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ABSTRACT:

The expansion of urban areas has a negative impact on the environment. The increase of impervious or sealed surfaces is directly
proportional to this expansion. The estimation of sealed surfaces has often been executed using remote sensing imagery, athough
only on alocal to regional scale, using medium and recently available high resolution images like LANDSAT TM and IKONOS. In
order to develop a global policy and strategy on urban expansion matters, consistent time series of area statistics on urban land use
on anational and global level will become indispensable. This research explores the possibilities of SPOT VEGETATION imagery,
with a spatial resolution of 1 km, for urban monitoring in order to generate statistics of sealed surfaces over larger zones. While low
resolution imagery offers the advantage of covering a large area in small temporal intervals, its spatial resolution is too coarse to
monitor most urban objects. In order to tackle this problem, a sub-pixel classification was applied and unmixed sealed surface area
statistics were produced. Endmember selection is a key element in the sub-pixel classification process in which the spectrally
complex sealed surface class should be distinguished from other general classes. To find the most favourable temporal interval or
period for endmember selection, several datasets were developed and explored. SPOT-VEGETATION images were acquired in
summer and winter for Flanders (Belgium). This region is characterised by a highly fragmented urban land-cover and large
availability of reference data. Spectral unmixing of the multitemporal datasets illustrates that the endmember spectra differs for three
different endmember selection techniques, affecting the quality of the final sub-pixel classification. The paper argues that the
unmixing result is more sensitive to the endmember selection technique than to the period of image acquisition. It was found that
with regard to the tested endmember selection techniques, the Average of Pure Pixels technique gave the best results with an overall
accuracy of 81 %, while the combined winter/summer image performed better than the individual summer or winter images.

1. INTRODUCTION In order to produce a land cover/use geodataset, with the
emphasis on sealed surface identification, the imagery of these

The Earth’s land cover is in constant evolution with urban instruments has to be classified. Typical hard classifiers, such as

developments continuously expanding world wide. The increase
of sealed surfaces is one of the main characteristics of this
expansion and is likely to be sustained due to growing
population pressure. Keeping up to date with these changes at
acceptable costs is a necessity for regiona planners and
managers of natural resources. In the past, land cover/use
information was gathered mainly by field measurements and
interpretation of aerial photographs. But these approaches are
labour intensive, require expertise for interpretation and can
only be applied to relatively small areas. The same is true when
applying medium to high resolution satellite imagery like
Landsat TM and IKONOS images to monitor land cover/use.
The estimation of sealed surfaces has often been executed using
digital image data of these instruments, although only on alocal
to regional scale (Small, 2003). However, to develop a global
policy and strategy on urban expansion matters, consistent time
series of area statistics on urban land cover/use on a national
and global level will become indispensable.

Although low resolution (LR) imagery, like those provided by
the SPOT VEGETATION and AVHRR sensors, contains less
geographical detail, it presents attractive features as they cover
large areas at short time intervals (Lillesand and Kiefer, 2000).
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maximum likelihood and parallelepiped operators, mostly do
not provide satisfactory results because the spatial resolution of
LR imagery is too coarse to monitor most urban objects. Soft
classifiers on the contrary are more eligible to deal with LR
imagery because they recognise, in contrast to hard classifiers,
that pixels can cover more than one real-world feature or land
cover/use type (Settle and Drake, 1993). Several methods have
been proposed to characterize land cover/use at the sub-pixel
level, including Linear Mixture Models (Verhoeye and De
Wulf, 2000; Lu and Weng, 2004), Artificial Neural Networks
(Paola and Schowengerdt, 1995; Swinnen et al., 2001), Fuzzy
Classifiers (Zang and Foody, 2001), Maximum Likelihood
Classifiers (Hame et al., 2001), Hierarchical Linear Unmixing
(Newland, 1999) and Support Vector Machines (Brown et al.,
1999).

