminology C∗-envelope of E and
denote it as ıE : E → C∗

env(E).

2.5. Šilov boundary ideals. There is a useful description of the C∗-envelope in terms of
Šilov boundary ideals that we now recall [4,34]. We shall only use it in the unital case
and restrict to this case in this subsection.

Definition 2.28. Let E be a unital operator system and κ : E → A a C∗-extension. A
boundary ideal for the extension is a closed two-sided ideal I ⊆ A such that the quotient
map q : A → A/I is completely isometric on κ(E) ⊆ A.

A boundary ideal is called the Šilov ideal if it contains every other boundary ideal.
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Before we analyze the relation between the Šilov boundary ideal and the C∗-envelope
of operator systems, let us spend a few words on the topological origin of these bound-
ary ideals [4, Sect. 2.1] (cf. [40, Chapter 6]). Namely, let X be a compact Hausdorff
topological space and consider a linear subspace E ⊆ C(X) that contains the constants
and separates points of X . Then there is a smallest closed subset K ⊆ X such that
every function in E achieves its maximal absolute value on K . This is called the Šilov
boundary of X relative to E . In terms of the corresponding ideals we then find that

J = { f ∈ C(X) : f (K ) = 0}

and that the quotient norm in C(X)/J is

‖ f |K ‖ = sup
x∈K

| f (x)|.

But then, to say that f attains its maximum on K ⊆ X amounts to saying that ‖ f |K ‖ =
‖ f ‖. Thus, given the one-to-one correspondence between closed subsets in X and closed
ideals in C(X) we find that J is a Šilov ideal for an E ⊆ C(X) if and only if K is Šilov
boundary for E .

Example 2.29. The traditional example of the Šilov boundary is given by the continu-
ous harmonic functions Charm(D) on the closed disc. Then by the maximum modulus
principle any harmonic function attains its maximum at the boundary of D. The Šilov
boundary for this operator system is thus given by the circle and the Šilov boundary
ideal is C0(D).

We now return to the description of the C∗-envelopes using Šilov boundary ideals.
Note that the following result is nothing but a reformulation of the results in [34], very
much in line with [4].

Proposition 2.30. Let E be a unital operator system and let κ : E → A be a C∗-
extension. Then there exists a (necessarily unique) Šilov boundary ideal J . Moreover,
the C∗-envelope C∗

env(E) is ∗-isomorphic to A/J .

Proof. From the universal property of the C∗-envelope ıE : E → C∗
env(E) it follows

that there is a surjective ∗-homomorphism π : A → C∗
env(E) such that π ◦ κ = ıE .

Hence there is a ∗-isomorphism π̃ : A/Ker π → C∗
env(E) such that

E
ıE

�� C∗
env(E)

E
q◦κ

�� A/ ker π

π̃

��

is a commutative diagram, where q : A → A/Ker π denotes the quotient map. We claim
that J = Ker π is the Šilov boundary ideal.

Indeed, J is a boundary ideal since the restriction of q : A → A/Ker π to λ(E) is
q ◦ κ = π̃−1 ◦ ıE which is surely a complete order isomorphism onto its range.

Next, let I ⊆ A be any boundary ideal with q ′ : A → A/I the corresponding
quotient map. Then q ′ ◦ κ : E → A/I is a C∗-extension of E and thus, by the universal
property of C∗

env(E) ∼= A/J there is a surjective ∗-homomorphism

ρ : A/I → A/J
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such that ρ◦q ′◦κ = q ◦κ . This means that ρ(x + I ) = x + J for all x ∈ κ(E) ⊆ A. Since
ρ is a ∗-homomorphism and A is generated by κ(E) it follows that ρ(x + I ) = x + J
for all x ∈ A. In particular, for each x ∈ I we have

0 + J = ρ(0 + I ) = ρ(x + I ) = x + J

so that I ⊆ J .

Corollary 2.31. Let E be a unital operator system and let κ : E → A be a C∗-extension.
If A is a simple C∗-algebra then C∗

env(E) is isomorphic to A.

Proof. Since A is simple there are no two-sided ideals and in particular the Šilov bound-
ary ideal is trivial. In other words, the C∗-envelope of E is given by A. ⊓⊔
Example 2.32. Returning to the harmonic functions on the closed disc of Example 2.29
we see that C∗

env(Charm(D)) ∼= C(D)/C0(D) ∼= C(S1).

Example 2.33. Let θ be an irrational real number and let U and V be two unitary operators
in a Hilbert space such that

V U = e2π iθ V U.

The linear span E of the operators U and V together with their adjoints and the identity
is a operator system. It is a subspace of the C∗-algebra generated by U and V , which is of
course nothing but the noncommutative torus Aθ . Since the latter is simple Corollary 2.31
applies and we conclude that the C∗-envelope of E is given by the noncommutative torus
Aθ .

Remark 2.34. We urge the reader to transpose the above results to the non-unital case
by replacing C∗-extensions by C♯-extensions.

2.6. Stable equivalence for operator systems. Before we can introduce the notion of
stable equivalence, we will need to briefly digress on tensor products of operator systems.
We will base our approach on [35] which is focusing completely on operator systems.
In fact, the authors develop tensor products from the point of view of abstract operator
systems (that is to say, for matrix-ordered order unit spaces). However, the link to concrete
operator systems such as E ⊆ B(H) is also worked out (cf. [35, Theorem 4.4]), and
allows us to here make the following ‘hands-on’ definition. For the development of
tensor products in the case of non-unital (abstract) operator systems, we refer to [38]

Definition 2.35. Let E ⊂ B(H) and F ⊆ B(K ) be operator systems. We define the
minimal tensor product E ⊗min F of E and F as the following norm closure

E ⊗min F = E ⊗ F ⊆ B(H ⊗ K ),

where the algebraic tensor product E ⊗ F is naturally embedded in B(H ⊗ K ).

The construction of the minimal tensor product only depends on the abstract operator
system structure, and it defines a bi-functor from operator systems to operator systems
[35, Theorem 4.6]. In fact, this can also be seen from the concrete viewpoint that we
have adopted in the above definition. Indeed, if ϕ : E → E ′ and ψ : F → F ′

are complete order isomorphisms (i.e. completely isometric isomorphisms) then [27,
Proposition 8.1.5] shows thatϕ⊗ψ induces a complete order isomorphism from E⊗min F
to E ′ ⊗min F ′.

We now come to the main topic of this section, which is stable equivalence of operator
systems. Let K denote the C∗-algebra of compact operators.
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Definition 2.36. We say that two operator systems E and F are stably equivalent if
E ⊗min K and F ⊗min K are complete order isomorphic operator systems.

It is immediate that this is an equivalence relation. The advantage of working with the
minimal tensor product should now become clear. In fact, if E ⊆ B(H) and K ≡ K(K )

for Hilbert spaces H and K we find that E ⊗min K(K ) is the closure of E ⊗ K0(K ) in
B(H ⊗ K ) where K0(K ) denote finite-rank operators.

We expect that the above notion of stable equivalence is related to a notion of Morita
equivalence for operator systems, similar to what happens in the case of C∗-algebras
[13], operator algebras [9] and operator spaces [28]. It is an interesting open problem to
develop such a notion and see how it reduces to the familiar notion of Morita equivalence.
In any case, we record the following result.

Proposition 2.37.

(i) Let E be a unital operator system. The C∗-envelope of the stabilization E ⊗min K

is isomorphic to the stabilization C∗
env(E) ⊗ K of the C∗-envelope.

(ii) Let E and F be stably equivalent unital operator systems. Then C∗
env(E) and

C∗
env(F) are stably equivalent C∗-algebras.

Proof. (i) Let κ : E → C∗
env(E) be the C∗-envelope of the operator system E ; and

consider the map α := κ ⊗min id : E ⊗min K → C∗
env(E) ⊗min K. It makes sense since

one can realize κ as an inclusion of concrete operator systems. Let us show that α is a C♯-
extension in the sense of Definition 2.21. It is by construction a complete isometry and
is completely positive. We need to show that α♯ : (E ⊗min K)♯ → (C∗

env(E) ⊗min K)♯

is a complete order isomorphism with its range R ⊂ (C∗
env(E) ⊗min K)♯. Let then

x = y + λ1 ∈ R where y = α(z) for some z ∈ E ⊗min K and λ ∈ R. Assume that
x ≥ 0. This means that λ ≥ 0 and that y ≥ −λ1 as concrete operators, i.e. in B(H ⊗ K ).
Let then Kn ⊂ K be an increasing sequence of n-dimensional subspaces whose union
is dense in K . Let en ∈ B(H ⊗ K ) be the orthogonal projection on H ⊗ Kn . One
has en yen ≥ −λen . Let then zn ∈ Mn(E) ⊂ E ⊗min K with en yen = α(zn). Since
κ is an inclusion of concrete operator systems one has zn + λen ≥ 0. The element
zn + λ1 ∈ (Mn(E))♯ is positive in the sense of Definition 2.11. Indeed Mn(E) is a unital
operator system so its state space in the sense of positive linear functionals on Mn(E)

of norm 1 is the same as the ordinary state space of positive functionals equal to 1 on
the unit en . Thus since zn + λen ≥ 0 the positivity condition of Definition 2.11 holds.
We thus obtain a sequence of positive elements vn = zn + λ1 ∈ (E ⊗min K)♯ which is
norm convergent and whose norm limit v is positive and fulfills α♯(v) = x . The similar
argument also applies when passing to matrices. Thus we conclude that C∗

env(E) ⊗ K

is a C♯-extension of E ⊗min K. Let then C∗(E ⊗min K) = C♯(E ⊗min K) be the C∗-
envelope of E ⊗min K which exists uniquely by Theorem 2.25. From the universal
property of Definition 2.24 it then follows that there is an ideal J in C∗

env(E) ⊗ K such
that (C∗

env(E)⊗K)/J ∼= C∗(E ⊗min K). A closed two-sided ideal in the tensor product
A ⊗K of a C∗-algebra A by K is necessarily of the form J0 ⊗K, where J0 is the closed
ideal of A defined by J0 = {a ∈ A|a ⊗k ∈ J,∀k ∈ K}. Thus we have here J = J0 ⊗K.
By definition of J the quotient map

q : C∗
env(E) ⊗ K → (C∗

env(E) ⊗ K)/J

restricts to a complete isometry on κ(E ⊗min K) ⊆ C∗
env(E) ⊗ K. In particular, with

e ∈ K a minimal projection, the restriction of q to ıE (E) ⊗ e is a complete isometry,
and it agrees with the quotient morphism q0 : C∗

env(E) → C∗
env(E)/J0. Hence J0 is a
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boundary ideal for the C∗-envelope ıE : E → C∗
env(E), so J0 is contained in the Šilov

boundary for the C∗-envelope which is 0. Thus J0 = 0 and the proof is complete.
(i i) Follows from (i). ⊓⊔
Corollary 2.38. Suppose E and F are unital C∗-algebras. If E and F are stably equiv-
alent as operator systems, they are also stably equivalent as C∗-algebras.

Proof. This follows from Proposition 2.37 (i i) since E = C∗
env(E) and F = C∗

env(F).
⊓⊔

2.7. Propagation number as an invariant of operator systems. Let E be an operator
system. For an integer n > 0 one lets E◦n be the norm closure of the linear span of
products of ≤ n elements of E . It is an operator system.

