
 Page 1 of 28 

Spectrally multiplexed heralded single photon source at 

telecom-band 

Hao Yu1,6,*, Chenzhi Yuan1,*, Ruiming Zhang1, Zichang Zhang1, Hao Li5, You Wang1,3, Guangwei Deng1, Lixing 

You5, Haizhi Song1,3, Zhiming Wang1,7, Guang-Can Guo1,4, and Qiang Zhou1,2,4 

1Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China. 

 2Yangtze Delta Region Institute (Huzhou) & School of Optoelectronic Science and Engineering, University of Electronic Science and Technology 

of China, Huzhou 313001, China. 

3Southwest Institute of Technical Physics, Chengdu 610041, China. 

4CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China. 

5Shanghai Institute of Microsystem and information Technology, Chinese Academy of Sciences, Shanghai 200050, China. 

6Institut national de la recherche scientifique - Centre Énergie, Matériaux et Télécommunications (INRS-EMT), Varennes J3X 1S2, Canada. 

7Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China. 

*These authors contribute equally to this work. 

Correspondence and requests for materials should be addressed to HS (email: hzsong1296@163.com), ZW (e-mail: zhmwang@gmail.com), or to 

QZ (e-mail: zhouqiang@uestc.edu.cn). 

 

Abstract 

Heralded single photon source (HSPS) is an important way in generating genuine single photon, having 

advantages of experimental simplicity and versatility. However, HSPS intrinsically suffers from the trade-off 

between the heralded single photon rate and the single photon purity. To overcome this, one can apply 

multiplexing technology in different degrees of freedom to enhance the performance of HSPS. Here, by 

employing spectral multiplexing and active feed-forward spectral manipulating, we demonstrate a HSPS at 1.5 

μm telecom-band. Our experimental results show that the spectral multiplexing effectively erases the frequency 

correlation of pair source and significantly improves the heralded single photon rate while keeping the g(2)(0) 

as low as 0.0006±0.0001. The Hong-Ou-Mandel interference between the heralded single photons and photons 

from an independent weak coherent source indicates a high indistinguishability. Our results pave a way for 

scalable HSPS by spectral multiplexing towards deterministic single photon emission. 
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Introduction 

Single photon source is an essential element in photonic implementations of quantum technologies, which ideally 

emits single photons in a pure, deterministic and indistinguishable manner that can ensure several potential 

applications such as security communication1,2, exponentially enhanced calculation3 and high accuracy measurement4. 

To make single photon emission more applicable for wide-spread deployment in quantum techniques, two different 

avenues have been paved, which are based on single emitters5, and spontaneous nonlinear parametric processes, 

respectively. The first one is capable of emitting single photons deterministically, but needs complex fabrication 

processes as well as lacking of wavelength tunability. The second pathway is heralded single photon source (HSPS)6 

which is based on the photon-pairs created from spontaneous parametric down-conversion (SPDC) or spontaneous 

four wave mixing (SFWM). The detection of one of the photons in the photon-pairs, the heralding photon, indicates 

the existence of its twins, the heralded photon. Such HSPS are experimentally convenient, emission wavelength 

flexible, and most importantly, highly indistinguishable. However, the spontaneous nonlinear parametric processes 

bring inevitable probabilistic property7. Especially, to achieve higher single photon purity, the HSPS system has to 

operate at low pumping power level, which limits the heralded single photon (HSP) rate and hinders the practical 

application of HSPS. 

 To break this trade-off between the HSP rate and the single photon purity and to develop HSPS towards a higher 

efficiency and deterministic manner, one promising way is to multiplex a set of HSPSs into one common output6,8,9. 

In such multiplexing system, the detection of a heralding photon indicates the presence of a heralded photon at this 

certain mode. Many multiplexing schemes have been demonstrated, with modes in different degrees of freedom 

including space10-15, time16-18, frequency19,20 and orbital angular momentum (OAM)21. Among these schemes, 

multiplexing HSPSs in frequency domain attracts great interest for their promising scalability as well as fixed external 

losses and requirement of resources19,20. Also, such sources are suitable for frequency encoded quantum information 

which are recently gained many attentions in telecommunication tasks of complex quantum state22 and quantum 

storage23,24. In these tasks, electro-optic phase modulator (EOM) serves as a fundamental component for quantum 

state manipulation in frequency domain25. Moreover, for quantum information applications in metropolitan scale26,27, 

single photons at 1.5 μm are preferred since they are within the third transmission window of optical fiber and many 

resources such as dense wavelength division multiplexers (DWDMs) and potential quantum memory can be utilized28. 
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Although several HSPSs have been developed in this wavelength range, the one with spectral multiplexing is not yet 

demonstrated. 

 In this paper, we propose and experimentally demonstrate a HSPS based on spectral multiplexing and feed-

forward control at 1.5 μm telecom-band. In our proof-of-principle experimental demonstration, broadband correlated 

photon-pairs are generated by the cascaded second-order harmonics generation (SHG) and SPDC processes in an 

integrated PPLN waveguide module29. Three spectral modes within the idler spectrum are defined as the heralding 

spectral modes while different active feed-forward spectral manipulations are operated on the signal photon side when 

a corresponding heralding photon is detected in spectral mode resolving way. Our experimental results show a break-

through of trade-off between the HSP rate and the single photon purity. With continuous wave (CW) laser pumping 

and three modes multiplexed, the HSP rate is enhanced by near three-fold towards 3.1 kHz at low pumping power 

level while keeping an ultra-low g(2)(0) value of 0.0006±0.0001. The experimental results show that heralded single 

photons have a g(2)(0) as low as 0.0140±0.0009 with a HSP rate of 21.2 kHz. The measurement of joint spectrum 

intensity (JSI) reveals that the spectral manipulation at single photon level brings photons from three spectral modes 

to the common spectral mode. For the first time, we investigate the interference effect between spectrally multiplexed 

HSPS and an independent weak coherent source, achieving a Hong-Ou-Mandel (HOM) effect from independent 

sources with a visibility of 60.99±4.80%. This non-classical nature shows good indistinguishability and potential 

application in Bell-state measurement (BSM) based quantum teleportation26,27 and linear optical quantum computing30. 

