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Abstract

In the setting of the classical Cramér-Lundberg risk insurance model, Albrecher and
Hipp [1] introduced the idea of tax payments. More precisely, if X = {Xt : t ≥ 0}
represents the Cramér-Lundberg process and, for all t ≥ 0, St = sups≤tXs, then [1]
study Xt − γSt, t ≥ 0, where γ ∈ (0, 1) is the rate at which tax is paid. This model
has been generalised to the setting that X is a spectrally negative Lévy process by
Albrecher et al. [2]. Finally Kyprianou and Zhou [7] extend this model further by
allowing the rate at which tax is paid with respect to the process S = {St : t ≥ 0} to
vary as a function of the current value of S. Specifically, they consider the, so-called
perturbed spectrally negative Lévy process,

Ut = Xt −

∫

(0,t]
γ(Su) dSu, t ≥ 0,

under the assumptions γ : [0,∞) → [0, 1) and
∫∞
0 (1− γ(s))ds = ∞.

In this article we show that a number of the identities in [7] are still valid for a
much more general class of rate functions γ : [0,∞) → R. Moreover, we show that,
with appropriately chosen γ, the perturbed process can pass continuously (ie. creep)
into (−∞, 0) in two different ways.

Key words and phrases: Spectrally negative Lévy process, excursion theory, creep-
ing, ruin.

MSC 2010 subject classifications: 60K05, 60K15, 91B30.

1 Introduction

Let X = {Xt : t ≥ 0} be a spectrally negative Lévy process defined on a filtered probability
space (Ω,F ,F = {Ft}t≥0,P) satisfying the natural conditions (cf. p.39, Section 1.3 of [5]).
That is to say, a one-dimensional process which has stationary and independent increments,
càdlàg paths with only negative discontinuities but which does not have monotone paths.
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For x ∈ R, denote by Px the probability measure under which X starts at x and write
P0 = P. It is well known that a spectrally negative Lévy process X is characterised by its
Lévy triplet (γ, σ,Π), where σ ≥ 0, γ ∈ R and Π is a measure on (−∞, 0) satisfying the
condition

∫

(−∞,0)
(1∧x2) Π(dx) <∞. By the Lévy-Itô decomposition, X may be represented

in the form
Xt = σBt − γt+X

(1)
t +X

(2)
t , (1)

where {Bt : t ≥ 0} is a standard Brownian motion, {X
(1)
t : t ≥ 0} is a compound Poisson

process with discontinuities of magnitude bigger than or equal to one and {X
(2)
t : t ≥ 0} is a

square integrable martingale with discontinuities of magnitude strictly smaller than one and
the three processes are mutually independent. In particular, if X is of bounded variation,
the decomposition reduces to

Xt = dt− ηt (2)

where d > 0 and {ηt : t ≥ 0} is a driftless subordinator. Further let

ψ(θ) := logE[eθX1 ], θ ≥ 0,

be the Laplace exponent of X which is known to be a strictly convex and infinitely differen-
tiable function on [0,∞). The asymptotic behavior of X is characterised by ψ′(0+), so that
X drifts to ±∞ or oscillates according to whether ±ψ′(0+) > 0 or, respectively, ψ′(0+) = 0.

Denote by S = {St : t ≥ 0} the running supremum, that is, St = sups≤tXs for each
t ≥ 0. We are interested in perturbing X by some functional of its running supremum S.
Motivated by the results in [7], our primary object of study is given by U = {Ut : t ≥ 0},
where

Ut = Xt −

∫

(0,t]

γ(Su) dSu, t ≥ 0,

for some locally integrable function γ : [0,∞) → R. Such processes have appeared in the
context of insurance risk models with tax, where X plays the role of the so-called surplus
process (the wealth of an insurance company) and γ characterises the rate at which tax
is paid with respect to the running maximum. One may also think of the process U as a
spectrally negative Lévy process perturbed by a functional of its maximum in the spirit of
[9]. In the special case that γ : [0,∞) → [0, 1) and

∫∞

0
(1−γ(s)) ds = ∞ our process U agrees

with the process studied in [7]. Under the even stronger assumption that γ is a constant
in (0, 1), the resulting process has been considered in [1] and [2]. In the simple case that
γ = 0 we are back to the process X , the so-called Lévy insurance risk process in the context
of ruin theory. The main objective of this article is to show that all of the identities in [7]
carry over to the setting where γ belongs to the general class of locally integrable functions.
Moreover, we will show that, for some choices of γ it is possible for the process U to enter
(−∞, 0) continuously in two different ways.