Definition 2.39. The propagation number prop(E) of the operator system E is defined
as the smallest integer n such that ıE (E)◦n ⊆ C∗

env(E) is a C∗-algebra.

When no such n exists one lets prop(E) = ∞.

Example 2.40. Returning to the Example 2.29 of harmonic functions in the disk one has
by 2.32 that C∗

env(Charm(D)) ∼= C(D)/C0(D) ∼= C(S1). The Poisson kernel

P(z, ei t ) := 1 − |z|2
|ei t − z|2

gives the canonical linear section P : C(S1) → Charm(D) by the Poisson integral

P( f )(z) := 1

2π

∫ π

−π

P(z, ei t ) f (t)dt

and (see [48] Theorem 11.8) this map is an isomorphism of operator systems. In particular
the propagation number of Charm(D) is equal to 1. Note that this example shows that
morphisms of operator systems between C∗-algebras are not in general morphisms of
C∗-algebras.

Proposition 2.41. The propagation number is invariant under completely isometric,
complete order isomorphisms of operator systems.

Proof. This follows from the uniqueness property of the C∗-envelopes: given a complete
order isomorphism ϕ : E → F of two operator systems there is a commuting diagram:

E

ıE

��

φ
�� F

ıF

��

C∗
env(E)

φ̃

�� C∗
env(F)

where ϕ̃ is a ∗-isomorphism. Hence if prop(E) = n then we obtain that

(ıF (F))◦n = (ıF (ϕ(E)))◦n = (ϕ̃(ıE (E)))◦n = ϕ̃
(
(ıE (E))◦n)

= C∗
env(F),

and prop(F) ≤ n = prop(E). Similarly we find prop(E) ≤ prop(F) which completes
the proof. ⊓⊔
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Proposition 2.42. The propagation number is invariant under stable equivalence, i.e.,
for any unital operator system E we have

prop(E) = prop(E ⊗min K)

where K is the C∗-algebra of compact operators.

Proof. Suppose that prop(E) = n. Then

ıE⊗minK(E ⊗min K)◦n = ıE⊗minK(E ⊗alg K)◦n = ıE (E)◦n ⊗ K = C∗
env(E) ⊗ K.

We conclude that prop(E ⊗min K) ≤ n = prop(E).
In the other direction, let us now assume that prop(E ⊗min K) = n. Then by Propo-

sition 2.37, one has C∗
env(E ⊗K) = C∗

env(E)⊗K and thus the latter is the norm closure
of the linear span of the products of at most n elements of E ⊗alg K. Let x ∈ C∗

env(E)

and e ∈ K a minimal projection. One can thus approximate x ⊗ e by a finite sum of
elements of the form

m = (a1 ⊗ k1) · · · (an ⊗ kn), a j ∈ E, k j ∈ K.

One thus obtains a good approximation of x by the sum of the

λ a1 . . . an, ek1 . . . kne = λe

from which it follows that prop(E) ≤ n = prop(E ⊗min K). ⊓⊔

3. Spectral Truncations

The basic paradigm in noncommutative geometry is given by a so-called spectral triple
(A,H, D), combining a ∗-algebra of bounded operators on Hilbert space H with a
self-adjoint operator D with compact resolvent and bounded commutators [D, a] for all
a ∈ A. The typical example is given by a compact Riemannian spin manifold M where
A = C∞(M) and D is the Dirac operator acting on L2-spinors. In fact, it is possible [20]
to reconstruct a Riemannian spin manifold from any spectral triple (A,H, D) satisfying
certain conditions, including commutativity of A.

As we explained in the introduction, our goal is to extend this approach of geometry
to cases where (possibly) only part of the spectrum of D is available. Most naturally,
we may consider a spectral triple (A,H, D) where we take a cutoff of the operator D,
described by means of a spectral projection P , projecting onto a finite number of the
eigenvectors of D. Clearly, such an operator commutes with D and, in fact, any operator
that commutes with D also commutes with P so that the truncation respects the group
of isometries of the geometry. The operator D is thus replaced by P D = P D P = D P
acting as an operator on the Hilbert space PH.

Clearly, the ∗-algebra A does not act on PH any more. However, we may form the
space PAP of operators which is invariant under the involution. In other words, PAP is
an operator system in B(PH). We thus come to consider the triple (PAP, PH, P D P).

The advantage of this spectral description is that we now have the possibility to work
with a possibly finite-dimensional truncation of the spectral geometry, while keeping all
the isometries of the original spectral triple intact. Indeed, the isometries of the latter are
given by unitaries U such that U DU∗ = D and UAU∗ = A. Now, since P commutes
with such U , it follows that U also acts unitarily on PH while it maps PAP and D to
itself.

We thus arrive at the following generalization of spectral triples with ∗-algebras of
bounded operators replaced by operator systems.
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Definition 3.1. An operator system spectral triple is a triple (E,H, D) where E is a
dense subspace of a (concrete) operator system E in B(H), H is a Hilbert space and D
is a self-adjoint operator in H with compact resolvent and such that [D, T ] is a bounded
operator for all T ∈ E .

Since states are perfectly defined on operator systems, the above triple induces a
(generalized) distance function on S(E) by setting

d(ϕ, ψ) = sup
x∈E

{|ϕ(x) − ψ(x)| : ‖[D, x]‖ ≤ 1} . (2)

If E = A is a ∗-algebra then this reduces to the usual distance function [19] on the
state space of the C∗-algebra A = A. It also agrees with the definition of quantum
metric spaces based on order-unit spaces given in [36,37,45]. It has been studied for
truncations in [23,31,32]. The properties of this metric distance function and the notions
of Gromov–Hausdorff convergence it gives rise to will be studied elsewhere. We will
here focus on a detailed analysis on the topological structure. We start with the simplest
case given by spectral truncations of the circle. As we will find the theory is extremely
rich, in fact, already in a spectral truncation of the circle of rank 3.

3.1. Spectral truncation of the circle. We consider C∞(S1) ⊂ C(S1) acting as bounded
multiplication operators on L2(S1). An orthonormal basis of L2(S1) is given in terms
of Fourier theory: ek(x) = eikx for k ∈ Z. These are of course eigenvectors for the
Dirac operator −id/dx on the circle. We consider a spectral truncation defined by the
orthogonal projection Pn onto spanC{e1, e2, . . . , en} for some fixed n > 0. We will
also write simply P = Pn . The space PC(S1)P is an operator system and an arbitrary
element T = P f P in C(S1)(n) = PC(S1)P can be written as the following matrix
with respect to the orthonormal basis spanC{ek}n

k=1:

P f P ∼

⎛
⎜⎜⎜⎜⎜⎜⎝

a0 a−1 a−2 a−3 . . . a−n+1
a1 a0 a−1 a−2 . . . a−n+2
a2 a1 a0 a−1 . . . a−n+3
a3 a2 a1 a0 . . . a−n+4
...

...
...

...
. . .

...

an−1 an−2 an−3 an−4 · · · a0

⎞
⎟⎟⎟⎟⎟⎟⎠

(3)

in terms of the Fourier coefficients {an}n∈Z of f ∈ C∞(S1). Such matrices with constants
along all diagonals are called Toeplitz matrices. Hence the spectral truncation PnC(S1)Pn
is given by the Toeplitz operator system of all n × n Toeplitz matrices. A fully general
analysis of the Toeplitz system will be postponed to the next section, including the C∗-
envelope, the propagation number, the extreme rays in the cone of positive elements, the
pure state spaces, et cetera.

In the next subsection we anticipate this discussion and lift the curtain on the rich
structure that is found already in the simplest non-trivial case, namely when n = 3.

3.2. State space of the truncated circle (n = 3). We shall proceed by discussing in
details the simplest non-trivial case which is n = 3, but before entering in the details we
list some properties which ought to be shared with the general case:
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• The extreme rays of the positive cone O+ of the operator space form a circle. More
precisely they are proportional to rank one self-adjoint idempotents which belong to
O . They remain extreme rays in the cone of positive matrices.

• The boundary ∂O+ of the base of the positive cone O+ is the closure of a component
of the complement of singular points in a rational algebraic hypersurface H .

• The extreme points of the base of the positive cone O+ are singular points of the
above hypersurface H .

• The boundary ∂S of the state space is a component of the complement of singular
points in a rational algebraic hypersurface K .

• The extreme points E of the state space coincide with the singular points of the
above hypersurface K and form the quotient of a torus by the symmetric group.

• Both hypersurfaces H and K are the union of a pencil of lines obtained from pairs
of points of the singular set.

In the case of the base of the cone O+ the pencil of lines is of dimension 2 (for n = 3)
and its elements are parametrized by arbitrary pairs of points of the curve Ŵ of extreme
points. In the case of the state space the singular set of K is two dimensional and the
pencil of lines is formed of lines joining an arbitrary point of the singular set with a
precisely defined corresponding point. The pencil of lines is also two dimensional.

3.2.1. The positive cone O+ and its extreme rays The self-adjoint elements of the trun-
cated operator space P3C(S1)P3 are matrices of the form

⎛
⎝

u a − ib c − id
a + bi u a − ib
c + di a + bi u

⎞
⎠ , (a, b, c, d, u) ∈ R

5.

They form a 5-dimensional real vector space O and what matters is to understand the
positive cone O+ for the operator norm. The state space is then obtained using the dual
cone and intersecting with the hyperplane ϕ(1) = 1. The coefficients of the characteristic
polynomial of the above matrix are the following

{
− 2a2(c − u) − 4abd + 2b2(c + u) + u

(
c2 + d2 − u2

)
,

−2a2 − 2b2 − c2 − d2 + 3u2,−3u, 1

}

and they give a map ψ : O → R
3.

Lemma 3.2. The cone O+ of positive elements is the closure of the open component of
(0, 0, 0, 0, 1) in the complement of the hypersurface

H := {(a, b, c, d, u)|2a2c − 2a2u + 4abd − 2b2c − 2b2u − c2u − d2u + u3 = 0}

Proof. The elements of the cone O+ are the elements of O whose eigenvalues are
positive. Since all elements of O are self-adjoint matrices, their eigenvalues are real.
The cone O+ is convex and is the closure of its interior which consists of matrices A
whose eigenvalues are strictly positive. For A ∈ O+ is strictly positive, the segment
joining A to the identity matrix 1 stays inside O+ and thus A belongs to the open
component of (0, 0, 0, 0, 1) in the complement of the hypersurface H . Conversely on
a path in the complement of the hypersurface H joining 1 to A the eigenvalues remain
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positive since they vary continuously and cannot vanish as their product is given by the
determinant of the matrix which is

2a2c − 2a2u + 4abd − 2b2c − 2b2u − c2u − d2u + u3

equal to the cubic polynomial which defines H . ⊓⊔

Since the trace of a matrix is the sum of its eigenvalues one knows that it is > 0 on
the cone O+ and hence the natural basis of the cone O+ is its intersection O+,1 with the
hyperplane u = 1. The hypersurface H is then determined by the three dimensional zero
set Z (Fig. 1) of the polynomial

δ(a, b, c, d) = 2a2(c − 1) + 4abd − 2b2(c + 1) − c2 − d2 + 1

and O+,1 is the closure of the open component B of (0, 0, 0, 0) in the complement of
Z . The singularities of the hypersurface Z correspond to the points of Z at which the
gradient of δ vanishes. This gradient is given by

∇δ =
{

4a(c − 1) + 4bd, 4ad − 4b(c + 1), 2
(

a2 − b2 − c
)

, 4ab − 2d
}

and the points of Z on which ∇δ vanishes form the rational curve

Ŵ := {(a, b, c, d)|a2 + b2 = 1, c = −1 + 2a2, d = 2ab}.