 

Results 

Experimental setup 

Fig. 1 shows the experimental setup for our proposed spectrally multiplexed HSPS scheme. In this scheme, broadband 

photon-pairs are generated by cascaded SHG and SPDC processes in a periodically poled lithium niobite (PPLN) 

waveguide. Under this configuration of nonlinear processes, the wavelength of pumping photons, signal photons and 

heralding photons are all at 1.5 μm telecom-band, which can be compatible with optical fiber telecommunication 

system conveniently. After exiting from the PPLN waveguide, correlated signal photons and heralding photons with 

bandwidth of ∼100 GHz are selected and separated by the DWDM devices. Heralding photons with three spectral 

modes, labeled by their central frequencies fi1, fi2 and fi3, respectively, are further filtered out by using a fiber-based 

narrowband DWDM with channel spacing of 12.5 GHz and the transmission bandwidth for each channel being 6.5 
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GHz. Here, fi1=193.4992 THz (1549.36 nm), fi2=193.5117 THz (1549.26 nm) and fi3=193.5242 THz (1549.16 nm). 

These three modes are defined as the heralding modes. Heralding photons from each mode are individually detected 

by superconducting nanowire single photon detectors (SNSPDs). Detection events of those fi1 or fi3 photons are sent 

to the feed-forward logic where each detection event triggers the logic circuit, driving electronic devices to fire a 

corresponding frequency shifting signal towards the EOM. For signal photons, before arriving at the EOM, they are 

delayed by a fiber loop so as to match the timing sequence with the electronic frequency shifting signal generated by 

their twins. By doing so, signal photons are shifted and multiplexed into a common spectral mode (See Materials and 

Methods for details).  

 We verify the spectral property of the heralded signal photons with and without applying the frequency shifting 

signal, respectively. Here, signal photons are selected in frequency domain by varying the filtering window of a 

tunable narrowband filter (TNF) which has a bandwidth of 12.5 GHz. The coincident events between signal photons 

and heralding photons are counted by the coincidence logic circuit. The results are shown in Fig. 2. In Fig. 2A, without 

frequency shifting, it is obvious that the spectra of signal photons are separated into three spectral modes, fs+, fs0 and 

fs−, corresponding to those heralding photons with the same mode spacing following energy conservation. Here, 

fs+=195.7006 THz (1531.93 nm), fs0=195.6881 THz (1532.03 nm) and fs−=195.6756 THz (1532.13 nm). As frequency 

shifting signal applied, photons in those spectral modes fs+ and fs− get frequency shifted and indistinguishably shifted 

into the fs0 mode, as shown in Fig. 2B. We realize the symmetric frequency up and down shifting with an efficiency 

higher than 90% (See Materials and Methods for details). 

 

Brightness and coincidences-to-accidentals ratio (CAR) 

We characterize the source brightness, i.e. HSP rate, with experimental setup running in both multiplexing enabled 

and disabled cases, when CW pumping light with different powers are applied, as shown in Fig. 3A. The multiplexed 

HSP rate is measured by fixing the TNF at center frequency of fs0 with multiplexing enabled, while the HSP rate of 

three individual spectral modes are measured by fixing the center frequency of the TNF at fs+, fs0 and fs−, respectively, 

with multiplexing disabled.  

 In Fig. 3A, it can be seen that the multiplexed source has an HSP rate enhanced by a factor of 2.80±0.12 comparing 

with non-multiplexed individual modes in low pumping power region, i.e. less than 4 mW in our experiment. The 

enhancement, drawing down as pumping power increases, is intrinsically hindered because of the imperfect frequency 
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response of electronic devices. Due to this non-ideal response, some frequency shifting signals are lost in high 

pumping power region (see the Supplementary Materials). Under the pump power of 16.98 mW, the HSP rate of 

multiplexed source reaches 23.6 kHz.  

 Coincidences-to-accidentals ratio (CAR) is a powerful tool to estimate how many undesired noise photons are 

generated together with the genuine correlated photon-pairs. It can be defined as the ratio of the coincidence count 

rate between signal photons and heralding events to the accidental count rate. We measure the CAR versus HSP rate 

for multiplexed source and three individual modes. As shown in Fig. 3B, the CAR of multiplexed source is higher 

than those of individual main source of noise is multi-pair events29. In our demonstration, a high-performance 

multiplexing HSPS is obtained with the CAR higher than 2000 at the HSP rate of 4 kHz. This value of multiplexed 

HSP rate also shows an enhancement of 2.80±0.12 when compared with individual HSP rates without multiplexing at 

the same CAR value. Though such enhancement would be deteriorated by the imperfect frequency response of 

electronic devices at high HSP rate, a CAR that higher than 100 can still be obtained. 