The work presented here will make use of the Linear Mixture
Model, assuming that the spectral response recorded for a pixel
is alinear combination or mixture of pure spectral responses of
the objects present in the pixel. These pure spectral responses
are caled endmembers. Once the present classes and their
spectral  responses are known, the contribution of these
endmember spectra to the overall spectral signature of the pixel
and, ultimately, their fraction within the pixel area, can be
estimated. Following this ‘unmixing’ approach, a.o. Settle and
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Drake (1993), Verhoeye and De Wulf (2000) and Lu and Weng
(2004) have shown that it is possible to estimate the area
proportion of different features or land cover/use types within
single pixels of satellite imagery. According to Van Der Meer
and De Jong (2000), the endmember selection is a key element
in this sub-pixel classification process. The aim of this research
is to explore the possibility of linearly unmixing SPOT
VEGETATION imagery to obtain area statistics of sealed
surfaces over a large area. Herewith emphasis is on the
identification of the spectrally complex sealed surface class with
respect to other classes and on the investigation of the effect of
the period of image acquisition and the endmember selection
technique.

2. STUDY AREA AND DATA

The northern part of Belgium, including the regions of Flanders
and Brussels, with a total area of 13682 km? was selected for
the unmixing analysis. This area is characterised by a highly
fragmented land cover, with cities interconnected by a dense
road network along which ribbon development is pertinently
present (Ministerie van de VIaamse Gemeenschap, 1998).

The VEGETATION instrument is a large scale Earth
observation sensor with a resolution of 1000 m * 1000 m on
board of both the SPOT 4 and the SPOT 5 satellite with a field
of view of 2200 km and gathers information in 4 spectral bands
(blue, red, NIR and SWIR). A summer and winter 10-daily
synthesis (S10) image of the VEGETATION instrument were
selected from the year 2001 and downloaded for free from the
webpage http://free.vgt.vito.be/. An S10 image is composed by
10 daily-taken VEGETATION images. The composition is
based on the highest Normalized Difference Vegetation Index
(NDV1) for every pixel to remove possible cloud pixels, which
generally have low NDV1 values (Ledwith, 2002).

The reference data used for the endmember selection and
validation process is an available land cover/use geodataset
produced by the governmenta organization OC GIS
Vlaanderen, with resolution of 15 m* 15 m and a K-statistics of
0.88. The geodataset has been derived from two Landsat images
and ancillary vector data of 2001, covering the entire study area.
(OC GIS Vlaanderen, 2001).

3. METHODOLOGY
3.1 Datapreparation

The summer and winter VEGETATION images were clipped to
the study area and geographical transformed from Plate Carrée
to the national Lambert conformal conical coordinate system of
Belgium. The cloud pixels around the coastal zone, i.e. the
“coastal ring”, caused by the synthesis procedure of the S10
images were masked, using the land borders of the reference
image. Both images had an error in the form of white stripesin
the MIR-band, due to blind/or aberrant MIR detectors (L edwith,
2002). This error, together with the noise from the other bands,
was removed in the final stage of the data preparation by means
of the minimal noise fraction (MNF) transformation.

MNF transformation projects the origina image in a space
where the new components are sorted in order of signal to noise
ratio (Green et al., 1988; LU and Weng, 2004). Its procedure
consists of a combination of two principal component analyses

(PCA), rotating the original coordinate system such that most of
the variation in the data is found aong a limited number of
axes. The first PCA de-correlates and rescales the noise in the
data based on an estimated noise covariance matrix established
under the assumption that the spatial autocorrelation of the
signal is high compared to the noise’s one. The second step is a
standard PCA of the noise-whitened data resulting in a two-part
dataset, one part associated with large eigenvalues and coherent
eigenimages, and a second part with near-unity eigenvalues and
noise-dominated images. The MNF transformation was applied
to the summer, winter and a stacking of the summer and the
winter image. The single and combined period datasets resulted
in eigenvalues bigger than unity for the first 3 and respectively
4 MNF bands, leaving the apparent noise in the other bands.
The latter were excluded from the endmember selection and the
linear unmixing procedure.

