
CHAPTER 34 

Spectral Wave Attenuation by Bottom Friction: Theory 

Ole Secher Madsen1, Ying-Keung Poon2, and Hans C. Graber3 

ABSTRACT 

Based on the linearized form of the boundary layer equa- 
tions and a simple eddy viscosity formulation of shear 
stress, the turbulent bottom boundary layer flow is ob- 
tained for a wave motion specified by its directional spec- 
trum.  Closure is obtained by requiring the solution to 
reduce, in the limit, to that of a simple harmonic wave. 
The resulting dissipation is obtained in spectral form with 
a single friction factor determined from knowledge of the 
bottom roughness and an equivalent monochromatic wave hav- 
ing the same root-mean-square near-bottom orbital velocity 
and excursion amplitude as the specified wave spectrum. 
The total spectral dissipation rate is obtained by integra- 
tion and compared with the average dissipation obtained 
from a model considering the statistics of individual waves 
defined by their maximum orbital velocity and zero-crossing 
period.  The agreement between the two different evalua- 
tions of total spectral dissipation supports the validity 
of the spectral dissipation model. 

INTRODUCTION 

As waves propagate into water of finite depth the pre- 
sence of a bottom manifests itself in various ways, e.g., 
causing shoaling, depth-refraction, and dissipation of 
energy.  In the present context of wave attenuation by 
bottom friction the most important manifestation of the 
bottom is the establishment of a bottom boundary layer in 
the immediate vicinity of the bottom.  Within this wave 
boundary layer, of thickness a few cm, the flow is strongly 
sheared, generally turbulent, and associated with signifi- 
cant dissipation of energy. 

Several models for turbulent wave boundary layer flows 
and associated energy dissipation have been developed, 
e.g., Putnam and Johnson (1949), Kajiura (1964, 1968), and 
Jonsson (1966), to mention a few of the earliest contribu- 
tions.  According to these (and later contributions) the 
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attenuation of periodic waves in constant but finite water 
depth, h, may be expressed formally through the conserva- 
tion of wave energy equation 

dE   .   dEj _    _, ... 
7E + W 

= "Ed (1) 

where, according to linear wave theory, 

E  =  i/?ga2 

Ef =  CgE=   .[!  + iT_2k|_j^E (2) 
njk 

up = kg tanh~ kh 

and the average rate of energy dissipation by bottom fric- 
tion is obtained from 

Ed = <rbU0o> ~ i/0fwUbrUg (3) 

in which fw is the wave friction factor (Jonsson, 1966), 
Ub = (aw/sinh kh) is the near-bottom maximum orbital velo- 
city, and Ubr = (8/3x)Ub.  Use of Egs. (1) through (3) al- 
lows evaluation of the wave attenuation due to bottom fric- 
tion to be performed from knowledge of the periodic wave 
characteristics—amplitude a = H/2 and radian frequency w = 
2-ir/T—and the bottom roughness.  For practical applica- 
tions, however, real waves are not periodic and the ques- 
tion arises which wave amplitude (wave height) and period 
to choose to represent the random wave field. 
An alternative approach was taken by Hasselmann and Col- 

lins (1968) who evaluated the average rate of dissipation 
from <rbu00> treating r\>  = %piw | uM| u„„ and uM as random vari- 
ables defined by the directional spectrum of u,*,, the near- 
bottom orbital velocity.  A simplified version of their 
analysis, corresponding to the use of Eqs. (1) through (3) 
for each wave component with Ubr being the orbital velocity 
having the same root-mean-square value as the specified 
spectrum, was later proposed and used by Collins (1972) to 
evaluate the spectral attenuation of waves due to bottom 
friction.  While overcoming the problem of which equivalent 
periodic wave to choose to represent the wave spectrum, the 
Hasselmann-Collins approach does not provide information on 
how the friction factor is related to bottom roughness. 
Thus the friction factor, fw, becomes a parameter to be 
fitted by comparison of model predictions and observations, 
e.g., Hsiao and Shemdin (1978). 
To overcome the problem associated with available models 

for the prediction of attenuation of waves by bottom fric- 
tion, we start from the linear equation governing the bot- 
tom boundary layer flow.  A simple, time-invariant eddy 
viscosity formulation is used to express the turbulent 
shear stress and a solution for the boundary layer flow is 
obtained for a wave motion specified by its directional 
spectrum.  The problem is closed by requiring the spectral 
representation of the bottom shear stress to reduce the 
known solution, e.g., Grant and Madsen (1979, 1986), in the 
limit of a single periodic wave.  In this manner theoreti- 
cal justification is obtained for the application of Eqs. 
(1) through (3) for each spectral wave component with Ubr 
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as specified by Collins (1972).  However, in contrast to 
Collins's study the present analysis also results in a 
relationship for the friction factor, fw, in terms of spec- 
tral wave characteristics—represented by an equivalent 
periodic wave having the same root-mean-square near-bottom 
orbital velocity and excursion amplitude—and the bottom 
roughness. 