 

Purity of single photon  

We obtain the single photon purity of our spectrally multiplexed HSPS, by measuring the second-order auto-

correlation function g(2)(τ) through the Hanbury-Brown and Twiss (HBT) setup31. For the case of HSPS, the second-

order auto-correlation function can be express as: 

"(")($) = '$%&($)(
'$&($)'%&(0)

	,																																																																														(1) 

where CABH is the coincident count of detection events from detectors A and B that being connected with two output 

ports of the beam splitter conditioned by heralding signal (i.e. three-fold coincidence); CAH (CBH) represents the 

coincidences between the detection events from detector A (B) and heralding signal; while H is the individual count 

rate of heralding events. Here, τ is the electronic delay between the detection events from detector A and detector B. 

A full description of g(2)(τ) is shown in the inset of Fig. 3C. The g(2)(τ) at zero delay, i.e. g(2)(0), can effectively 

characterize the single photon purity, and what Fig. 3C shows are the measured g(2)(0) under different HSP rate when 

multiplexing is enabled and disabled. With three spectral modes multiplexed, we obtain g(2)(0) as low as 

0.0140±0.0009 at the measured maximum HSP rate. Comparing the g(2)(0) results with multiplexing on and off in Fig. 

3C, we can conclude that when the system is operating at low power region, the g(2)(0) for the non-multiplexed HSPS 
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can be reduced by nearly 3 times after the multiplexing is introduced. We obtain a g(2)(0)=0.0006±0.0001 when the 

multiplexed HSP rate is 3.1 kHz, comparing with the non-multiplexed case at the same HSP rate with g(2)(0) near 

0.0020. In the region of high HSP rate, such improvement gets weakened because of the limited response speed in the 

electronic system for frequency shifting signal generation. If the electronic signal generation system is designed 

elaborately, the improvement in single photon purity by multiplexing can be kept linear, even when the HSP rate is 

sufficiently high, as shown in the theoretically calculated curve in Fig. 3C. 

 

Joint spectral intensity and Hong-Ou-Mandel interference 

We study the spectral property of our proposed multiplexed HSPS by analyzing the joint spectral intensity (JSI) of 

photon-pairs and HOM interference between the multiplexed HSPS and a weak coherent single photon source. The 

JSI is given by the mode square of joint spectral amplitude32 which can be measured by signal-idler photon 

coincidences versus fs and fi, i.e. the signal frequency and the idler frequency. 

 Pumping the PPLN waveguide in Fig. 1 with pulsed laser, we measure the JSI (See Materials and Methods for 

details). Fig. 4A-C show the JSIs of photon-pairs directly output from PPLN without filtering, photon-pairs with 

narrowband DWDM inserted into the idler arm when multiplexing is disabled, and photon-pairs with multiplexing 

enabled. As shown in Fig. 4A, for the broadband nature of the PPLN waveguide, the JSI exhibits a diagonal band with 

strong frequency correlation. The cross-sectional width δfp=6.4 GHz corresponds to the bandwidth of the pulsed pump. 

In Fig. 4B, the JSI is broken into three circle-like islands, corresponding to the three heralding modes defined by the 

three transmission bands of the narrowband DWDM. The circle-like shape of each island indicates that the frequency 

correlation is significantly canceled locally. The island value of spectral mode fs+ is lower than other two islands, since 

the loss of the corresponding idler channel is 1 dB higher than the other two channels. As shown in Fig. 4C, with the 

spectral multiplexing turned on, the island with spectral mode fs+ (fs−) moves downwards (upwards) and all of the three 

islands enter into a common horizontal band. Within this band, the information of idler frequency almost cannot give 

any information about the signal frequency. This means that the multiplexed photon-pairs are spectrally uncorrelated.  

 To further characterize the nonclassical nature and indistinguishability of our spectrally multiplexed HSPS, we 

demonstrate an experiment of HOM interference between the multiplexed HSPS and an independent weak coherent 

single photon source. For general pair sources, the individual signal mode or heralding mode do not deliver a non-

classical photon-number statistics unless extract the single photon nature by the heralding procedure. Visibility higher 
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than 50% is used as a criterion to determine whether the non-classicality takes place in HOM interference between 

photons from independent sources33. The weak coherent source not only serves as the quasi single photon source for 

the HOM effect from independent sources, but also, this kind of interference between single photons and photons 

from weak coherence source can be used in some areas such as homodyne detection34 and quantum circuits35. Here, 

the HOM interference experiment is carried out by launching balanced field intensity into two input ports, meaning 

that the mean photon number are equal when two input fields are respectively launched into two input ports of the 

beam splitter. As shown in Fig. 5, the visibility of two-fold coincidences without heralding procedure is 39.85%±1.63% 

while the visibility after heralding procedure (i.e. three-fold coincidences) reaches 60.99%±4.80% without subtracting 

the contribution of accidental events, indicating a non-classical nature. The three-fold coincidences are post-selected 

by the heralded signal while the spectral purity imperfection is taken into account. According to our theoretical 

calculation of the HOM interference between independent sources (see the Supplementary Materials), the theoretical 

upper bound of the visibility should be 64.67% when the spectrally pure single photons interfere with photons from a 

weak coherent source at the same mean photon number36,37. The genuine three-fold visibility of this HOM interference 

between the multiplexed HSPS and weak coherent source approximates 64.67%, indicating highly indistinguishable 

photons emitted from the multiplexed single photon source. If replacing the weak coherence source by a genuine 

single photon source, based on our theoretical model, the visibility of HOM interference is expected to be 94.3%, 

which is close to unity. The small degrade of visibility from unity are mainly contributed to the residual multiphoton 

generation events in our spectrally multiplexed HSPS, as described by the non-zero g(2)(0). 