It is parametrized in the form

(a, b, c, d) = (cos(x), sin(x), cos(2x), sin(2x)) = γ (x) ∈ Ŵ.

Lemma 3.3. The boundary ∂ B of B is the range of σ : T
2 × [0, 1] → Z ⊂ R

4

σ(x, y, s) := sγ (x) + (1 − s)γ (y).

Proof. One first checks that σ(x, y, s) ∈ Z . One has

δ(σ (x, y, s)) = (s sin(2x) + (1 − s) sin(2y))2 − 2(s cos(2x) +

+ (1 − s) cos(2y) − 1)(s cos(x) + (1 − s) cos(y))2

+ (s cos(2x) + (1 − s) cos(2y))2

− 4(s sin(x) + (1 − s) sin(y))(s sin(2x)

+ (1 − s) sin(2y))(s cos(x) + (1 − s) cos(y))

+ 2(s sin(x) + (1 − s) sin(y))2(s cos(2x) + (1 − s) cos(2y) + 1) − 1.

After expanding in powers of s one finds that all coefficients vanish identically.
Thus the range of σ is contained in the hypersurface Z and we now verify that it is

contained in the boundary of the component B of the complement of Z . Let us show
that any element γ (x) ∈ Ŵ belongs to the boundary of B. One considers the path given
(with parameter t ∈ [0, 1]) by

t 
→ p(t, x) := (1 − t)/3 (γ (x) + γ (x + 2π/3) + γ (x + 4π/3)) + tγ (x).

One finds that independently of x ∈ [0, 2π ] one has δ(p(t, x)) = (t − 1)2(2t + 1),
while one has p(0, x) = 0 and p(1, x) = γ (x). This shows that γ (x) ∈ Ŵ belongs to
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Fig. 1. The hypersurface Z intersected with the hyperplane d = −4/10. One can see 6 components of the
complement, the central one is convex

the boundary of B. It follows by convexity of B that the range of σ is contained in the
boundary of B.

The minors of the Jacobian of the map σ are
⎛
⎜⎜⎝

−8(s − 1)s sin4
( x−y

2

)
sin(x + y)

8(s − 1)s cos(x + y) sin4
( x−y

2

)

16(s − 1)s sin4
( x−y

2

)
(sin(x) + sin(y))

−16(s − 1)s(cos(x) + cos(y)) sin4
( x−y

2

)

⎞
⎟⎟⎠ .

They all vanish if and only if (s − 1)s sin4
( x−y

2

)
= 0. This holds only if s ∈ {0, 1} or if

the pair (x, y) belongs to the diagonal � ⊂ T
2. In both cases the critical value is on the

curve Ŵ. The complement of Ŵ in ∂ B is connected since ∂ B is the boundary of the convex
body B (the boundedness of B follows from the boundedness of positive matrices of
fixed trace) and is thus homeomorphic to a three dimensional sphere which the curve Ŵ

cannot disconnect. Thus the intersection of the range of σ with the complement of Ŵ in
∂ B is both open and closed (since the domain T

2 × [0, 1] is compact and critical values
lie in Ŵ) and is thus equal to the complement of Ŵ in ∂ B. Since Ŵ lies in the range of σ

one gets the required surjectivity. ⊓⊔
Proposition 3.4. The extreme points of the convex set O+,1 form the curve Ŵ.

Proof. The extreme points of O+,1 belong to the boundary ∂ B and hence to the range of
the map σ of Lemma 3.3. The formula defining σ shows that provided γ (x) �= γ (y) all
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the non-trivial convex combinations are not extreme points and thus the extreme points
of ∂ B are contained in Ŵ. To see that any element γ (x) ∈ Ŵ is an extreme point we note
that the Toeplitz matrix associated to γ (x) is of the form

⎛
⎝

1 e−i x e−2i x

ei x 1 e−i x

e2i x ei x 1

⎞
⎠ =

⎛
⎝

1 0 0
0 ei x 0
0 0 e2i x

⎞
⎠

⎛
⎝

1 1 1
1 1 1
1 1 1

⎞
⎠

⎛
⎝

1 0 0
0 e−i x 0
0 0 e−2i x

⎞
⎠

which is three times a rank one idempotent and is already an extreme point among
positive matrices with fixed trace. ⊓⊔

3.2.2. The state space and the pure states The tangent hyperplane to B at any of the
points σ(x, y, s) for s ∈ (0, 1) is governed by the equation obtained by differentiating
δ at such points which gives, up to the overall factor 8(s − 1)s sin2

( x−y
2

)
the vector

{2(cos(x) + cos(y)), 2(sin(x) + sin(y)),− cos(x + y),− sin(x + y)}.

The associated linear form evaluated at any of the points σ(x, y, s) takes the value
cos(x − y) + 2. Replacing x 
→ x + π and y 
→ y + π this provides us with a two-
parameter family of supporting hyperplanes for the cone O+ given by the equation
L(a, b, c, d, u) = 0 where

L(a, b, c, d, u) = 2a(cos(x) + cos(y)) + 2b(sin(x) + sin(y)) +

+ c cos(x + y) + d sin(x + y) + u(cos(x − y) + 2).

In order to obtain a state one normalizes L . This gives us the following map ε : T
2 → O∗

from the two torus T
2 to the state space S of O

ε(x, y)(a, b, c, d, u) := 1

cos(x − y) + 2
L(a, b, c, d, u).

Since the circle x2 + y2 = 1 is a rational curve with rational parametrization given by

x = 2t

t2 + 1
, y = 1 − t2

t2 + 1

one obtains a rational parametrization of the range of the map ε in the form

W =
4

(
t2v + tv2 + t + v

)

t2
(
3v2 + 1

)
+ 4tv + v2 + 3

, X = 4 − 4t2v2

3t2v2 + t2 + 4tv + v2 + 3
,

Y =
t2

(
−

(
v2 − 1

))
+ 4tv + v2 − 1

t2
(
3v2 + 1

)
+ 4tv + v2 + 3

, Z =
2

(
t2(−v) − tv2 + t + v

)

t2
(
3v2 + 1

)
+ 4tv + v2 + 3

.

By elimination of the variables (t, v) one obtains that the range is contained in the
following two quartic hypersurfaces

W 2 X2 + 2W 2 Z2 − 4W X Z + 2X2 Z2 = 0

and

W 2
(

X2 + 4Z2
)

+ 4Z2
(

X2 + 4
(

Y 2 + Z2 − 1
))

= 0.
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Fig. 2. The surface � in R
3

These equations allow one to express W as follows

W = −X4 Z − 8X2Y 2 Z − 8X2 Z3 + 8X2 Z − 16Y 2 Z3 − 16Z5 + 16Z3

2X
(
X2 + 4Z2

)

and one just needs to understand the surface � in R
3 given by the parametrization by

(X, Y, Z)(t, v) or by the equation

X4 + 8X2Y 2 + 8X2Y + 8X2 Z2 + 16Y 2 Z2 + 16Z4 − 16Z2 = 0. (4)

It is represented in Fig. 2.
The boundary ∂S of the state space S is contained in an algebraic hypersurface which

is determined as follows. The linear form

L(a, b, c, d, u) = aW + bX + cY + d Z + u

belongs to the state space if and only if it takes positive values on the extreme points of the
base of the cone O+. This means using Proposition 3.4 and the rational parametrization
of the curve Ŵ that the product

(−t4 X − t4Y + t4 + 2t3W − 4t3 Z + 6t2Y + 2t2 + 2tW + 4t Z + X − Y + 1)(1 + t2)−2

only takes positive values. This thus means that the polynomial first factor P(t) is positive
for all t ∈ R. If X + Y = 1, P(t) is of degree 3 and hence cannot be positive for all t ∈ R

unless the coefficient 2W − 4Z of t3 vanishes. Since the boundary ∂S is topologically
a sphere we can ignore this codimension 2 situation. One then has X + Y < 1 i.e. the
coefficient of t4 is positive. Then P(t) is positive for all t ∈ R if and only if it takes
positive values where its derivative vanishes:

P ′(t) = 0 ⇒ P(t) ≥ 0.

This shows that in the boundary ∂S one has a common root for P and P ′. Thus ∂S

is contained in the zero set of the discriminant which is the following polynomial



Spectral Truncations in NCG and Operator Systems 2045

Fig. 3. Intersection of the hypersurface d(W, X, Y, Z) = 0 with Z = 0

(Figs. 3, 4)

d(W, X, Y, Z) = W 6 + 3W 4 X2 + 15W 4Y 2 − 18W 4Y − 12W 4 Z2

− W 4 + 108W 3 XY Z

− 36W 3 X Z + 3W 2 X4 − 78W 2 X2Y 2 + 84W 2 X2 Z2 − 2W 2 X2

+ 48W 2Y 4 − 144W 2Y 3

+ 96W 2Y 2 Z2 + 80W 2Y 2 − 144W 2Y Z2 + 16W 2Y + 48W 2 Z4

+ 80W 2 Z2 − 108W X3Y Z

− 36W X3 Z − 288W XY 2 Z − 288W X Z3 + 32W X Z + X6

+ 15X4Y 2 + 18X4Y − 12X4 Z2

− X4 + 48X2Y 4 + 144X2Y 3 + 96X2Y 2 Z2 + 80X2Y 2

+ 144X2Y Z2 − 16X2Y + 48X2 Z4

+ 80X2 Z2 − 64Y 6 − 192Y 4 Z2 + 128Y 4 − 192Y 2 Z4 + 256Y 2 Z2

− 64Y 2 − 64Z6 + 128Z4 − 64Z2.

We thus get the following

Lemma 3.5. The boundary ∂S of the state space S is contained in the hypersurface
K := {(W, X, Y, Z)|d(W, X, Y, Z) = 0}.
We are now ready to determine the extreme points of the state space of the operator
system O .

Theorem 3.6. The map ε : T
2 → O∗ from the two torus T

2 to the state space S of O
defines a surjective double cover of the set E of extreme points, and E is a Möbius strip
with boundary the image ε(�) of the diagonal.
The Möbius strip E lies in the singular set of the hypersurface d(W, X, Y, Z) = 0.
The following map β : T

2 × [0, 1] → O∗ is a surjection on the boundary ∂S of the
state space S

β(x, y, s) := sε(x, y) + (1 − s)ε(x, y + π).
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Fig. 4. State space intersected with Z = 0
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Fig. 5. The graph of the numerator of the size2 of Jacobian

Proof. The sum of squares of the numerators of the minors of the Jacobian of the map
ε simplifies to

2

(
3 sin

(
x − y

2

)
+ sin

(
3(x − y)

2

))2

×(8 cos(x − y) + 4 cos(2(x − y)) + cos(3(x − y)) + 7)

which only depends upon x − y and whose graph, as a function of the single variable
x − y, is shown in Fig. 5. This shows that the map ε : T

2 → O∗ is an immersion except
on the diagonal �. One has ε(x, y) = ε(y, x) so that ε passes to the quotient of T

2 by
the flip s(x, y) := (y, x). Let us show that one thus obtains an injection of T

2/s in the
state space S. One rewrites the components of ε(x, y) as a pair of complex numbers in
terms of u = ei x and v = eiy using

2 cos(x − y) = u/v + v/u, uv = cos(x + y) + i sin(x + y),
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so that ε(x, y) determines the two complex numbers

A = (u + v)/(4 + u/v + v/u), B = uv/(4 + u/v + v/u).