3.2 Linear unmixing

Assuming that the signal received at the sensor is composed of a
linear mixture of pure-element reflections (endmembers)
coming from different land cover/use types, the general linear
unmixing equation for one pixel can be written as follows:

Xx=M*f +e (1)

with the column vector x = [xl,...,erT to denote the MNF
transformed reflectance values of the spectral bands (n) of a
VEGETATION-pixel; the column vector f = [fl,...,fc]T to
denote the proportions of area within each pixel occupied by
each of the land cover/use types (c). Each column of the matrix
M is the endmember spectrum of one pure land cover/use class
and e is an observation error, both expressed in MNF values
(Settle and Drake, 1993). The area fraction (f) is estimated for
each pixel such that:

* 2
HM f- XH 2

is minimized subject to:

C
the sum to one constraint: é f=1
i=1
positivity constraint:  Q > f -1

Before applying this linear programming problem using the
Matlab optimization toolbox (Grace, 1999), the endmember
spectra were to be estimated.

3.3 Endmember selection

Because the final goal is to generate area statistics on seded
surfaces, the two broad category endmembers “sealed” and
“non-sealed” were selected as endmembers. This implies that
the condition of identifiability for equation (1) is met since the
number of land cover/use types (c=2) is smaler than the
number of MNF spectral bands (n=3 or n=4). To estimate the
MNF band vaues for these endmembers, three estimation
techniques were applied. They each made use of the reference
geodataset from which area fractions of the sealed and non-
sealed classes were generated in a 1000 m resolution grid. In
order to reserve part of the reference data for validation, a
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suitable number of training pixels was determined by comparing
the endmember spectra for a different number of pixels out of
the reference geodataset. The lowest percentage for which the
endmember spectra were comparable with those generated with
all reference data, was selected. A short explanation of the three
used endmember estimation techniquesis given below.

3.3.1 Reversed Linear Mixture Model (RLMM): Giving the
area fractions derived from the reference geodataset, the
corresponding endmember spectra were estimated by reversing
the linear mixture equation (1) (Verhoeye and De Wulf, 2000):

M=(F*FT) % FT* X 3

with

M = Matrix with the endmember spectral values

F = Matrix with the area fractions derived from the reference
geodataset

X = Matrix with the MNF values derived from the spectra
reflectance values of the original VEGETATION image.

3.3.2 Average of Pure Pixels (APP): Based on the area
fractions from the reference geodataset, al pixels with an
endmember fraction exceeding 0.95 were selected. The
corresponding MNF spectra were averaged for both the sealed
and non-sealed class to find the endmember spectra of these
“pure’ pixels (Quarmby et al., 1992; Foody and Cox, 1994).

3.3.3 Weighted average over al pixels (WA): By multiplying
the area fraction for the sealed endmember class, derived from
the reference geodataset, with the corresponding values of the
MNF bands and averaging these values over the total reference
sealed area of the trainings pixels, a weighted average of the
MNF values was calculated. The same process was applied for
the non-sealed endmember. This WA method, adopted from
Genovese et al. (2001), can be used as an estimation of the
sealed and non-sealed endmembers and isillustrated in Figure 1
for two pixels and two land use classes A and B.

Reference
Geodataset: B

MNF Value:

¥ N ¥

A:2 B:Z\x /

B: 26/5

Weighted MNF
Value:

Average weigthed
MNF Value:
A: 14/3

Figure 1. lllustration of the WA endmember selection technique

Hence, three techniques for endmember estimations are used to
linearly unmix the MNF-transformed datasets of the three
different time periods, with the final am to generate area
fraction indices (AFI’s) for both ‘sealed’ and ‘non-sealed’ land
cover over the entire study area.
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Figure 2. The sealed () and non-sealed (b) endmember spectra
for the Summer image

4. RESULTSAND DISCUSSION

The first step in the linear unmixing procedure is the estimation
of the endmember spectra, expressed in MNF values. A
graphical representation of the sealed and non-seded
endmember for the summer image as estimated by the RLMM,
APP and WA technique is given together with their calculated
standard deviation in Figure 2. It was found that for all
techniques, 20% of the total training pixels had to be used for
representative endmember spectra estimations. It is apparent
when comparing Figure 2a with Figure 2b that the endmembers
sealed and non-sealed can be differentiated in all bands with all
techniques. While the non-sealed endmember estimations result
in similar values for the three techniques, the sealed endmember
spectra derived with the WA method differs from the other
techniques. This is because the relative large amount of mixed
pixels, in comparison to the small nhumber of pure sealed pixels,
has mutually a big influence when a simple weighted average is

applied.