 

Discussion 

In this paper, we demonstrate a scalable spectrally multiplexed HSPS scheme in telecom-band, yielding a significantly 

enhanced performance using off-the-shelf fiber-based components. The enhancement is possible to behave as our 

theoretical model and perfectly close to the number of multiplexing modes when the faster electronic devices utilized. 

Furthermore, the first implementation of HOM interference from independent sources between our multiplexed source 

and a weak coherent single photon source shows the evidences of non-classical nature. 

 In our demonstration, we used a tunable filter as the output filter for HSPS, which introduces relatively high loss. 

This loss, as well as losses from other fiber-based components will degrade the photons collection efficiency and 

heralding efficiency (see details in the Supplementary Materials). Integrating basic components including filters, EOM, 
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beam splitters and detectors integrated on a single chip38,39 is a good way to address the problem of component and 

connection losses in improving the performance of HSPS significantly.  

 Fig. 4C shows that spectral multiplexing could eliminate the frequency correlation in the photon-pairs created by 

SPDC process, and this is the basis for the single photon brightness enhancement without additional multiphoton 

emissions introduced in spectrally multiplexed HSPS. Other ways to generate frequency uncorrelated pure state are 

group velocity dispersion engineering40,41 and nonlinear interferometer42, in which higher collection efficiency could 

be realized since the loss of narrowband filters can be avoided. However, these schemes are relative difficult in 

designing those specific wavelengths for different spectral modes.  

 Furthermore, scalable multiplexing is promising in our scheme if a larger magnitude of frequency shifting is 

applied. The recently developed integrated lithium niobite EOM has low π-voltage about Vπ=1.4V and ultra-low loss 

of ∼0.5 dB, which is possible to reach a larger frequency shifting as well as better brightness and efficiency in 

spectrally multiplexed HSPS43. Another possible way to enlarge the magnitude of frequency shifting is to use an 

arbitrary waveform generator (AWG) with faster sample rate. For example, current available AWG with 100 GS/s 

sample rate shows a four-fold improvement comparing with our scheme. In this case, using the same way to prepare 

frequency shifting signal as we implemented, the magnitude of frequency shifting would be ∆f = 4κ±/2Vπ�100 GHz. 

Hence, considering a spectral mode spacing of 12.5 GHz in our implementation, up to 17 spectral modes can be 

multiplexed while consuming a bandwidth resource of only 200 GHz, which shows a good scalability.  

 We note that related result of spectrally multiplexed HSPS in 1.5 μm has been implemented by T. Hiemstra et 

al.44. In their scheme, the EOM is also employed as frequency converter, the spectral mode resolving detection of 

heralding photons is realized by a time-of-flight spectrometer while applying the linear range of sinusoidal signal for 

frequency shifting. In comparison, our scheme utilizes voltage ramp as frequency shifting signal, which suffer less 

impact from the jitter of SNSPDs and timing electronics, providing a more precise active feed-forward control. We 

summarize recent demonstrated works of multiplexing HSPS as well as their performance, as Table 1 shows. We 

highlight that our spectrally multiplexed HSPS has an ultra-high single photon purity with g(2)(0)=0.0006±0.0001 at 

an HSP rate of 3.1 kHz, which means a near ideal purity that ever reported. Our spectrally multiplexed HSPS also 

shows high indistinguishability especially in frequency domain with a HOM visibility higher than 90%, which can 

benefit a lot to quantum applications, e.g. linear optical quantum computing30. In recent year, high performance single 

photon source has been intensely investigating and becoming an important building block for quantum network and 
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quantum computing. We believe our demonstration of spectrally multiplexed HSPS is useful for developing high 

quality single photon source, and also useful for building quantum networks based on multiplexing schemes.  

 

Materials and Methods 

Detail of experimental setup 

As describe in the main text, the spectrally multiplexed HSPS is experimentally realized as following: Spectral mode 

resolving detection of heralding photons tells the feed-forward logic about the frequency information while feed-

forward logic then gives the frequency converter, i.e. electro-optic modulator, a corresponding frequency shifting 

signal. Finally signal photons are shifted into the central spectral mode. Here, pumping field centered at λp=1540.16 

nm is sent into a PPLN waveguide, which generates broadband photon-pairs with Type-0 phase matching condition. 

Note that both SHG and SPDC take place in the PPLN waveguide and both input and output ports of the PPLN 

waveguide are coupled with single mode fibers. The generated photon-pairs are selected into signal and heralding arm 

separately by a commercial DWDM with ~100 GHz bandwidth centered at λs=1531.90 nm and λi=1549.32 nm, 

respectively. The idler arm is further filtered by a fiber-based narrowband DWDM (MICS, Kylia) with channel 

spacing of 12.5 GHz and the transmission bandwidth of each channel being 6.5 GHz. For heralding and multiplexing 

procedure, those electronic signals of detection events from three different modes, fi1, fi2 and fi3, are combined by the 

coincident logic as the heralding signal while detection events of the fi1 or fi3 photons generate corresponding trigger 

signals to the feed-forward logic. Both coincident logic and feed-forward logic are realized by a programmable time-

to-digit converter (TDC, ID900, ID Quantique Corp.). 