One has A/B = 1/u + 1/v and moreover

B − A2 = 2u3v3

(
u2 + 4uv + v2

)2 , B2 = u4v4

(
u2 + 4uv + v2

)2

which determines the product uv as uv = 2B2/(B − A2). Now both u, v are complex
numbers of modulus one and one knows

1/u + 1/v = A/B, 1/(uv) = 1

2
(B − A2)/B2

so that u, v are determined up to the flip. On the diagonal � ⊂ T
2 the map ε simplifies

to

ε(x, x) =
(

4 cos(x)

3
,

4 sin(x)

3
,

1

3
cos(2x),

1

3
sin(2x)

)

which is a smooth embedding of S1 in O∗. This curve ε(�) is the boundary of the surface
� = ε(T2) which by the above discussion is the quotient of the two torus T

2 by the
flip, or equivalently the space of un-ordered pairs of complex numbers u, v of modulus
one. Such pairs form a Möbius strip since setting uv = λ2 the pair is determined by the
element

u + v

2λ
∈ [−1, 1]

which depends up to sign on the choice of the square root λ. Thus the monodromy along
the circle is the map x 
→ −x on the interval and the total space is a Möbius strip. One
checks by direct computation that the gradient of d vanishes on � so that the latter is
contained in the singular set of the hypersurface K . It remains to show that � = ε(T2) is
the set E of extreme points of the state space S. Let us first show that all other points of
the boundary ∂S are not extreme. This will follow if we show, as stated in the theorem,
that the map β is a surjection to the boundary ∂S. One first checks by direct computation
that d(β(x, y, s)) = 0 for all x, y ∈ T and s ∈ R. Moreover the computation of the
gradient of d on β(x, y, s) gives the expression

32(s − 1)s(12s cos(x − y) − 6 cos(x − y) − cos(2(x − y)) − 5)3

(
cos2(x − y) − 4

)4

multiplied by the non-zero vector (cos(x), sin(x),− cos(2x),− sin(2x)). One can thus
check that β(x, y, s) is a non-singular point of the hypersurface K when s ∈ (0, 1)

while, as seen above, it is a singular point for s = 0 and s = 1.
The numerator of the sum of squares of minors of the Jacobian of β simplifies to

8
(
(96s2 − 96s + 35) cos(x − y) − 2(2s − 1)(5 cos(2(x − y)) + 13) + cos(3(x − y))

)2

which only depends upon u := x − y and s. Solving in s gives two solutions

s → 1

4
(cos(u) + 2), s → 1

12
(6 cos(u) + cos(2u) + 5) sec(u).



2048 A. Connes, W. D. van Suijlekom

The second solution lies outside the interval [0, 1]. The first solution singles out the
critical set of β as the two dimensional graph

G =
{
(x, y,

1

4
(cos(x − y) + 2))|x, y ∈ T

}
.

The critical values form a circle C as obtained using the equality

β(x, y,
1

4
(cos(x − y) + 2)) = (cos(x), sin(x), 0, 0).

Let U be the range of the restriction of β to T
2 ×(0, 1). It is contained in the complement

of the singular set in the hypersurface K , and it is connected (as the image of a connected
set by a continuous map). It follows that U is contained in a single component V of the
complement of the singular set in the hypersurface K . The intersection of U with the
complement V \C of C in V is both open and closed: it is open because the map β is
open at any element of the pre-image, it is closed since it agrees with the intersection
of β(T2 × [0, 1]) with V \C . Now since C is a one dimensional circle and V is three
dimensional the complement V \C of C in V is connected. It follows that U = V since
the circle C is by construction in U . It remains to show that V is equal to the boundary
∂S. We know that ∂S is homeomorphic to a sphere S3 and that it is contained in the
hypersurface K . The above proof shows that V ⊂ ∂S and hence that the same holds
for the closure of V , one has V ⊂ ∂S. Now the boundary ∂S is necessarily a union
of closures of components of the complement of the singular set in the hypersurface
K . This follows from the invariance of domain [12]. Indeed since the boundary ∂S is a
topological sphere contained in K , whenever a point x ∈ ∂S is a non-singular point of
K , one can consider the injective continuous map from a small neighborhood of x in ∂S
to K given by inclusion and, since a neighborhood of x in K is a standard ball one knows
by the result of Brouwer that the image of the map is open. This suffices to show that
the intersection of ∂S with the complement of the singular set in K is both closed and
open and is thus a union of components. Now if ∂S contained another component than
V it would become disconnected after removing the boundary of V . But the boundary
of V is the Möbius strip � = ε(T2) and the complement of a Möbius strip in the sphere
S3 is always connected. This shows that V is equal to the boundary ∂S and completes
the proof of the theorem. ⊓⊔

4. Toeplitz Operator Systems: General Structure

This section contains a detailed analysis of the Toeplitz matrices, viewed as operator
systems inside the matrices with complex coefficients. We will apply the techniques and
concepts developed in Sect. 2 and find that the rich structure found by direct computations
in the previous section exists for general n.

4.1. Toeplitz matrices. Let us start by giving the general definition of the Toeplitz oper-
ator system.

Definition 4.1. The operator system C(S1)(n) ⊂ Mn(C) of n × n complex-valued
Toeplitz matrices is defined by the vector space of matrices with constant diagonals,
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i.e. of the form

T :=
(
tk−l

)
kl =

⎛
⎜⎜⎜⎜⎜⎝

t0 t−1 · · · t−n+2 t−n+1
t1 t0 t−1 t−n+2
... t1 t0

. . .
...

tn−2
. . .

. . . t−1
tn−1 tn−2 · · · t1 t0

⎞
⎟⎟⎟⎟⎟⎠

with tk ∈ C for k = −n + 1, . . . , n − 1.

Proposition 4.2. We have the following isomorphism of C∗-algebras:

C∗
env(C(S1)(n)) ∼= Mn(C).

Moreover, independently of n one has prop(C(S1)(n)) = 2.

Proof. Note that the Toeplitz matrices generate all complex matrices so that Mn(C) is
a C∗-extension of C(S1)(n). Since Mn(C) is simple, it follows from Corollary 2.31 that
this extension is the C∗-envelope.

In order to compute the propagation number we use a basis {τ j } j=−n+1,...,n−1 for the
Toeplitz matrices given by 1’s on the j’th diagonal and zeroes elsewhere, i.e. for positive
k we have

τk =
n−k∑

i=1

ei,i+k; τ−k =
n−k∑

i=1

ei+k,i .

It then follows that for any k, p ≥ 0 we have

τkτ−p−k =
n−p−k∑

j=1

e j+p, j

which is a matrix that only has non-zero entries on the (−p)’th diagonal: there it is
equal to 1 except for the last k entries of that diagonal (where it vanishes). Since k and
p are arbitrary we get all matrix units ei j for i ≥ j . Taking adjoints we also get the
lower-diagonal matrix units and the proof is complete. ⊓⊔

4.2. The Fejér–Riesz operator system. We consider functions on S1 with only a finite
number of non-zero Fourier coefficients. More precisely we define as follows the so-
called Fejér–Riesz operator system C∗(Z)(n):

C∗(Z)(n) = {a = (ak)k∈Z : supp(a) ⊂ (−n, n)} . (5)

The elements in C∗(Z)(n) are thus given by sequences with finite support

a = (. . . , 0, a−n+1, a−n+2, . . . , a−1, a0, a1, . . . , an−2, an−1, 0, . . .)

and this allows to view C∗(Z)(n) as an operator subsystem of the convolution C∗-
algebra C∗(Z) ∼= C(S1). The adjoint a 
→ a∗ is given by a∗

k = a−k . Note that self-
adjoint elements in C∗(Z)(n) are thus given by so-called palindromic sequences for
which ak = a−k for |k| ≤ n −1. Also, an element a is positive, a ≥ 0, if and only if it is
positive in C∗(Z) ∼= C(S1), i.e.

∑
k akζ

k for |ζ | = 1 defines a positive function on S1.
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Proposition 4.3.

(1) The following defines an action of S1 by complete order automorphisms of C∗(Z)(n):

(ak) 
→ (λkak); (λ ∈ S1).

(2) The Šilov boundary of the operator system C∗(Z)(n) is S1.
(3) The C∗-envelope of C∗(Z)(n) is given by C∗(Z).
(4) The propagation number is infinite.

Proof. For (1) observe that for a positive a we have that
∑

k akζ
k is a positive function

on S1. But then the same applies to
∑

k ak(ζλ)k as this amounts to a translation in S1.
For (2) note that the natural C∗-extension is given by C(S1) which contains C∗(Z)(n)

as a subsystem. For n > 1 one has 1, cos(θ), sin(θ) ∈ C∗(Z)(n) so that the system
separates points. In particular, there exists a function in C∗(Z)(n) attaining a unique
maximum at some point in S1. By translating this function over S1 one remains in
the operator system, while showing that for each point in S1 there exists a function in
C∗(Z)(n) that attains its unique maximum there. In other words, the Šilov boundary is
all of S1. But then also (3) follows by Proposition 2.30.

The final statement follows from the fact that sums of products of k elements of
C∗(Z)(n) all belong to C∗(Z)(nk) which is strictly smaller than C∗(Z). ⊓⊔

The following old factorization result by Fejér [30] and Riesz [46], plays a key role
(and this is why we named the above operator system C∗(Z)(n) after them).

Lemma 4.4. Let m ≥ 0 and let I ⊆ [−m, m] be an interval of length m + 1. Suppose
that p(z) =

∑m
k=−m pk zk is a Laurent polynomial such that p(ζ ) ≥ 0 for all ζ ∈ C

for which |ζ | = 1. Then there exists a Laurent polynomial q(z) =
∑

k∈I qk zk so that
p(ζ ) = |q(ζ )|2 for all ζ ∈ S1 ⊂ C.

A proof can be found in [33, Theorem 1.12].

Proposition 4.5. Let C∗(Z)(n) be the operator system defined in Equation (5).

(1) The extreme rays in (C∗(Z)(n))+ are given by the elements a ∈ (C∗(Z)(n))+, a =
(ak) for which the Laurent series

∑
k ak zk has all its zeroes on the circle S1.

(2) The pure states of C∗(Z)(n) are given by the functionals a 
→
∑

k akλ
k for any

λ ∈ S1.

Proof. (1) Let a ∈ (C∗(Z)(n))+. Suppose that the Laurent series P(z) =
∑

k ak zk has a
zero z0 such that |z0| < 1. Since a∗ = a this Laurent series also has a zero at 1/z0. We
may thus factorize

P(z) = (z − z0)(1/z − z0)Q(z)

for a Laurent series Q(z) =
∑

k bk zk where bk = 0 for |k| > n−2. Since (z−z0)(z−z0)

is (strictly) positive when restricted to |z| = 1, we also have that Q(z) is positive when
restricted to the circle. Moreover, there exists ε > 0 such that (z − z0)(z − z0) − ε ≥ 0
for |z| = 1. Thus (z − z0)(1/z − z0) = ε + c is the sum of two elements of (C∗(Z)(2))+,
and a = εb + cb is not extremal. We conclude that if P(z) has a zero outside the circle,
then a is not extremal.