Integration of the spectral wave dissipation model over 
all frequencies produces an expression for the total aver- 
age dissipation rate associated with a wave motion speci- 
fied by its frequency spectrum.  This estimate of the aver- 
age dissipation rate is compared with that obtained from a 
model which considers the joint probability of near-bottom 
orbital velocity and zero-crossing period derived from the 
near-bottom orbital velocity spectrum following Longuet- 
Higgins (1983).  Besides resulting in comparable estimates 
of total average dissipation, thereby supporting the vali- 
dity of the spectral dissipation model, the total dissipa- 
tion rate is expressed in terms of representative surface 
wave characteristics, root-mean-square wave height and 
significant period, which greatly facilitates the approxi- 
mate computation of wave attenuation by bottom friction. 

SPECTRAL DISSIPATION MODEL 

Governing Equation 

We start by adopting the linearized boundary layer ap- 
proximation for the flow above a horizontal bottom located 
at z = 0, i.e., 

||=_V(p/p)+^I (4, 

in which u = (u,v) and "f-  are the velocity and shear stress, 
respectively, V is the horizontal (x, y) gradient operator, 
and p  is the fluid density.  Realizing that the shear 
stress vanishes while the velocity approaches its free 
stream value as z -» oo, we have 

H* = -V(p//>) (5) 

For small values of z, i.e., as the solid boundary is ap- 
proached, the no-slip condition requires the velocity to 
approach zero.  Thus, we obtain as z -» o 

m^ = - #* = V(p/P) ~dz W 
(6) 

which, by integration from z = "0", where •f = ^b, to z = 0+ 

yields 

* = Tb -   \      ^H^dz - *b (7) 

i.e., a constant shear stress equal to the boundary shear 
stress within a region close to the solid boundary 
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(z < 0+). In this context it should be pointed out that 
"constant" refers to the spatial not the temporal varia- 
tion, since rb clearly will vary with time. 

Thus in a region very close to the solid bottom the "law 
of the wall" is valid.  In analogy with steady turbulent 
flows over a rough wall we therefore expect a logarithmic 
velocity profile for z < 0+.  This requirement is met if we 
express the shear stress through the concept of a vertical 
turbulent eddy viscosity, ft,   which varies linearly with 
distance from the bottom, i.e., if we take 

VP   = "I  -fo  =   KU*rZ-g| (8) 

Strictly speaking we should carry the dynamic analogy 
with steady turbulent flows further by requiring the fric- 
tion velocity u+r to be i/(Tb/p)   with rb denoting the time- 
varying magnitude of the bottom shear stress.  However, 
Trowbridge and Madsen (1984a, b) considered this complica- 
tion, in the context of periodic wave boundary layers, and 
concluded that a time-invariant eddy viscosity suffices so 
long as the boundary layer analysis is limited to first 
order in wave steepness as is the case here.  For this 
reason we adopt the expression for the turbulent shear 
stress given by Eq. (8) with u*r denoting a time-invariant 
representative friction velocity. 

Incorporating Eqs. (5) and (8) in (4) and realizing that 
Uoo ^ Uoo(z) we obtain 

3t^ " ^E[
KU

*
rZ

    Tz     J 
(9) 

governing the turbulent flow within the bottom boundary 
layer. 

Solution 

To solve the governing equation we specify the free 
stream velocity as that associated with a directional wave 
spectrum, i.e., 

"°° = I I Ub,nm{cos#m, sin0m} e1Wn (10) 

in which n and m denote summation over frequencies and 
directions, respectively.  With this representation of u„ 
the velocity amplitudes ub.nm are related to the near-bottom 
orbital velocity spectrum and to the directional surface 
amplitude spectrum through 

Ub.nm   =   j2SUb(Wn,0n,)d0dW   =   sinn\hhJ 2S
 JJ ( <*• , fln) d0dU (11) 

in which wn and kn are related through the linear dis- 
persion relationship, Eq. (2). 

The linearity of Eq. (9) combined with the assumed time- 
invariant representative friction velocity suggests a solu- 
tion of the form 
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^ = I I unm{cos0m,sin0m}e1'''nt (12) 

n m 

in which unm = unm(z) represents the complex velocity com- 
ponent amplitudes and only the real part of Eq. (12) con- 
stitutes the solution sought. 