Frequency shifting signal 

The frequency shifting signal is prepared by a series of electronic devices which are not shown in Fig. 1. For details 

of electronic setup in preparing the frequency shifting signal (see the Supplementary Materials). The AWG (70002A, 

Tektronix Corp.) operates at trigger mode, triggered by signal comes from the feed-forward logic, producing a pre-

programmed pulse signal with ultra-fast pulse edge in a sampling rate of 25 GS/s. Both high-speed amplifier (S126 A, 

SHF Communication Technologies AG) with 25 GHz bandwidth and home-made high-voltage radio frequency (RF) 

transistor are used to amplify the pulse signal. The AWG signal is first amplified by the high-speed amplifier, then 

triggers the RF transistor to fire a reversed pulse with linear high-voltage ramp which the rising edge κ+ and the falling 

edge κ− are symmetric. Here, κ± represents the voltage ramp of the pulse edge (see the Supplementary Materials). The 
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pulse is further sent to the EOM (CETC Corp.), driving the EOM to modulate the phase of the single photon wave-

packet as follow19: 

-(., /) = |-(., /)| exp 4527 89' +
;±
2<)

= / − 5?.@,																																																						(2) 

where the single photon wave-packet -(., /) is depict by the slowly-varying-envelope approximation while Vπ is the 

π-voltage of the EOM and κ± is the slope of the voltage signal. The linearly varying time-dependent change to the 

phase of the photon yields a frequency shifting with the shifting magnitude of ∆f = κ±/2Vπ. Here, the ultra-fast pulse 

edge κ+ (κ−) leads to frequency up (down) conversion. To realize precise frequency shifting, the trigger signals 

generated by detection events of fi1 and fi3 photons are combined by the feed-forward logic, where a certain electronic 

delay is added to the fi1 signals to compensate the time difference between pulse edges κ+ and κ− in the same pulse. 

The trigger mode of AWG has a low pass filter like frequency response. In higher pumping power region, the 

frequency shifting signal has higher possibility to lost. This unwanted mechanism limits the enhancement of our 

multiplexed HSPS. But it should be noted that it is available to correct this limit using faster commercial devices. As 

Fig. 3 shows, the ideal performance will follow the dotted line of theoretical calculation. Detailed characterizations of 

this frequency response is shown in the Supplementary Materials. 

Measurement of joint spectral intensity 

In the scheme of JSI measurement, we add another TNF in heralding arm before the narrowband DWDM (not shown 

in Fig. 1). The pulse laser pump is prepared by an intensity modulator (IM, CETC Corp.) that modulates CW laser 

(PPCL550, PURE Photonics Corp.) with a programmed RF signal generated from AWG at sampling rate 25 GS/s, 

which has a ~65 ps width and 500MHz repetition rate. The peak power of this pulse laser is 25 mW. With two TNFs 

(12.5 GHz bandwidth) placing separately in both heralding and signal arms, the coincidences are measured by 

swapping TNFs’ central wavelength respectively from 193.4867 THz to 193.5367 THz for heralding arm and from 

195.6631 THz to 195.7131 THz for signal arm in a step of 2.5 GHz. 

Hong-Ou-Mandel interference 

We use the aforementioned pulse laser for pumping and generating multiplexed heralded single photons while the 

weak coherent source is synchronized with the pumping laser and has the same pulse width and repetition rate. The 

wavelength of the weak coherent source is centered at 1532.03 nm, matching the output wavelength of multiplexed 

HSPS. The signal arm of the multiplexed source and weak coherent source is coupled by a 2×2 beam splitter with 

both output ports being sent to SNSPDs (P-CS-6, PHPTEC Corp.). By varying the optical tunable delay line and hence 
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changing the relative delay between the two sources, HOM effect can be observed (see the Supplementary Materials). 

Two-fold and three-fold coincidences are realized by measuring the coincident count between two beam splitter 

outputs without and with being conditioned by heralding signal, respectively. 
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Figure 1. Experimental setup for spectrally multiplexed HSPS. PPLN: Periodically-Poled Lithium Niobate; DWDM: Dense 

Wavelength Divided Multiplexer; EOM: Electro-Optic phase Modulator; TNF: Tunable Narrowband Filter; BS: Beam Splitter; PC: 

Polarization Controller; TDC: Time-to-Digit Convertor; SNSPD: Superconducting Nanowire Single Photon Detector. 
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Figure 2. Coincidence count rates without and with frequency shifting. (A) and (B) are the measured coincidence count rates 

among three individual spectral modes without and with spectral multiplexing, respectively, under the CW pumping power of 4 

mW. The horizontal axis corresponds to the relative frequency difference with respect to fs0. Red rectangles, orange circles and 

yellow triangles represent the coincident count rate of single photons to heralding photons at spectral modes fs+, fs0, and fs−, 

respectively. Dashed curves are fitted by Gaussian function which describe the frequency response of individual channels from the 

narrowband DWDM. 
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Figure 3. Experimental results from multiplexing of three frequency modes. Blue diamonds are multiplexed source and red 

rectangles, orange circles and yellow triangles represent spectral modes fs+, fs0, and fs−, respectively. Dashed curves are fitted 

according the theory model of our experiment. Dotted line is the theoretical calculation under the condition of perfect frequency 

reaction of electronic devices. (A) HSP rate versus pump power. The HSP rate of multiplexed source is 2.80±0.12 times larger than 

that of individual spectral modes at low pump power. The multiplexed HSP rate reaches 23.6 kHz under the pumping power of 