Suppose now that P(z) =
∑

k ak zk has all its 2n − 1 zeroes on the circle. If b ∈
(C∗(Z)(n))+ fulfills b ≤ a, then

∑
k bk zk = Q(z) ≤ P(z) for |z| = 1. Then, at a zero
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of P(z) of multiplicity k, Q(z) has a zero of multiplicity at least equal to k. This shows
that Q(z) is a scalar multiple of P(z) and the proof of (1) is complete.

For (2) we use that we can extend a pure state on C∗(Z)(n) to a pure state of C(S1),
thus given by evaluation in a point of S1. In view of the symmetry given by the action
of S1 on C∗(Z)(n) we conclude that all pure states of C(S1) restrict to pure states of
C∗(Z)(n). ⊓⊔

4.3. Duality with the Toeplitz operator system. In this section we analyze a duality
between the operator systems C(S1)(n) and C∗(Z)(n) for any n ≥ 0. The advantage of
this duality will become clear soon, when we analyze the pure state space and extremal
positive elements in C(S1)(n).

Proposition 4.6. There is a complete order isomorphism between the operator system
C(S1)(n) and the dual of C∗(Z)(n). For any Toeplitz matrix T = (tk−l)k,l the functional
ϕT ∈ (C∗(Z)(n))

d is given by ϕT (a) =
∑

k ak t−k where a = (ak) ∈ C∗(Z)(n).

Proof. Since the vector space pairing given by the formula
∑

k ak t−k is clearly non-
degenerate, we simply have to check that T 
→ ϕT respects the matrix-order and the
order unit. Let I = {0, . . . , n − 1} ⊂ (−n, n). In view of Lemma 4.4, an element
a ∈ C∗(Z)(n) is positive if and only if it can be written as a convolution product b∗ ∗ b
for some b ∈ C∗(Z)(I ). One has, with bk = 0 ∀k /∈ I ,

(b∗ ∗ b)( j) =
∑

bkb j+k , ∀ j, | j | < n

where the summation takes place for k ∈ I ∩ (I − j). This intersection is non empty for
j ∈ (−n, n). One has using j + k = l ⇒ j = l − k

ϕT (b∗ ∗ b) =
∑

j∈(−n,n)

(b∗ ∗ b)( j)t− j =
∑

k, j

bkb j+k t− j =
∑

k,l

bkbl tk−l = 〈b|T b〉

since (T ξ)k =
∑

l tk−lξl for any ξ ∈ ℓ2(I ). Positivity of this expression is equivalent to
the positivity of the Toeplitz form, i.e. ϕT ≥ 0 if and only if T ≥ 0.

We show that for the order unit 1 ∈ C(S1)(n) the functional ϕ1 is a faithful state on
C∗(Z)(n). Since for a = b∗ ∗ b one has ϕ1(a) =

∑
k |bk |2 the result follows. ⊓⊔

This duality allows us to move smoothly between the following three structures:

(1) a positive Toeplitz matrix T ∈ C(S1)
(n)
+ ;

(2) a positive linear functional ϕ on C∗(Z)(n);
(3) a positive quadratic form Q on C∗(Z)I of elements of sequences with support in an

interval I ⊂ Z of length n.

In fact, these three structures are equivalent and related via the formulas:

1 ↔ 2 : ϕ(a) =
∑

tka−k;
2 ↔ 3 : ϕ(ξ∗ ∗ η) = Q(ξ, η);
1 ↔ 3 : 〈ξ, T η〉 = Q(ξ, η).
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With respect to these structures, we will be interested in Ker T , ϕ⊥ and both the radical
and kernel of Q where we recall that

ϕ⊥ =
{
a ∈ C∗(Z)(n) : ϕ(a) = 0

}
,

rad(Q) =
{
ξ ∈ C∗(Z)(I ) : Q(ξ, η) = 0 ∀η

}
,

Ker(Q) =
{
ξ ∈ C∗(Z)(I ) : Q(ξ, ξ) = 0 ∀η

}
.

Lemma 4.7.

(1) For positive quadratic forms Q the radical and kernel coincide.
(2) We have (ϕ⊥)+ = {ξ∗ ∗ ξ : ξ ∈ Ker Q}.

Proof. (1) is a straightforward application of the Cauchy–Schwartz inequality. For (2)
note that if a ∈ (ϕ⊥)+ then since a ≥ 0 by Lemma 4.4 it follows that a = ξ∗ ∗ ξ . But
then Q(ξ, ξ) = ϕ(ξ∗ ∗ ξ) = ϕ(a) = 0. The other inclusion is obvious. ⊓⊔

If no confusion can arise, we will also write ϕ⊥
+ = (ϕ⊥)+ for the positive elements

in the kernel of the linear functional ϕ.

4.4. Pure states of the Toeplitz operator system. We will determine the pure states of
C(S1)(n), as well as the extreme rays in the cone C(S1)

(n)
+ of positive Toeplitz matrices.

Here the duality with C∗(Z)(n) will turn out to be very useful, as it permits a simpler
analysis and conceptual understanding of these extreme sets. We introduce the following
notation:

fz = 1√
n

(
1 z z2 · · · zn−1

)t ∈ C
n

for any z ∈ C. It is a column of a Vandermonde matrix (cf. Equation (16) below).

Proposition 4.8. Let C(S1)(n) be the Toeplitz operator system.

(1) The extreme rays in C(S1)
(n)
+ are given by (multiples of) γ (λ) = | fλ〉〈 fλ| for any

λ ∈ S1. In other words, the extreme rays T = (tk−l)k,l are of the form tk = λk (up
to a positive real number) for some |λ| = 1.

(2) The pure states of C(S1)(n+1) are given by functionals T 
→ 〈ξ, T ξ 〉 where the
vector ξ = (ξ0, . . . , ξn) ∈ C

n+1 is such that the polynomial z 
→
∑

k ξk zn−k has
all its zeroes on S1.

(3) The pure state space P(C(S1)(n+1)) ∼= T
n/Sn is the quotient of the n-torus by the

symmetric group on n objects.

Proof. For the first two statements we use duality in the form of Corollary 2.20 and
Proposition 4.6. Proposition 4.5 determines pure states and extreme rays in the dual sys-
tem (C∗(Z)(n))+. The extreme rays in C(S1)

(n)
+ are given by pure states on (C∗(Z)(n))+

i.e. by evaluation at points of S1. Up to λ 
→ λ−1 = λ, they correspond to the γ (λ). A
pure state of C(S1)(n+1) corresponds to an extreme ray in (C∗(Z)(n+1))+ and hence to
an element a ∈ (C∗(Z)(n+1))+, a = (ak) for which the Laurent series

∑
k ak zk has all

its zeroes on the circle S1. Since a ≥ 0 by Lemma 4.4 it follows that a = ξ∗ ∗ ξ . Then
the vector ξ ∈ C

n+1 is such that the polynomial z 
→
∑

k ξk zn−k has all its zeroes on
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S1. For the third statement, let the zeroes of
∑

k ξk zn−k be labelled λ1, . . . , λn (taken
with multiplicities). Then, up to normalization, we can write ξ in terms of elementary
symmetric polynomials in the λk’s:

ξ =

⎛
⎜⎜⎜⎜⎝

1∑
k λk∑

k<l λkλl
...

λ1 . . . λn

⎞
⎟⎟⎟⎟⎠

, (6)

which gives, using (2) the required identification P(C(S1)(n+1)) ∼= T
n/Sn . ⊓⊔

Note that this type of duality between cones of positive elements is central in the
theory of matrix completion and moments, and appears for instance in [6, Section 1.1].

As an example let us consider the case C(S1)(3). The description of extreme rays in
Proposition 4.8 agrees with Proposition 3.4. The pure state space of C(S1)(3) is given
in Proposition 4.8 by vector states |ξ 〉〈ξ | with ξ of the form

ξ = 1√
4 + 2 cos(x − y)

⎛
⎝

1
ei x + eiy

ei(x+y)

⎞
⎠ , (7)

where x, y ∈ [0, 2π). This confirms the result from the previous section where we found
in Theorem 3.6 that this Möbius strip is the pure state space of C(S1)(3) (cf. Fig. 2).

4.5. The cone of positive Toeplitz matrices. We now apply the above operator system
duality to arrive at a description of the cone C(S1)

(n)
+ . This generalizes the analysis done

in Sect. 3 to arbitrary dimension.
As a first powerful application of the duality we derive a classical result of

Carathéodory from 1911 [15] stating that positive semi-definite Toeplitz matrices allow
for a so-called Vandermonde factorization (see also [1] and [33, Chapter 4]). More
recently, the value of these kind of factorizations has been rediscovered in the context
of signal analysis (cf. [5,42,51] and [6] for a mathematical treatment). But our main
finding is the extension to the general case of the peculiar properties of the hypersurface
which determines the boundary of the cone C(S1)

(n)
+ . As shown below in Theorem 4.15

this hypersurface admits a remarkable stratification by the degree of singularity of its
points and this stratification corresponds to the rank of positive Toeplitz matrices, thus
extending the results of the special case n = 3 to the general case. We start with some
preparation.

Lemma 4.9. The cone C(S1)
(n)
+ of positive elements is the closure of the open component

of the identity matrix in the complement of the hypersurface defined by H := {T ∈
C(S1)(n) : det(T ) = 0}. In particular, the boundary of C(S1)

(n)
+ coincides with the

boundary in the complement of H of the component of 1.

Proof. The proof is completely analogous to Lemma 3.2 above but let us for convenience
include it here for the general case. The cone is convex and is the closure of its interior
which consists of matrices whose eigenvalues are strictly positive. The segment joining
T to the identity matrix 1 stays inside C(S1)

(n)
+ and thus T belongs to the open component
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of 1 in the complement of the hypersurface H . Conversely on a path in the complement
of this hypersurface joining 1 to T the eigenvalues remain positive since they vary
continuously and cannot vanish as their product is given by the determinant. ⊓⊔

A face F of a convex cone C ⊂ E , in a real linear space, is a sub-cone F ⊂ C which
is hereditary i.e.

x ∈ F and 0 ≤C y ≤C x ⇒ y ∈ F.

The intersection of C with the real linear span L(F) of F is equal to F , since one
has L(F) = F − F . Moreover if C is proper, i.e. C ∩ −C = {0} the projection
p(C) ⊂ E/L(F) of C in the quotient is still proper.

Lemma 4.10. Let ϕ be a positive linear functional on C∗(Z)(n).

a) ϕ⊥
+ is a face of (C∗(Z)(n))+.

b) (ϕ⊥
+ )⊥+ is a face of C(S1)

(n)
+ ; it is the face generated by ϕ.

Proof. For (a) we suppose a ∈ ϕ⊥
+ and b ≤ a in (C∗(Z)(n))+. Then ϕ(b) ≤ ϕ(a) = 0

so b ∈ ϕ⊥
+ . Let us prove the second claim. Let F be the face of ϕ and L(F) = F − F

its linear span. Then

a ∈ ϕ⊥
+ ⇐⇒ a ∈ (C∗(Z)(n))+ ∩ L(F)⊥

which is the dual of the projection of the cone in the quotient by L(F). This projection
is a proper cone, thus its dual is spanning and we get

ψ ∈ (ϕ⊥
+ )⊥+ ⇐⇒ ψ ∈ C(S1)

(n)
+ ∩ L(F) = F

since the projection of ψ is 0 in the quotient by L(F). ⊓⊔

Proposition 4.11. The extreme rays of a face F in a cone K are extreme rays in K .