Introducing Eqs. (10) and (12) in (9) we obtain the equa- 
tion for each velocity component 

df^ffr] -ia- = ° <»> 
in which 

Unm   —   Unm   "   Ub,nm 

(n   =   ZWn/(«
u*r) (14) 

The boundary conditions to be satisfied by each component 
are 

Unm  -•   0 as Cn   -»   00 

Unm  ~   —Ub,nm for           (n CnO   =   Z0Wn/(/CU+r) (15) 

where, once again, we have drawn upon the analogy with 
steady turbulent flows over a rough boundary by requiring 
the no-slip condition to be satisfied at z = zo = kb/3 0, 
where kb is the equivalent Nikuradse sand grain roughness 
of the bottom. 
The solution to Eq. (13) subject to the boundary condi- 

tions stated in Eq. (15) may be written in terms of Kelvin 
functions of zeroth order (e.g., Hildebrand, 1976) 

r,  - _ ker2V?n" + i kei2V^ 
Unm 

—    ~~2. Ub.nm l-LoJ 
ker2vTno  +  i kei2^£no 

Invoking the limiting from of Kelvin functions for small 
values of their arguments (Abramowitz and Stegun, 1972, Ch. 
9) we obtain from Eqs. (12) , (14), and (16) 

lrt      I UbJ_Qm __ _   XrZ     cos(4,nt+(!)n) (17) 

Z0 

I       Z0Wn m' 
where 

tanrfn -       KU  
Z/2  (18) 

ln^il -  i.is 
ZoWn 

valid for small z. 

Closure 

While a solution for the turbulent flow in the wave 
boundary layer has been obtained, this solution involves 
the representative friction velocity u+r which is yet to be 
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specified.  From the expression for the bottom shear 
stress, Eq. (8), we obtain with the velocity solution given 
by Eq. (17) 

1 •, •     f dUnml -rb,nm = lim^rz^jsaj 

Nst - HMf]: 
"Ubinm (19) 

Now, in deriving the asymptotic form of unm  as given by 
Eq. (17) it was assumed that (n0  = z0wn/(/cu^r) < 1.  The 
proportionality factor between the bottom stress component 
amplitude, Tb,nm/p,   and the orbital velocity component amp- 
litude, ub,nm, given by Eq. (19) is therefore dominated by 
the first term in the denominator, which in turn is a weak 
function of wn.  We may therefore replace wn in Eq. (19) by 
a constant representative radian frequency, uri   and consi- 
der the ratio of bottom shear stress and orbital velocity 
amplitudes to be constant.  With these approximations the 
bottom shear stress spectrum is given in terms of the near- 
bottom orbital velocity spectrum by 

STh(u>,0)   = /3/CUar 

ln= Zo^r 
1.15 

sUb<«,0) (20) 

Integration of Eq. (20) over all frequencies and direc- 
tions and denoting 

(rbr//9)2 = 2^STh/p(e>,0)<luad 

UfSr  =   2[Tsub(W,0)dwd0 

we obtain the  following relationship 

(21) 

Tbr 
In- KU •UL 

-Ubr (22) 

Zo^r 
1.15 

which, given the approximation made in the present analy- 
sis, is identical to the result obtained for a periodic 
wave motion (Grant and Madsen, 1986) when we take 

U*r   =   Vrbr//>   =   Vfwr/2   Ubr (23) 

In fact, Eq. (23) may be introduced in Eq. (22) to obtain 
an equation for the wave friction factor similar to that 
originally proposed by Jonsson (1966) 

4V? 

with kb 

+ logio- = logur Abr kb 
0.17 (24) 

30zo denoting the equivalent bottom roughness and 
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A§r
 = [^f]

2
 
=
 2jJftr»SUb(tfftf)dWdtf (25) 

denoting the near-bottom orbital excursion amplitude of an 
equivalent periodic wave having the same root-mean-square 
near-bottom orbital velocity and excursion amplitude as the 
specified directional wave spectrum.  While Eq. (24) is 
limited to small relative roughness, i.e., large values of 
Abr/kb, the general formula given by Grant and Madsen 
(1979) may be used for large relative roughness values. 