16.98 mW; (B) CAR versus HSP rate. The CAR of multiplexed source shows an improved performance than that of individual 

HSPS under fixed HSP rate. At low count rate, the multiplexed source has a CAR exceeding 2000 along with 2.80±0.12 times 

enhancement while remains high at 100 for large HSP rates. (C) g(2)(0) versus HSP rate. We select the spectral mode fs0 as a contrast 

to its multiplexed counterpart. It shows that the g(2)(0) of individual source improves nearly 3 times rapider than the multiplexed 

one in low HSP rate region as well as theoretically. Inset: heralded single photon auto-correlation at HSP rate of 21.1 kHz. The 

black curve represents the g(2)(τ) fitting. The antibunching dip is of 0.0140±0.0009. MUX: spectral multiplexing; T-C: theoretical 

calculation; HPS: heralded photon rate. Error bars are estimated using Poisson statistics. 
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Figure 4. Joint spectrum intensity (JSI) between heralding and signal photons in the fs–fi plane. Three JSIs shown here are 

measured by placing two TNFs in the signal arm and heralding arm, respectively, and counting the coincidences by sweeping 

frequencies of fs and fi. The top and right graphs for each JSI represent the marginal intensity distribution of heralding and signal 

side, respectively. The vertical and horizontal white (black) dashed lines depict the bandwidth of filters for the heralding and signal 

arms, respectively. Here, fi1=193.4992 THz (1549.36 nm), fi2=193.5117 THz (1549.26 nm) and fi3=193.5242 THz (1549.16 nm) 

while fs+=195.7006 THz (1531.93 nm), fs0=195.6881 THz (1532.03 nm) and fs−=195.6756 THz (1532.13 nm). (A) Photon-pairs 

directly out of PPLN waveguide without filtering. The diagonal band exhibits a highly frequency correlation. (B) Photon-pairs with 

narrowband DWDM applied in heralding arm when multiplexing disabled. The JSI is broken into islands with three spectral mode 

corresponding to the narrowband DWDM. The circle-like island from each spectral mode exhibits a good mode purity. Note that 

spectral mode fs+ has an additional 1 dB loss from idler arm. c Photon-pairs with multiplexing enabled. The islands of spectral 

modes fs+ and fs− are shifted into the central spectral mode. 
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Figure 5. HOM interference between the multiplexed source and the weak coherent source. Red circles are two-fold 

coincidences measured without heralding procedure. Blue diamonds are three-fold coincidences measured under the condition by 

heralding procedure without subtracting the contribution of multiphoton event. Both two-fold and three-fold coincidences are fitted 

by gaussian function with red and blue curves and have the visibility of 39.85%±1.63% and 60.99%±4.80%, respectively. Both 

two-fold and three-fold visibility are 1000-time Gaussian fitting results with the Monte Carlo method. The red and blue bands 

represent the fitting variances of two-fold and three-fold HOM effects, respectively. The black solid curve represents the 

theoretically calculated upper bound of the three-fold HOM interference at 64.67%. Error bars are estimated using Poisson statistics. 
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Table 1. Summary of multiplexing HSPS performance among previous demonstrations. Sw. Num.: switch number; EF: enhancement factor; BBO: β-barium-borate crystal; 

PCW: photonic crystal waveguide; PLZT: lead lanthanum zirconium titanate switch; BiBO: bismuth barium borate; PCF: photonic crystal fiber; SNOW: silicon nanowire optical 

waveguide; BS-FWM: Bragg scattering four-wave mixing; PPKTP: periodically poled potassium titanyl phosphate; SLM: spatial light modulator. 

Author/Year Medium Platform Degree l (nm) Mode 
Num. Switch Sw. 

Num. 
g(2)(0) Rate 

(kHz) EF 

Ma et al.10/2011 BBO/SPDC Free-space Space 1550 4 EOM 3 0.08 0.7 3.61 
Collins et al.11/2013 PhCW/SFWM Integrated Space 1550 2 PLZTS 1 0.19 0.02 1.63 
Xiong et al.12/2013 PhCW/SFWM Integrated Space 1550 2 PLZTS 1 - 0.06 1.51 
Meany et al.15/2014 PPLN/SPDC Integrated Space 1550 4 PLZTS 3 - ∼0.07 3 
Kaneda et al.16/2015 BiBO/SPDC Free-space Time 710 30 Pockels cell 1 0.479 19.3 ∼6 
F.-Jones et al.13/2016 PCF/SFWM Fiber Space 1550 2 Optical switch 1 0.05 0.5 1.75 
Xiong et al.17/2016 SNOW/SFWM Integrated Time 1545 4 PLZTS 3 - 0.6 2 

Mendoza et al.14/2016 PPLN/SPDC Fiber Space & 
time 1547 8 Optical switch 3 - 0.3 2.14 

Puigibert et al.19/2017 PPLN/SPDC Fiber Frequency 795 3 EOM 1 0.06 0.3 ∼1 
Joshi et al.20/2018 PPLN/SPDC Fiber Frequency 1280 3 BS-FWM 1 0.07 23 2.2 
Liu et al.21/2019 PPKTP/SPDC Free-space OAM 1550 3 SLM 1 0.048 ∼4.2 1.47 

Kaneda et al.18/2019 PPKTP/SPDC Free-space Time 1590 40 Pockels cell 1 
0.007 
0.088 
0.269 