Proof. Let x be extreme in F but suppose it is not extreme in K . Then there is an y in
K such that y ≤ x . Since x is a point of a face, it follows that y ∈ F , and by extremality
of x in F we find that y = x . ⊓⊔

Theorem 4.12. Let T be a rank r ≤ n − 1 positive Toeplitz matrix. Then the face
generated by T is a cone based on a simplex of dimension r whose extreme points are
the γ (λi ) where the λ1, . . . , λr are the common roots of ξ(λ) = 0 for all ξ ∈ Ker T .

Proof. Since (ϕ⊥
+ )⊥+ is a face, it is generated by extreme rays γ (λ) where the λ are

exactly the common zeroes of all ξ ∈ Ker Q. Let us denote these zeroes by λ1, . . . , λm
for m ≤ n − 1. By linear independence of the vectors fλ1 , . . . fλm it follows that the
γ (λ1), . . . , γ (λm) are linearly independent. This implies that the face generated by T is
a cone based on an r -dimensional simplex with extreme points γ (λ1), . . . , γ (λm). But
then dually we must have dim(ϕ⊥) = n −m so that it follows that the rank of T is equal
to m. This completes the proof. ⊓⊔

We can reformulate this as the following Vandermonde factorization of positive
Toeplitz matrices.
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Corollary 4.13. Let T be a positive n × n Toeplitz matrix of rank r ≤ n − 1. Then T
can be written in the following form:

T = V �V ∗,

where � is some positive diagonal matrix and V is an n × r Vandermonde matrix,

� =

⎛
⎜⎜⎝

d1
d2

. . .

dr

⎞
⎟⎟⎠ ; V = 1√

n

⎛
⎜⎜⎜⎝

1 1 · · · 1
λ1 λ2 · · · λn
...

...

λn−1
1 λn−1

2 · · · λn−1
r

⎞
⎟⎟⎟⎠ ,

for unique values d1, . . . , dr > 0 and λ1, . . . , λr ∈ S1 ⊂ C.

Theorem 4.14. Let T be an n × n Toeplitz matrix of arbitrary rank. Then T ≥ 0 if and
only if T is of the following form:

T = V �V ∗,

where � is some positive diagonal matrix and V is a Vandermonde matrix,

� =

⎛
⎜⎜⎝

d1
d2

. . .

dn

⎞
⎟⎟⎠ ; V = 1√

n

⎛
⎜⎜⎜⎝

1 1 · · · 1
λ1 λ2 · · · λn
...

...

λn−1
1 λn−1

2 · · · λn−1
n

⎞
⎟⎟⎟⎠ ,

for some d1, . . . , dn ≥ 0 and λ1, . . . , λn ∈ S1 ⊂ C.

Proof. We take a base for the cone C(S1)
(n)
+ by fixing the trace of the Toeplitz matrices

to be n. Note that this is a compact set.
Let T be a matrix of rank n with trace 1 and take an arbitrary extreme point γ (λ). We

consider a line segment from γ (λ) to T and prolong this segment until it reaches a point
T ′ on the boundary of the (compact) base of the cone. Since elements in the boundary
of the cone of positive elements have vanishing determinant (Lemma 4.9), the rank of
T ′ is n − 1. Hence the above Theorem applies and we may write T ′ =

∑n−1
k=1 dkγ (λk)

for some dk, λk . Since T = tT ′ + (1 − t)γ (λ) for some t ∈ (0, 1) we may write
T =

∑n−1
k=1 tdkγ (λk) + (1 − t)γ (λ) and the proof is complete. ⊓⊔

Given the above concrete realization of the extreme elements, we may wonder how
they are related to the singular points of the hypersurface H defined by det T = 0. In
particular, we would like to generalize to arbitrary n the results of the previous section
where we found the extreme points of C(S1)

(3)
+ (with fixed trace) to coincide with the

singular points on H .
Since H is defined to be the zero-set of det T we may analyze the singular points by

looking at the partial derivatives of det T . The determinant of a matrix is a multilinear
function of the entries of the matrix and the partial derivatives of any order with respect
to the entries are given by the minors. When det T is evaluated on Toeplitz matrices it is
no longer multilinear but we shall show that the singularities of det T are still related to
the rank of T . Let us denote the Fréchet derivative of a functional f on the real vector
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space C(S1)
(n)
h by D(k)( f ); when evaluated at an element T ∈ C(S1)

(n)
h it is a linear

functional on (C(S1)
(n)
h )⊗k defined by

D(k)( f )(T, T1 ⊗ · · · ⊗ Tk) = ∂

∂t1
· · · ∂

∂tk
det(T + t1T1 + · · · tk Tk)|t1=···=tk=0,

where T1, . . . , Tk ∈ C(S1)
(n)
h .

In the case at hand, there is a natural stratification of the determinant hypersurface
given by the degree of vanishing of det T

· · · ⊂ Sk ⊂ Sk−1 ⊂ · · · ⊂ S1 ⊂ S0 = H

where at level k one imposes the many conditions

Sk =
{

T ∈ H : D(k) det(T ) = 0, D(k−1) det(T ) = 0, . . . , det(T ) = 0
}

.

We will say that T has multiplicity k + 1 in the hypersurface H if T ∈ Sk .

Theorem 4.15. In the boundary of the cone C(S1)
(n)
+ the stratification of the singular

set of H coincides with the stratification by the rank. More precisely, T has multiplicity
m if and only if T has rank n − m for any m = 0, . . . n − 1.

Proof. Assume that T has rank ≤ r . Then with q ≤ n − 1 − r we have

det
(
T + s1γ (λ1) + · · · + sqγ (λq

)
) = 0

for arbitrary s1, . . . , sq ≥ 0 and λ1, . . . , λq ∈ S1. This implies that

D(q)(det)(T, γ (λ1) ⊗ · · · ⊗ γ (λq)) = 0

for all λ1, . . . , λq ∈ S1. Since by Theorem 4.14 the Toeplitz matrices are in the linear
span of γ (λ)’s this implies that D(q)(det) vanishes at T . Thus, T has multiplicity m with
m = n − r .

In the other direction, for any k let us suppose that T has rank r > n − 1 − k for
some k. Then there are s1, . . . , sk and λ1, . . . , λk such that

det
(
T + s1γ (λ1) + · · · + sqγ (λq

)
�= 0.

Since the γ (λ j ) have rank one, this determinant is a polynomial of order k in the
s1, . . . , sk so that we find that D(k)(det)(T ) �= 0 for this k. Hence T /∈ Sk and the
proof is complete. ⊓⊔
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4.6. Distance on spectral truncations of the circle. We now compute the distance on
the state space of C(S1)(n), using the formula

d(ϕ, ψ) := sup{|ϕ(A) − ψ(A)||‖[D, A]‖ ≤ 1}.

where D is the Dirac operator on the circle (cf. Section 3.1 above). We use only self-
adjoint elements A = A∗ ∈ C(S1)

(n)
sa in this formula. The distance is in fact determined

by the following norm ‖A‖D on the quotient C(S1)
(n)
sa /R1 of the real vector space

C(S1)
(n)
sa of Toeplitz selfadjoint matrices by the scalar ones:

‖A‖D := ‖[D, A]‖.

More precisely one takes as the dual of C(S1)
(n)
sa /R1 the subspace C∗(Z)0

(n)
of

(C∗(Z)(n))sa given by linear forms which vanish on scalars. In the above formula one
has ϕ − ψ ∈ C∗(Z)0

(n)
, and the distance is determined by

d(ϕ, ψ) = sup{|(ϕ − ψ)(A)||‖A‖D ≤ 1}, (8)

so that, using the dual norm ‖ · ‖D of ‖ · ‖D , one gets

d(ϕ, ψ) = ‖ϕ − ψ‖D, ‖ω‖D := sup |ω(A)||‖A‖D ≤ 1 , ∀ω ∈ C∗(Z)0
(n). (9)

The commutator [D, A] is a Toeplitz matrix of trace 0 and one has a linear map ∂ from
selfadjoint Toeplitz matrices to themselves given by

∂ A := i[D, A]. (10)

Thus the unit ball for the norm ‖A‖D is obtained by pulling back, by the map ∂ the unit
ball of the Toeplitz norm in the subspace of elements of trace 0. Now the latter is the
intersection of two convex sets C± where

C± := {A ∈ C(S1)(n)
sa | Tr(A) = 0, 1 ± A ≥ 0}.

The polar of a convex subset C ⊂ E of a real vector space E is defined as

Co := {L ∈ E∗|L(ξ) ≤ 1 , ∀ξ ∈ C}.

We have:

Proposition 4.16.

(i) The map ∂ gives an isomorphism ∂ : C(S1)
(n)
sa /R1 → C(S1)

(n)
sa,0 (with Toeplitz

matrices of trace 0).
(ii) The transpose ∂ t of ∂ is an isomorphism (C∗(Z)(n))sa/R1 → C∗(Z)0

(n)
.

(iii) The unit ball of C∗(Z)0
(n)

for the norm ‖ · ‖D is the projection by the map ∂ t of the
unit ball of the dual ‖ · ‖∗ of the Toeplitz operator norm.

(iv) The unit ball of C∗(Z)0
(n)

for the norm ‖ · ‖D is the convex hull of the polars of

∂−1C± ⊂ C(S1)
(n)
sa /R1.

Proof.

(i) It is an isomorphism from the quotient by the kernel R1 to the range.
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(ii) The transpose ∂ t is similarly an isomorphism from the quotient by its kernel R1
with its range.

(iii) The unit ball for the norm ‖ · ‖D is described as the subset of C∗(Z)0
(n)

‖ω‖D ≤ 1 ⇐⇒ |ω(A)| ≤ 1 , ∀A|‖∂ A‖ ≤ 1.

If ω = ∂ t (ψ) with ‖ψ‖∗ ≤ 1 one gets, using ω(A) = ∂ t (ψ)(A) = ψ(∂(A))

A, ‖∂ A‖ ≤ 1 ⇒ |ω(A)| = |ψ(∂(A))| ≤ 1.

This shows that the projection by the map ∂ t of the unit ball of the dual ‖ · ‖∗ is
contained in the unit ball of C∗(Z)0

(n)
for the norm ‖·‖D . Conversely one can identify

the dual of C(S1)
(n)
sa,0 with (C∗(Z)(n))sa/R1 since 1 ∈ C∗(Z)(n) pairs trivially with

Toeplitz matrices with trace 0. Then let ω ∈ C∗(Z)0
(n)

, ‖ω‖D ≤ 1. Let ψ0 be the

linear functional on C(S1)
(n)
sa,0 uniquely defined by

ψ0(∂(A)) := ω(A).

Since ‖ω‖D ≤ 1 the norm of ψ0, as a functional on a subspace of the normed space
C(S1)

(n)
sa , is ≤ 1. Thus by Hahn–Banach it extends to an element ψ with ‖ψ‖∗ ≤ 1.