Spectral Dissipation and Wave Attenuation 

Following Kajiura (1968) the average rate of dissipation 
of wave energy in the bottom boundary layer is given by Eq. 
(3) , <7"bUoo>.  Expressed in terms of the spectral components 
of rb, Eq. (19), and uM, Eq. (10), including random phase 
consideration for components of the same frequency, results 
in 

Ed.nm   =   <rb,n„,   U00,nm>   =   -|f wr/3Ubru|,nm<COS (Wnt+(^n) COS (Wnt) > 

=   Tfwr^UbrUfLnm (26) 

in which the phase difference between bottom shear stress 
and free stream velocity--amounting to a cos^n factor--is 
neglected to be consistent with previous approximations. 
Rewriting the dissipation rate given by Eq. (26) by mak- 

ing use of Eq. (11), we may formally express the conserva- 
tion of wave energy equation in spectral terms as 

D{S (01,9)} , 
 S^t  = " ^Ed(o,,0) = - ^fwrubrSUb(W,0) 

= -f5fwrUbr[iIH£nS]2S??(W,0) (27) 

with Ubr given by Eq. (21) and fwr obtained from knowledge 
of the equivalent Nikuradse sand grain roughness of the 
bottom and an equivalent periodic wave having the same 
root-mean-square orbital velocity and excursion amplitude 
as the specified directional wave spectrum. 

EVALUATION OF TOTAL DISSIPATION 

Spectral Model 

From the model of spectral dissipation derived in the 
preceding section we may obtain the average rate of dissi- 
pation of energy for the entire wave field by integration 
of Ei(oi,9),   given by Eq. (27), over frequency and direc- 
tion.  Performing this integration and recalling the defi- 
nition of Ubr/ Eq. (21), the total average dissipation rate 
may be expressed as 

Edl   =    ffEd(W,i?)dWd0  =   i/?fwrugr (28) 
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While quite simple is appearance, the evaluation of Eq. 
(21) is somewhat cumbersome since it requires evaluation of 
quantities that depend on spectral characteristics of the 
near bottom orbital motion.  It would be far simpler if the 
total average dissipation rate were expressed in terms of 
wave characteristics derived from the surface amplitude 
spectrum.  We therefore define a characteristic periodic 
wave with the same root-mean-square amplitude as the wave 
motion specified by its directional spectrum, i.e., 

a§ = 2| Is   ((i),0)dwd0 (29) 

and a period defined by 

where nij denotes the j' th spectral moment 

LJS (u,0)dud9 (31) m; 

Denoting the near-bottom velocity associated with this 
characteristic wave by Ubc we have 

Ubc = sinh"kch = 
A
^ <32> 

where kc = 2T/LC is the wave number corresponding to the 
characteristic wave period, i.e., 

u\  = kcg tanh kch (33) 

Introducing the characteristic wave parameters in the 
expression for the energy dissipation, Eq. (28), we obtain 

Edl - {f^[^]3}^fwcugc = CiEdc (34) 

where Edc is the average rate of dissipation predicted for 
the characteristic equivalent periodic wave defined by Eqs. 
(29) and (30). 
Values of Ci have been computed for JONSWAP spectra with 

different peak-enhancement values (7=1, 3.3, 7) in dif- 
ferent water depths, defined by h/Lc, for a range of dif- 
ferent relative bottom roughness, Abc/kt,.  The results, 
shown in Figure 1 as dashed curves, indicate that the value 
of Ci depends on spectral peakedness and relative water 
depth with Ci increasing as the spectrum becomes broader 
(7=1) and as the relative depth increases.  This behavior 
reflects the increased importance of the low-frequency part 
of the surface amplitude spectrum in determining the near- 
bottom orbital velocity characteristics.  Within the range 
of relative bottom roughness tested, 1 < Abc/kb < 1000, the 
resulting value of Ci was found to be essentially indepen- 
dent of this parameter. 
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Figure 1. Variation of constants Ci, Eq. (34) , and C2 Eq. 
(42), for the evaluation of total bottom dissipa- 
tion for a random wave field with relative water 
depth h/Lc and spectral peakedness 7. 
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Individual Wave Model 

Longuet-Higgins (1983) derived the joint probability 
distribution of zero-crossing wave heights and periods for 
a narrow banded surface spectrum.  Replacing the surface 
amplitude spectrum by the near-bottom orbital velocity 
spectrum 

S     Otii)   =   I    .   t i u 1  S   (U!) (35) 
Ubv   '        [sinh khj     ijK   ' *•     ' 

the formulae derived by Longuet-Higgins (1983) may be 
adopted directly to obtain the joint probability of maximum 
near-bottom orbital velocity and period 

*<«''>   = T^W
K2[1+{X

'
UTm

^
U) (36) 

where 

R Ub    = Hb_ 

V2M^      Ubr 

Mi T 
ik?  =  k (37) 2 vrMo Ti 

denote the normalized maximum orbital velocity,   Ub,   and 
period,   T,   respectively,   and 