25.5 
206 
334 

27.9 
18.7 
9.7 

Hiemstra et al. 44 /2020 PPKTP/SPDC Fiber Frequency 1565 ∼3 EOM 1 ∼0.01 ∼12 2.7 
Our work PPLN/SPDC Fiber Frequency 1532 3 EOM 1 0.0006 23.6 ∼2.8 
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Supplementary Text I  

Electronic devices for generating frequency shifting signal 

In our scheme of spectrally multiplexed heralded single photon source (HSPS), the frequency shifting signal is 

generated from a series of electronic devices, see Fig. S1(A). The key component in the circuit is a high-voltage and 

large-bandwidth radio frequency (RF) transistor that acts as an inverting electrical amplifier. The detection event from 

the fi1 or fi3 photon can generate an electrical pulse by a feed-forward logic circuit, which triggers the generation of a 

high-voltage pulse with very fast falling and raising edges, see Fig. S1(B). The enhancement versus heralding rate of 

the multiplexed source system is shown in Fig. S1(C). The deterioration of enhancement is mainly contributed to the 

poor frequency response of the arbitrary waveform generator (AWG). Here, the AWG runs in trigger mode which 

each input signal that comes from the feed-forward logic generates a corresponding pulse in the AWG. The trigger 

mode of AWG has a low-pass like frequency response, which we model as a low order Butterworth filter with a 3 dB 

bandwidth of 1.2 MHz. The feed-forward signal and therefore the frequency shifting signal has a higher possibility to 

loss under higher heralding rate. In this way, fs+ and fs− photons have less possibility to be shifted into the center 
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spectral mode and ultimately degrade the enhancement of multiplexed source. Similarly, the heralding efficiency are 

also affected by this mechanism as the inset of Fig. S1(C) shows. The data points are in agreement with the theoretical 

prediction. Here, we note that the degradation of enhancement is only affected by the inner mechanism of AWG. 

Using currently off-the-shelf electronic devices, the performance of our multiplexed source will go as the theoretical 

calculation curve (see main text Fig. 3). 

 

Figure S1. (A) Experimental setup for generation of frequency shifting signals. AWG: Arbitrary Waveform Generator; Amp.: 

Microwave Amplifier; (B) Typical electronic signal for frequency shifting; (C) Enhancement of the multiplexed source versus 

heralding rate. Inset: Heralding efficiency of the multiplexed source versus pump power. Green circles and blue diamonds are 

measured data while green and blue dashed curves are the result of theoretical calculation. Error bars are estimated using Poisson 

statistics. 
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Supplementary Text II  

Measurement of Hong-Ou-Mandel interference 

The setup of our Hong-Ou-Mandel (HOM) interference from individual sources are shown in Fig. S2. Here, 

multiplexing heralded single photon source and weak coherent source are used to perform the HOM interference. The 

pulsed laser is synchronized with the photon-pair source with 6.4 GHz pulse width and 500 MHz repetition rate. The 

HOM effect only occurs when two input photons are indistinguishable. Thus, the wavelength of the two sources are 

both centered at 1532.03 nm (fs0) while input photons are both aligned to the same polarization with the help of 

polarization controllers. Noting that multiplexing is actively enabled when performing HOM interference (feed-

forward logic and frequency shifting signal are not shown in Fig. S2). The output ports of the beam splitter are sent to 

two superconducting nanowire single photon detectors (SNSPDs) while the detection signals are collected and 

analyzed by the coincident logic. Beside for feed-forward control, the heralding signals are also combined and sent to 

the coincident logic. The heralding signal is a conditional trigger for three-fold coincidences. The coincident logic can 

simultaneously analyze the coincident events of the two beam splitter output ports with and without the trigger of 

heralding signal, and hence we can both measure two-fold and three-fold coincidences at the same time. Therefore, 

by varying the optical tunable delay line and hence changing the relative delay between the two sources, HOM effect 

can be observed. 

 

Figure S2. Experimental setup of HOM interference from individual sources (the feed-forward logic and frequency converter are 

not shown here). M-HSPS: Multiplexed Heralded Single Photon Source; TNF: Tunable Narrowband Filter; VOA: Variable Optical 

Attenuator; OVDL: Optical Variable Delay Line; PC: Polarization Controller; BS: Beam Splitter; Narrowband DWDM: 

Narrowband Dense Wavelength Divided Multiplexer; SNSPD: Superconducting Nanowire Single Photon Detector. 
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Supplementary Text III  

Hong-Ou-Mandel interference visibility 

To understand the result of main text Fig. 5, we start with analyzing the ideal HOM effect from independent sources. 

First, let us consider the 50:50 beam splitter with two input ports and two output ports, where field operators for input 

ports are represented as !"!, !"" while those for output ports are represented as !"#, !"$. We can express these four field 

operators as: 

!"# = (!"! + !"")/√2,																																																																														(,1) 

!"$ = (!"! − !"")/√2,																																																																														(,2) 

which we can calculate the output coincidence probability by considering their input fields. Here, the output 

coincidence probability / can be described as1, 2: 

/ ∝ 〈!"#
%(2)!"$

%(2&)!"$(2&)!"#(2)〉 =
1

4
5

〈!"!
%(2)!"!

%(2&)!"!(2&)!"!(2)〉 + 〈!""
%(2)!""

%(2&)!""(2&)!""(2)〉

+〈!"!
%(2)!""

%(2&)!""(2&)!"!(2)〉 + 〈!""
%(2)!"!

%(2&)!"!(2&)!""(2)〉

−〈!""
%(2)!"!