A linear unmixing procedure was performed to obtain a sub-
pixel classification for every endmember selection technique.
Before assessing the regional and the individua pixel
performance of the sub-pixel classification, atwo way ANOVA
was executed on the difference between the reference and the
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Endmember Periodof Total Difference Difference
selection acquisi-  seded with with
technique tion (km?®  reference  reference

data(km?)  data (%)
RLMM Summer 2850 768 37
APP Summer 2218 136 7
WA Summer 4746 2664 128
RLMM Winter 3063 981 47
APP Winter 2302 220 11
WA Winter 5207 3125 150
Winter &
RIMM  Simmer 2855 773 37
Winter &
APP Summer 2059 -23 1
Winter &
WA Summer 4914 2832 136

Table 1. The sum of al estimated sealed AFl's and the
difference with the total reference sealed area, i.e.
2082 km?

calculated AFI’s with both the endmember selection techniques
and the date of image acquisition as independent variables. It
was found that both variables have significant influence on the
outcome.

A regional analysis of the estimation results is done by
calculating the total estimated sealed area fraction and its
difference with the total reference sealed ares, i.e. 2082 km?, as
shown in Table 1. A first look on Table 1 reveals that the
differences between the periods of data acquisition are not as
big as the differences between the endmember selection
techniques. The APP technique provides a good estimation of
the total seadled area while the RLMM and WA methods
perform badly, and this for all periods. This can be explained by
the location of the sealed endmember spectrum in feature space
(Gebbinck, 1998). When the MNF bands are plotted for the
whole study area it is found that the APP derived sealed
endmember is situated close to the vertices of the feature space,
while the other techniques position the sealed endmember at a
distance from these vertices. The variation of the difference
between the unmixed and the reference geodataset among the
periods of acquisition (summer, winter, winter/summer)
indicates a better result for the summer than for the winter

Endmember . Sum of al Average
selection Perl_oq .Of differences differ:gce
technique acquisition (km?) (kim?)

RLMM Summer 1915 0.13
APP Summer 1650 0.12
WA Summer 3795 0.27

RLMM Winter 2128 0.15
APP Winter 1750 0.12
WA Winter 4234 0.30

RLMM Winter & 1910 0.13

Summer

APP Winter & 1568 0.11
Summer

WA Winter & 3950 0.28
Summer

Table 2. The sum of the absolute and the average differences
between the calculated and reference AFI's

period. This and the fact that the best result is generated for the
combined winter/summer dataset might be explained by the
appearance of bare soil in the study area. More agricultural
areas are left under bare soil during wintertime than during the
summer, which may explain the larger overestimation of the
sealed cover due to the spectral similarity of bare and sealed
soil. To the contrary, the combined response of those bare soils
over both seasons differs sufficiently from the sealed cover
types, having a time-independent response. However, no
definitive conclusion should be drawn from Table 1 because
individual estimation error is expected to be present in each
pixel.

To have a better idea on the individual performance of each
pixel on the estimation of the fraction sealed in its area, the
calculated AFI’s are compared with the reference AFI’ s for each
pixel individually. Thisis done in an absolute way, so the effect
of negative and positive differences compensating for each
other is discarded. The sum of all these absolute differences and
their average difference are given in Table 2. The average
difference calculated here is related to the Mean Absolute Error
(MAE) (Swinnen et al., 2001), in the sense that it is the MAE
divided by 2. The average difference per fraction of 10 % sealed
soil was also calculated and presented in Figure 3 for the APP
endmember selection technique. The fact that the sum of al
differences in Table 2 is a big number in comparison to the
corresponding values of Table 1 indicates that the compensating
effect of negative and positive differences over the whole image
is important. Figure 3 reveals that this difference depends on
the heterogeneity of the pixels. Pixels with small (0-10) and
high (90-100) fractions of sealed soil are better estimated for al
periods than the severely mixed pixels do. Starting from small
percentages of sealed soil cover, the average difference
increases in value until the percentage reaches 70-80% and then
drops again. The fact that a small value is found when the
difference for all pixelsis averaged (Table 2), can be explained
by the high number of pixels with a low percentage of seded
cover.