1/L(i/)   =   [1 +   (1 +  f2)"1/2]/2 

v, . Mo^z_M (38) 

with Mj denoting the j-th moment of the near-bottom orbital 
velocity spectrum 

Mj = U>JSu (o))du) (39) 

Assuming each individual wave, defined by Ub and T, to be 
simple harmonic a friction factor fw can be calculated for 
each wave from knowledge of the bottom roughness.  Thus, 
the dissipation of energy associated with a single wave, D, 
may be written as the product of the average dissipation 
rate, cf Eq. (26), and the wave period T, i.e., 

D = *,fwu8.T = fe]
3
fcfc]

3
T_ i/9fwcugcTl 

hibcj 
:]2 |=-R»r ipfwcugcTi (4 0) 

To obtain the average rate of energy dissipation we sum 
the contribution of N individual random waves and divide by 
the time necessary for N waves to pass.  This time is NT2, 
where 
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»G8 T,  -  2*LBjj (41) 

is the mean zero-crossing period of the near-bottom waves. 
Since the number of waves within an area around Ub (or R) 
and T (or r) relative to the total number of waves is given 
by the joint probability density function, Eq. (36), we 
obtain the average rate of energy dissipation from 

Ed2 
rubii3Tiff 
lubcj  T2JQJC 

—R3Tp(R,r)dRdr Edc = C2Edc        (42) 

Again we take the JONSWAP spectrum with 7=1, 3.3, and 7 
for the surface amplitude spectrum, transform it into a 
near-bottom orbital velocity spectrum for different values 
of h/Lc, and evaluate the constant C2 in Eq. (42) for a 
range of relative bottom roughness, 1 < Abc/kb < 1000. 
Again, the value of C2 was found insensitive to the value 
of relative bottom roughness while varying, as shown by the 
full lines in Figure 1, with relative water depth and spec- 
tral peakedness, in much the same manner as found for Cj. 
Over the important range of relative water depths where 

bottom frictional attenuation is expected to be most pro- 
nounced, h/Lc < 0.25, the excellent agreement between Ci 
and C2 supports the validity of the simple model for spec- 
tral wave dissipation derived here. 

SUMMARY AND CONCLUSIONS 

Based on a simple formulation of the turbulent flow in a 
bottom boundary layer a solution is obtained corresponding 
to a wave motion specified by its near-bottom orbital velo- 
city spectrum.  From the solution the spectral wave dissi- 
pation is obtained in the form 

Ed(w,0)   =  ipfwrUbrS,rw,0) 
Ub 

in which 

Ubr = J2jjsut)(w,<9)dwd0 

and fwr may be obtained from any of the many available wave 
friction factor relationships from knowledge of the equiva- 
lent Nikuradse roughness of the bottom, kb, for an equiva- 
lent periodic wave of near-bottom orbital velocity Ubr and 
radian frequency, uiv,   defined by 

Abr   =   J2    L"2Su   {Ul, 6)6.016.9  =   Ubr/Wr 

In passing it is noted that the analysis of turbulent 
wave-current bottom boundary layers, e.g., Grant and Madsen 
(1979, 1986), may be extended to waves specified by their 
directional spectrum by an identical procedure to the one 
employed here for a pure wave bottom boundary layer.  The 



SPECTRAL WAVE ATTENUATION 503 

result of such an analysis, Madsen (in prep.), shows that 
available theories for wave-current interaction, which 
assume a periodic wave motion, may be used also to approxi- 
mate waves specified by their directional spectrum when the 
spectral wave is represented by the equivalent periodic 
wave, defined by Ubr and At>r, propagating in the mean wave 
direction. 

In the important range of intermediate to shallow water 
depths, the total average dissipation rate predicted by the 
spectral model is shown to agree with the prediction af- 
forded by a model which considers the statistics of indi- 
vidual waves, defined by their near-bottom orbital velocity 
characteristics.  Besides supporting the validity of the 
spectral dissipation model the formulae and the results 
presented in Figure 1 for the overall dissipation experi- 
enced by random waves may serve as a simple tool for the 
prediction of wave attenuation by bottom friction.  This 
use of the results presented here is facilitated by the 
average dissipation rate experienced by random waves being 
expressed in terms of a characteristic equivalent periodic 
wave defined in terms of the surface amplitude spectrum. 
In this context it should be noted that the characteristic 
equivalent wave is defined with the root-mean-square wave 
height, not the significant wave height! 

The practical limitation of the present results is that 
they require a priori knowledge of the bottom roughness, 
kb.  Experimental results directed towards overcoming this 
limitation are presented in a companion paper by Madsen and 
Rosengaus (1988). 
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