The key observation which, with the help of excursion theory, leads to all our results is
that we may write U in the form

Ut = At − (St −Xt), t ≥ 0, (3)

where the process A = {At : t ≥ 0} is given by

At := St −

∫

(0,t]

γ(Su) dSu, t ≥ 0. (4)
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Assuming that X0 = x, one may write At = γ̄(St), where

γ̄(s) := s−

∫ s

x

γ(y) dy, s ≥ x.

Note that A is a process of bounded variation and accordingly we may think of dA as a signed
measure whose support, say A, is contained in the support of the measure dS. Suppose now
that B consists of the countable union of open intervals of time which correspond to the
epochs that the process S −X spends away from zero. Then A ∩ B = ∅. As a consequence
we may interpret (3) as a path decomposition in which excursions of X from its maximum
(equivalently excursions of S−X away from zero) are ‘hung’ off the trajectory of A between
its increment times (see Fig. 1 for a symbolic representation). A more detailed description
of this excursion-theoretic decomposition will follow in due course.

We conclude this section by introducing the so-called scale functions (cf. [8]) which will
henceforth play an important role and are defined as follows. For each given q ≥ 0, we
have W (q)(x) = 0 when x < 0, and otherwise on [0,∞), W (q) is the unique right continuous
function whose Laplace transform is

∫ ∞

0

e−θxW (q)(x) dx =
1

ψ(θ)− q
, θ > Φ(q),

where Φ(q) is the largest solution to the equation ψ(θ) = q (there are at most two). For
notational convenience we will write W (0) = W . It is shown in Lemma 2.3 of [6] that,
for any q ≥ 0, W (q) is absolutely continuous with respect to Lebesgue measure and strictly
increasing. If X is of unbounded variation, it is additionally known thatW (q) is continuously
differentiable on (0,∞) (cf. Lemma 2.4 of [6]). In either case we shall denote by W (q)′ the
associated density whenever it appears in a Lebesgue integral. Finally, the behavior of W (q)

and its right-derivative, written W
(q)′
+ , at zero are known. Specifically, for all q ≥ 0, we have

W (q)(0+) =

{

d−1, if X is of bounded variation,

0, if X is of unbounded variation.
(5)

and

W
(q)′
+ (0+) =

{

q+Π(−∞,0)
d2

, if σ = 0 and Π(−∞, 0) <∞,
2
σ2 , if σ > 0 or Π(−∞, 0) = ∞,

(6)

where we understand the second case to be +∞ when σ = 0 (cf. Lemma 3.1 and 3.2 of [6]).

2 Results

Let us introduce

σa := inf{t > 0 : St = a} and T−
0 := inf{t > 0 : Ut < 0},

where we use the usual convention inf ∅ := ∞.
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Fig. 1: A symbolic realisation of the trajectory of U up to the moment it first enters (−∞, 0),
with its corresponding trace in the (x, s)-plane. The dashed u-shaped curves are schematic
representations of excursions of X away from its maximum or, put differently, excursion of
U away from A.