Moreover one has ψ(∂ A) = ψ0(∂(A)) = ω(A), ∀A.
(iv) The unit ball of the Toeplitz norm in the subspace of elements of trace 0 is the

intersection of the two convex sets C± and thus its image by the inverse of the
isomorphism ∂ is the intersection of the ∂−1C± ⊂ C(S1)

(n)
sa /R1. We then use the

general fact that for closed convex sets the polar of an intersection is the convex
hull of the polars, as follows from the bipolar theorem. ⊓⊔

We now determine the polar of ∂−1C± ⊂ C(S1)
(n)
sa /R1.

Lemma 4.17.

(i) An element ϕ ∈ C∗(Z)0
(n)

belongs to the polar of C− if and only if the linear form

ϕ̃ = ϕ + 1 belongs to the state space S of C(S1)(n).
(ii) The polar of ∂−1C− ⊂ C(S1)

(n)
sa /R1 is ∂ tS.

Proof.

(i) One has ϕ̃(1) = 1 by construction and ϕ̃(A) = ϕ(A) for any A ∈ C(S1)
(n)
sa,0.

Moreover for such an A one has A ∈ C− ⇐⇒ 1 − A ≥ 0 and thus

(ϕ(A) ≤ 1 , ∀A ∈ C−) ⇐⇒ (ϕ̃(1 − A) ≥ 0 , ∀A ∈ C−) ⇐⇒ ϕ̃ ∈ S

since the elements of the form 1 − A, A ∈ C− are the positive Toeplitz matrices of
fixed trace = n and form a base of the positive cone C(S1)

(n)
+ .

(i i) Given an isomorphism T : E → F of finite dimensional real vector spaces and a
subset X ⊂ E , the polar of T (X) ⊂ F is the image by the inverse of T t of the polar
of X . Applying this to the isomorphism ∂−1 : C(S1)

(n)
sa,0 → C(S1)

(n)
sa /R1 one gets

that the polar of ∂−1C− ⊂ C(S1)
(n)
sa /R1 is the image by ∂ t of the polar of C− and

by (i) one obtains ∂ tS. ⊓⊔
One passes from C− to C+ by multiplication by −1 and the same holds for the polars.
Thus Lemma 4.17 also determines the polar of ∂−1C+ as −∂ tS.
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Proposition 4.18. The unit ball of C∗(Z)0
(n)

for the norm ‖ · ‖D is the convex hull of ∂ tS

and −∂ tS.

Proof. This follows from (iv) of Proposition 4.16 and Lemma 4.17. ⊓⊔

Coming back to Proposition 4.16 (i i i), note that it is not true that the dual ‖ · ‖∗ of the
Toeplitz operator norm is the operator norm in C∗(Z)(n). In fact in the limit n → ∞ the
Toeplitz operator norm becomes the L∞ norm and its dual is the L1 norm. This suggests
to compare the norm ‖ · ‖D with the image by ∂ t of the quotient norm of the L1 norm in
(C∗(Z)(n))sa/R1. We show that the norm ‖·‖∗ on C∗(Z)(n) dual to the Toeplitz operator
norm is larger than the L1 norm for the normalized Haar measure |dz|

2π
on S1.

Proposition 4.19.

(i) Let a = (ak) ∈ (C∗(Z)(n))sa with Laurent series a(z) :=
∑

k ak zk , then one has

‖a‖∗ ≥ 1

2π

∫

S1
|a(z)| |dz| = ‖a‖1. (11)

(ii) The norm ‖ · ‖D fulfills the inequality

‖a‖D ≥ inf
∂ t (b)=a

‖b‖1. (12)

Proof. (i) The unit ball for the Toeplitz operator norm in C(S1)
(n)
sa is the interval [−1, 1]

i.e. intersection of 1 − C(S1)
(n)
+ and −1 + C(S1)

(n)
+ , thus its polar is the convex hull in

(C∗(Z)(n))sa of the polars and it suffices to show that each is contained in the unit ball
of the norm ‖a‖1. One has

ϕ(1 − C(S1)
(n)
+ ) ≤ 1 ⇒ ϕ ≥ 0 and ϕ(1) ≤ 1

and since the positive elements of (C∗(Z)(n))sa are positive functions on S1 (i.e. the
associated Laurent polynomial is positive) the L1 norm is simply the integral and the
latter is ϕ(1) ≤ 1. By symmetry the polar of −1 + C(S1)

(n)
+ is also contained in the unit

ball of the L1 norm.
(i i) The norm ‖ · ‖D is, by Proposition 4.16 (i i i) the image of the norm ‖ · ‖∗ by the

projection associated to the map ∂ thus the statement follows from (i). ⊓⊔

Note the infimum which appears in formula (12). It is directly related to the fact that
the geodesic distance is computed using the shortest path between two points. More
precisely we take n = ∞ and consider the distance between two points x, y of the
circle incarnated as the associated Dirac masses δx , δy viewed as states. Then the choice
of an element a such that ∂a = δx − δy is unique up to the addition of a constant. It
contains ± times the characteristic function of the two intervals joining x and y as well as
affine combinations of these two solutions. One finds that the infimum taken in formula
(12), where we use the L1 norm in the limit n = ∞, corresponds to the choice of the
shortest interval. Moreover the L1 norm of the characteristic function of the interval is
the distance between x and y. To go further in the exploration of the distance function on
the truncated circle involves understanding how the state space converges to the space
of probability measures on S1 and the distance to the Kantorovich metric. By Theorem
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3.7 of [14], the Kantorovich distance dT (μ, ν) between two probability measures μ, ν

on S1 is computed by the formula

dT (μ, ν) =
∫

S1
|α(x) − a|dx, α(x) = μ([0, x]) − ν([0, x]) (13)

and where the constant a is such that the integral is minimal. The derivatives of the
functions μ([0, x]) and ν([0, x]) give μ and ν and we see that Proposition 4.16 (i i i) is
the version of the above formula for dT for the truncated circle. Thus we obtain

Theorem 4.20.

(i) The distance function on the state space S of the operator system C(S1)(n) is given
for ϕ,ψ ∈ S and primitives �, ∂ t� = ϕ, �, ∂ t� = ψ by

d(ϕ, ψ) = inf
c∈R

‖� − � − c‖∗.

(ii) The distance function on the state space S is larger than the Kantorovich distance
dT (ϕ, ψ) of the associated probability measures on the circle.

Proof. (i) Follows from (9) combined with Proposition 4.16 (i i i).
(i i) The inequality (11) gives

‖� − � − c‖∗ ≥ ‖� − � − c‖1

combining with (i) one gets

d(ϕ, ψ) = inf
c∈R

‖� − � − c‖∗ ≥ inf
c∈R

‖� − � − c‖1.

Thus the result follows from (13) which shows that the last term is dT (ϕ, ψ). ⊓⊔

These results relate Connes’ distance formula for the truncated system to the explicit
integral formula for the Kantorovich distance. More general results relating the distance
on a spectral truncation of a given geometry to the Kantorovich distance on probability
measures can be obtained from [23, Proposition 3.6]. Indeed, from its very definition
it is clear that Connes’ distance formula for a Riemannian spin geometry coincides
with Kantorovich’s formulation of the distance formula on the state space of probability
measures. Note that this formed the basis for the development of compact quantum
metric spaces [44] (see also [24] for a nice overview of the relation between the relevant
distance functions).

5. Toeplitz and Circulant Matrices

There is an interesting relation between the Toeplitz operator system C(S1)(n) discussed
in the previous section and the group algebra of the cyclic group Cm of order m = 2n−1.
We first recall the structure of this group algebra and the finite Fourier transform and
formulate it in terms of operator systems.
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5.1. Fourier transform on the cyclic group of order m. Let m > 0 and consider the finite
abelian group Cm := Z/mZ. The point-wise action of l∞(Cm) on l2(Cm) is given by:

g · ψ(k) = g(k)ψ(k); (g ∈ l∞(Cm), ψ ∈ l2(Cm), k ∈ Cm). (14)

In terms of the standard basis of l2(Cm) this becomes matrix-multiplication by a diagonal
matrix diag(g(0), . . . , g(m − 1)).

The finite Fourier transform is a map F : l2(Cm) → l2(Cm) defined by

F(ψ)(k) =
m−1∑

l=0

ψ(l)ζ
kl

with ζ a primitive m’th root of unity. The inverse finite Fourier transform F is given
by the same formula with ζ replaced by ζ . It is well-known that m−1/2F is unitary
(Plancherel) so that FF = FF = m and that both F and F replace the convolution
product

f ⋆ g(k) :=
m−1∑

l=0

f (k − l)g(l)

by the point-wise product since the Haar measures used to define them and ∗ are the
same. Thus the Fourier transform is an isomorphism of the group algebra C∗(Cm)

with l∞(Cm), F( f ∗ g) = F f · Fg. The unitary U = m−1/2F conjugates the above
representation (14) of l∞(Cm) with the action of the group algebra C∗(Cm) on l2(Cm)

by convolution product

f ∗ ψ = U∗(F( f ) · Uψ) , ∀ f ∈ C∗(Cm), ψ ∈ l2(Cm).

The action by convolution of an element c = (cl) ∈ C∗(Cm) in terms of the standard
basis of l2(Cm) is the following matrix acting on column vectors

c ∼

⎛
⎜⎜⎜⎜⎜⎝

c0 cm−1 · · · c2 c1
c1 c0 cm−1 c2
... c1 c0

. . .
...

cm−2
. . .

. . . cm−1
cm−1 cm−2 · · · c1 c0

⎞
⎟⎟⎟⎟⎟⎠

. (15)

Such a matrix is called a circulant matrix, it is a special case of a Toeplitz matrix.
If we write as before

fz = 1√
m

⎛
⎜⎜⎝

1
z
...

zm−1

⎞
⎟⎟⎠ ; z ∈ C, (16)

then the Fourier transform can be written in terms of the canonical basis of l2(Cm) as a
Vandermonde matrix which is F = m1/2U with U unitary

F =

⎛
⎜⎜⎜⎝

1 1 · · · 1
1 ξ · · · ξm−1

...
...

...
...

1 ξm−1 · · · ξ (m−1)(m−1)

⎞
⎟⎟⎟⎠ , U =

(
f1 fξ · · · fξm−1

)
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with ξ = ζ a primitive m’th root of unity. Consequently, U = m−1/2F is the transfor-
mation matrix that diagonalizes the above circulant matrix (15).

The finite Fourier transform can be understood nicely in terms of a duality of finite-
dimensional operator systems, very similar to Proposition 4.6 above.

Proposition 5.1.

(i) The operator system C∗(Cm) is its dual under the pairing

C∗(Cm) × C∗(Cm) → C, 〈 f, g〉C∗(Cm ) := ( f ⋆ g)(0) =
∑

l

fl g−l .

(ii) The following pairing gives a duality between C∗(Cm) and l∞(Cm)

C∗(Cm) × l∞(Cm) → C

(c, g) 
→ 〈c,Fg〉C∗(Cm ) =
∑

l,k

cl g(k)ζ kl .