Average difference for each fraction
of 10% sealed soil

Average difference
(km2)

0-10 10-20 20-30 30-40 40-50 50-60 60-70 70-80 80-90 90-100

fraction sealed soil (%)

Summer — — Winter - - - + Winter/Summer

Figure 3. Average difference per fraction of 10 % sealed soil for
the APP endmember selection technique

Apart from the numerical validation of the unmixing procedure
stands the geographical representation of the final result, i.e. the
sealed sub-pixel classification. The reference sealed AFI image
(a), together with the sealed AFI image calculated with the APP
endmember technique for the winter/summer period
combination (b) are given in Figure 4. The calculated area
fraction classification of the sealed surface in the study area
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Figure 4. Sub-pixel classification at 1 km? resolution: The reference sealed AFI image (a), and the calculated sealed AFI image of the
APP endmember technique and summer/winter period combination

does fairly well represent the actual (reference) situation, with a
good visualisation of the big urban agglomerations. However, a
difference map reveded that there is a clear overestimation of
the sealed surface in the south-eastern and western coastal
regions, were large areas of agricultura areas and bare soil are
present. Also smaller cities scattered around in the study area
appear to be underrepresented.

As a final quality assessment of the sub-pixel classification, a
cross-comparison was made between the two images of Figure
4. To deal with the fuzzy character of the classification, all
differences within a margin of 10% were set to be correctly
classified. This resulted in an overall accuracy of 81%, which
confirms the visual correspondence between the calculated and
reference image.

To compare the results of the sub-pixel classification with a
traditional hard classification, a parallelepiped classification
was performed on the winter/summer dataset, resulting in sealed
surface estimation of 1516 km? for the whole regional sealed
area. While the big urban agglomerations appear as 100%
sealed surface in the hard classification, the smaller citiesin the
study area are not detected as being sealed. The fact that a great
amount of such small cities, interconnected with ribbon
development, are present leads to the caculated
underestimation of sealed soils in the study area. This analysis
shows that a sub-pixel classification of VEGETATION imagery
to study sealed surface is more appropriate than a hard
classification.

5. CONCLUSION AND FURURE WORK

In order to obtain area statistics of sealed surfaces over a large
area, LR satellite imagery (SPOT VEGETATION) was linearly
unmixed, and the effect of the period of image acquisition and
endmember selection technique was investigated. It was found
that the fina result was more sensitive to the endmember
selection technique than to the period of image acquisition and
that the Average of Pure Pixels technique (APP) resulted in the
best AFI estimations. The bias with respect to the period of
image acquisition may be explained by the presence of bare
soils, spectrally similar to sealed surfaces. This problem is more
pertinent in winter time but does not disappear during summer.
A combination of winter/summer image together with the APP
endmember selection technique appeared to be the best
aternative. Looking at each pixel individualy, the estimations
have an average error of + 0.1 km?, but increases to a maximum
of + 0.25 km? when the heterogeneity of the pixel increases.
The calculated area fraction classification of the sealed surface
in Flanders and the district of Brussels represents the actual
(reference) situation fairly well. This is confirmed with the
calculation of the overall accuracy, which is 81 % for the APP
endmember selection technique and winter/summer period
combination.

Future work should focus on the endmembers present in LR
satellite imagery, the parameters involved in their selection and
on other, including non-linear, unmixing methods. Also the
usability of the calculated endmembers for extension in both the
temporal and spatial domain and the use of other LR satellite
imagery like MODIS and AVHRR should be investigated.
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