%(2&)!""(2&)!"!(2)〉 − 〈!"!
%(2)!""

%(2&)!"!(2&)!""(2)〉

6,										(,3) 

where in the right-hand side of this equation, the first two terms are auto-correlation function for the two input 

fields while the third and the fourth terms are cross-correlation between these two fields. The last two terms 

serve as interference terms which leads interference effect. We can further derive a simpler description of Eqs. 

(S3) as follow: 

/ ∝
1

4
89!

(")(0);<!
" + 9"

(")(0);<"
" + 2;<!;<" − 2;<!;<"=!">,																																										(,4) 

where ;<! and ;<" are the mean photon number for the input fields of port1 and port2, respectively, and =!" =

〈!"!
%(2)!""

%(2&)!"!(2&)!""(2)〉/;<!;<" represents the interference factor which ranges from 0 to 1 and depends on the 

temporal overlap of the two input fields. When two input field are completely overlapped, i.e.	2 = 2& , the 

interference factor shows =!" = 0, which corresponding to the dip of HOM effect; When two input fields are 

temporally separated, the interference factor becomes 1, i.e.	=!" = 1, and hence corresponds to the wing.  

 Now, considering the input fields !"! and !"" are ideally a thermal field and a coherent field, respectively, as 

the two-fold coincidence we demonstrate. We can derive the visibility of two-fold coincidence from Eq.(S3): 

?)*+,-+./ =
2

2
;<!
;<"
+
;<"
;<!
+ 2

,																																																																				(,5) 
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In our implementation, we have a balanced input fields, which means that the mean photon number for the two 

input fields are equal, i.e. ;<! = ;<". That leads to a theoretical upper bound of two-fold visibility as ?)*+,-+./ =

40%.  

 Next, we consider the input field !"! and !"" are ideally a single photon field and a coherent field, respectively, 

and hence the three-fold coincidence can also express as: 

?)0122,-+./ =
2

;<"
;<!
+ 2

.																																																																										(,6) 

Again, in a balanced input with ;<! = ;<", it can be obtained that a theoretical three-fold visibility is upper bounded 

to ?)0122,-+./ = 66.67%. Considering a 97% degrade from the mismatching of independent bandwidths, the real 

theoretical upper bound is 64.67%. Noting that in the configuration of coincidence logic, the single photon 

coincident events are post-selected by heralding signal with gate logic, which the ratio of mean photon number 

between both input fields remains intact. 

 In HOM interference, the premise for ideal non-classical interference is that the photon participating in the 

interference is spectrally pure. The imperfection of single photon spectral purity should be taken into consideration 

when revealing the non-classical nature of the three-fold coincidence. For the imperfect spectral purity, we should 

take into account the unwanted external broadening mechanism. In our experiment, the bandwidth of the Gaussian 

pumping pulses is 6.4 GHz. Considering the SHG process and heralding procedure, the heralded signal photons have 

a broadened external bandwidth of 11.2 GHz, which is a convolution result of pump photon bandwidth and heralding 

photon bandwidth. Such mismatch between the internal and external bandwidth reduces the spectral purity of the 

single photon and shows an 81.16% deterioration of visibility3 as Fig. S3 shows. This degrade can be further improved 

by applying a narrower output filter for the HSPS. After correcting the spectral purity imperfection, the visibility of 

three-fold coincidences ends up with 60.99%±3.50%. 
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Figure S3. Three-fold coincidences before (green diamonds) and after (blue diamonds) correction. Error bars are estimated using 

Poisson statistics. 
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Supplementary Text IV  

Losses and efficiency 

The implementation of multiplexed HSPS has many fiber-based optical components, which introduce relatively large 

losses causing inefficient photon collection on both of heralding and heralded sides. We measure the overall 

component losses and efficiencies of the signal arm and heralding arm in three frequency modes, as shown in Table 

S1 and Table S2.  The total transmission efficiencies are the direct measurement of the component losses while the 

collection efficiencies are calculated by Klyshko method4. Here, the transmission efficiency in signal arm is in 

accordance with its collection efficiency. The mismatch between transmission efficiency and collection efficiency in 

heralding arm is because of the difference of filtering bandwidths between signal and idler arms, which reducing the 

collection efficiency by a ratio of about 6.5	EFG/12.5	EFG = 0.52. The residual small deviation might be attributed 

to the measurement error of component losses. 

 

Components Losses (dB) 

PPLN waveguide output coupling 2.50 

DWDM-Signal 1.83 

DWDM-Heralding 2.21 

Narrowband DWDM- fi1 4.58 

Narrowband DWDM- fi2 4.58 

Narrowband DWDM- fi3 4.60 

Delay fiber 0.40 

EOM 4.56 

TNF 5.30 

SNSPD 1.80∼2.20 

 

Table S1. Overall component losses of the signal and heralding arms. PPLN: Periodically-Poled Lithium Niobate; DWDM: Dense 

Wavelength Divided Multiplexer; EOM: Electro-Optic phase Modulator; TNF: Tunable Narrowband Filter; SNSPD: 

Superconducting Nanowire Single Photon detector. 
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Efficiencies % 

Transmission efficiency-Signal arm 2.10 

Transmission efficiency-Heralding arm 7.06 

Collection efficiency-Signal arm 2.15 

Collection efficiency- fi1 5.34 

Collection efficiency- fi2 4.87 

Collection efficiency- fi3 5.43 

 

Table S2. Total transmission efficiencies and collection efficiencies of the signal and heralding arms. 
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