Proof. (i) The Fourier transform F is an isomorphism of the operator system C∗(Cm)

with l∞(Cm) and the latter system is its own dual under the pairing 〈h, g〉l∞ :=∑
l h(l)g(l). Moreover one has for f, g ∈ C∗(Cm), by Fourier inversion

〈 f, g〉C∗(Cm ) = ( f ⋆ g)(0) = 1

m
F(F( f ⋆ g))(0) = 1

m
F(F( f ) · F(g))(0) =

= 1

m

∑

l

F( f )(l)F(g)(l) = 1

m
〈F( f ),F(g)〉l∞ .

Thus the isomorphism F : C∗(Cm) → l∞(Cm) is compatible (up to normalization)
with the pairing, so (i) follows.

(i i) Follows from (i). Note that both F and F are isomorphisms C∗(Cm) → l∞(Cm)

so that there is no issue on the choice of F in the formula for the pairing. ⊓⊔
The operator norm of elements of C∗(Cm) is given by the sup norm (l∞ norm) of

the Fourier transform. The dual of the operator norm is given exactly by the l1 norm and
both norms are easier to compute than for the Toeplitz operator system and its dual.

This duality implies that there is a one-to-one correspondence between pure states
of l∞(Cm) and extreme rays in the positive cone C∗(Cm)+, as well as the converse.
Of course, in all cases, these spaces are just given by the m’th roots of unity. Note
that viewing C∗(Cm) as a subsystem of C(S1)(m) as shown in (15) the extreme rays of
C∗(Cm)+ are those extreme rays of C(S1)

(m)
+ which belong to C∗(Cm).

It is interesting to compare the finite nature of this structure to the much richer
structure encountered for the Toeplitz operator system, where a whole S1-worth of
extreme rays has been found, not to mention the rich structure of the pure state space.
The underlying reason is that of symmetry: for C(S1)(n) the symmetry group is S1

while for the circulant matrices this is reduced to the cyclic group of order m. Moreover,
a comparison between the frameworks of the cyclic group and the Toeplitz operator
system suggests that Theorem 4.14 is a generalization of the (finite) Fourier transform.
In the next subsection we will further explore the relation between circulant and Toeplitz
matrices.
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5.2. Relation between circulant and Toeplitz matrices. Given a Toeplitz matrix of size
n, it is possible to ‘complete’ it to a circulant matrix of size 2n − 1. More precisely, we
have the following classical result.

Proposition 5.2. Let m ≥ 2n − 1. Then any Toeplitz matrix T ∈ C(S1)(n) can be
obtained as the compression of an m × m circulant matrix C to the upper-left n × n
corner:

T = PnC Pn

where Pn projects onto the linear span of the first n canonical basis vectors. In other
words, conjugation by P induces a completely positive map C∗(Cm) → C(S1)(n).

Proof. For any Toeplitz matrix T = (tk−l), the sought-for circulant matrix is given as
follows:

C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

t0 t−1 · · · t−n+2 t−n+1 tn−1 · · · t2 t1
t1 t0 t−1 t−n+2 t−n+1 · · · t2
... t1 t0

. . .
...

. . .
...

tn−2
. . .

. . . t−1
. . .

. . . tn−1
tn−1 tn−2 · · · t1 t0 t−1 · · · t−n+1
t−n+1 tn−1 tn−2 · · · t1 t0 t−1 · · · t−n+2

...
. . .

. . .
. . .

. . .
...

t−2
. . .

. . .
. . .

. . . t−1
t−1 t−2 · · · t−n+1 tn−1 tn−2 · · · t1 t0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

⊓⊔

Another intriguing property of the inclusion of the Toeplitz operator system inside
M2n−1(C) by the map T 
→ T ⊕ 0n−1 is the following construction of a map

ϕ : l∞(C2n−1) ⊗ C(S1)(n) → M2n−1(C),

where both C(S1)(n) and M2n−1(C) are equipped with the operator norm.
We let S denote the (cyclic) shift matrix in M2n−1(C) defined by S(ek) = ek+1 for

k = 1, . . . , 2n − 2 and S(e2n−1) = e1. We then define in terms of f ∈ l∞(C2n+1) and
a Toeplitz matrix T ∈ C(S1)(n):

ϕ( f ⊗ T ) =
2n−1∑

k=1

fk Sk (T ⊕ 0n−1) S−k ∈ M2n−1(C).

Since all operator spaces are finite-dimensional, ϕ is completely bounded but bijectivity
of it is harder to establish and, in fact, not always true.

Proposition 5.3. If 2n − 1 is a prime number, then the map ϕ is a completely positive
bijection on the minimal tensor product

l∞(C2n−1) ⊗min C(S1)(n) ∼= M2n−1(C).
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Proof. To prove the proposition it is enough to show that the map ϕ is completely positive
and that it is surjective, since the dimensions of both sides are the same.

Note that the minimal tensor product is realized as an operator system inside
B(l2(C2n−1) ⊗ C

n). In other words, if we write f =
∑

fkδk ∈ l∞(C2n−1) then a
general element

∑
k fkδk ⊗ Tk ∈ l∞(C2n−1)⊗min C(S1)(n) is realized as the Kronecker

product diag( f1T1, . . . , f2n−1T2n−1). If this is a positive matrix then the image under ϕ

is clearly positive.
For surjectivity of ϕ one first identifies the matrix algebra with the crossed product

of ℓ∞(C2n−1) represented as diagonal matrices by the action of C2n−1. More precisely,
any element x ∈ M2n−1(C) is uniquely of the form

x =
2n−1∑

k=1

fk Sk, fk ∈ ℓ∞(C2n−1).

Note that the sub-spaces of the crossed product of ℓ∞(C2n−1) by the action of C2n−1
involving a fixed power j of S are pairwise linearly independent and span the whole
crossed product so that it suffices to show the surjectivity of ϕ on each such subspace.
The Toeplitz operators are uniquely obtained as compressions on the n dimensional
space with projection P = 1n ⊕ 0n−1 ∈ ℓ∞(C2n−1) of linear combinations of powers
of S. Let τ j = P S j P be the Toeplitz operator obtained by compression of S j on P .
These operators fulfill, for fixed j ,

ϕ(δk ⊗ τ j ) = Sk (
τ j ⊕ 0n−1

)
S−k = Sk P S j P S−k = Sk S j QS−k = S j Sk QS−k

where Q = S− j P S j P is a fixed self-adjoint idempotent. It is non-zero since it is given
by the intersection of two sub-spaces of dimension n and the sum of dimensions exceeds
p = 2n − 1. Thus, fixing j and taking linear combinations of the form

ϕ

(
2n−1∑

k=1

δk ⊗ λkτ j

)
= S j

2n−1∑

k=1

λk Sk QS−k,

the next lemma applies and gives the required surjectivity of the linear map ϕ. ⊓⊔

Lemma 5.4. Let C2n−1 be a cyclic group of prime order p = 2n − 1.

(i) Let X ⊂ C2n−1 be a non-empty subset X �= C2n−1 and χ ∈ Ĉ2n−1 a character of
C2n−1. Then

∑
g∈X χ(g) �= 0.

(ii) Let 0 < Q < 1 be a self-adjoint idempotent in ℓ∞(C2n−1). Then the linear
space generated by the conjugates Sk QS−k (under the action of C2n−1 on itself) is
ℓ∞(C2n−1).

Proof.

(i) We can assume that χ is non-trivial. Since p is prime the subgroup χ(C2n−1) ⊂ μp
(roots of unity of order p) is equal to μp. Thus it is enough to show that for any
subset Y ⊂ μp, Y �= ∅ such that

∑
u∈Y u = 0 one has Y = μp. Let ξ be a

primitive root of 1 of order p and Z ⊂ {0, . . . , p − 1} such that Y = ξ Z . Then
the polynomial A(x) :=

∑
Z x j fulfills A(ξ) = 0 and is hence a multiple of the

cyclotomic polynomial. But the latter is of degree p − 1 since p is prime, and thus
one gets that A is equal to the cyclotomic polynomial and thus Z = {0, . . . , p − 1}.



Spectral Truncations in NCG and Operator Systems 2065

(i i) Let X ⊂ C2n−1 be the non-empty subset X �= C2n−1 corresponding to the self-
adjoint idempotent 0 < Q < 1. Let E be the linear space generated by the conjugates
Sk QS−k . The invariance of E under the action of C2n−1 means that its image Ê
under Fourier transform is an ideal. Thus if it is non-trivial there exists a point of
the dual group Ĉ2n−1 on which all elements of Ê vanish. Equivalently this means
that there exists a character χ of C2n−1 such that 〈χ, E〉 = 0 or equivalently that
〈χ, Q〉 = 0. One has

〈χ, Q〉 =
∑

g∈X

χ(g).

Thus by (i) one gets that 〈χ, Q〉 �= 0 and this shows that E = ℓ∞(C2n−1).

⊓⊔
Note that the map ϕ is not a complete order isomorphism. This can be seen as follows.

Note that up to a scaling factor it is a unital map, so by Proposition 2.6 it is a complete
order injection if and only if it is a complete isometry. But a simple calculation for 2 × 2
Toeplitz matrices already shows that ϕ is not isometric.

6. Outlook

In this paper we have introduced a new approach to noncommutative geometry where
the prominent role traditionally played by C∗-algebras is taken over by operator systems.
The matrix ordering makes it possible that most of the theory still goes through, including
state spaces, cones of positive elements, distance functions, etc.

The examples we have considered show that spectral truncations allows one to work
with finite-dimensional operator systems, while keeping in tact the full symmetry of the
original space. For instance, the Toeplitz operator systems possess an S1 symmetry, and
as a consequence have a very rich extremal and pure state space structure. This is in
contrast with the circulant matrices, where the symmetry is reduced to a discrete group.
So, even though both spaces converge in Gromov–Hausdorff distance to the circle, for
the second one loses a lot of structure in the finite-dimensional reduction.

The duality between the Toeplitz operator system C(S1)(n) and the (truncated) group
algebra C∗(Z)(n) also uncovers the following intriguing relation between the fermionic
and bosonic content of a spectral triple. As explained at the beginning of Section 3 the
truncation on the Fourier modes of the (fermionic) vectors in the Hilbert space gives rise
to the Toeplitz operator system C(S1)(n) = PnC(S1)Pn , but the dual system C∗(Z)(n)

describes truncations of the Fourier modes of the (bosonic) elements in the function
algebra C(S1).

In a forthcoming paper we shall show how, using as proposed in this paper operator
systems rather than C∗-algebras, the fundamental idea of noncommutative geometry
of associating a noncommutative C∗-algebra to a quotient space which is intractable
by standard topological methods, extends to situations where the equivalence relation
defining the quotient is no longer assumed to be transitive. Such relations are called
tolerance relations and can be traced back to Poincaré in his Science and Hypothesis
(though the name was coined in [52]). Poincaré argued that in the physical continuum (in
contrast with the mathematical continuum) it can hold that for measured quantities one
has A = B, B = C while A < C due to potentially added measurement errors (see [49]
for a development of the mathematical theory). This will allow us to extend the scope of
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noncommutative geometry and, in particular, to introduce another operator system that
appears naturally when one studies spaces up to some energy scale. In terms of position
space this amounts to introducing a finite resolution ε and the tolerance relation between
points x, y which is given by d(x, y) < ε. It allows one to define an operator system
which, in the case that the relation is transitive, becomes the usual equivalence groupoid
C∗-algebra [43]. We shall analyze the C∗-envelope and express the propagation number
in terms of the diameter of the metric space. We will also characterize the pure state
space of the operator system by means of a support condition on vector states.
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