Theorem 2.1 (One-sided and two-sided exit formulae) Let x > 0 be given and define
a∗(x) := inf{s ∈ [x,∞) : γ̄(s) < 0} ∈ (x,∞], the maximal value S can possibly attain up to
time T−

0 . Then, for any q ≥ 0 and x ≤ a < a∗(x), we have

(a)

Ex

[

e−qσa1{σa<T−

0 }

]

= exp

(

−

∫ a

x

W (q)′(γ̄(s))

W (q)(γ̄(s))
ds

)

, (7)

(b)

Ex

[

e−qT−

0 1{T−

0 <σa}

]

=

∫ a

x

exp

(

−

∫ t

x

W (q)′(γ̄(s))

W (q)(γ̄(s))
ds

)

f(γ̄(t)) dt,

where

f(z) =
Z(q)(z)W (q)′(z)

W (q)(z)
− qW (q)(z)

and Z(q)(x) = 1 + q
∫ x

0
W (q)(y)dy.

(c) Suppose that a∗(x) = ∞. Then

Ex

[

e−qT−

0 1{T−

0 <∞}

]

=

∫ ∞

x

exp

(

−

∫ t

x

W (q)′(γ̄(s))

W (q)(γ̄(s))
ds

)

f(γ̄(t)) dt. (8)

In particular,

Px[T
−
0 <∞] = 1− exp

(

−

∫ ∞

x

W ′(γ̄(s))

W (γ̄(s))
ds

)

. (9)

Remark 2.2 If we assume that γ : [0,∞) → [0, 1) with
∫∞

0
(1 − γ(s)) ds = ∞, then γ̄ is

continuous, strictly increasing and has a well-defined inverse on [x,∞) which we shall denote
by γ̄−1. Then, for a ≥ x, if we write T+

a = inf{t > 0 : Ut > a} = σγ̄−1(a), Theorem 2.1 reads

Ex

[

e−qT+
a 1{T+

a <T−

0 }

]

= exp

(

−

∫ γ̄−1(a)

x

W (q)′(γ̄(s))

W (q)(γ̄(s))
ds

)

= exp

(

−

∫ a

x

W (q)′(y)

W (q)(y)(1− γ(γ̄−1(y)))
dy

)

(10)
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which agrees with Theorem 1.1 in [7]. Similarly, if γ = 0, then Ut = Xt, τ
+
a := inf{t > 0 :

Xt > a} and Theorem 2.1 reduces to

Ex

[

e−qτ+a 1{τ+a <T−

0 }

]

= exp

(

−

∫ a

x

W (q)′(s)

W (q)(s)
ds

)

=
W (q)(x)

W (q)(a)

and

Ex

[

e−qT−

0 1{T−

0 <τ+a }

]

=

∫ a

x

W (q)(x)

W (q)(t)
f(t) dt

= −W (q)(x)

∫ a

x

(

Z(q)

W (q)

)′

(t) dt

= Z(q)(x)−W (q)(x)
Z(q)(a)

W (q)(a)
,

where Z(q)(x) := 1+ q
∫ x

0
W (q)(y) dy. This agrees with equations (8.8) and (8.9) of [8]. Also,

by a straightforward calculation one sees that equations (8) and (9) reduce to equations (8.6)
und (8.7) of [8].

Remark 2.3 Fix x > 0 and suppose γ(s) ≡ γ ∈ (1,∞). It follows that γ̄(s) = s(1−γ)+ γx
and a∗(x) = γx

γ−1
. Then, for q ≥ 0 and x ≤ a < a∗(x), the expression in (7) simplifies to

Ex

[

e−qσa1{σa<T−

0 }

]

= exp

(

1

1− γ

∫ x

a(1−γ)+γx

W (q)′(u)

W (q)(u)
du

)

=

(

W (q)(a(1− γ) + γx)

W (q)(x)

)
1

γ−1

.

Moreover, if γ(s) ≡ γ ∈ (0, 1), one may recover the first formula of Remark 1.1 in [7] by a
similar computation or an application of (10).

Remark 2.4 Let x > 0 be given and assume that X drifts to +∞ or, equivalently, that
ψ′(0+) > 0. Moreover, suppose that γ(s) ≡ γ ∈ (0, 1) and hence γ̄(s) = s(1−γ)+γx. Then,
using the fact that lims→∞W (s) = 1/ψ′(0+) (cf. Lemma 3.3 in [6]), it follows from (9) that

Px[T
−
0 <∞] = 1− exp

(

−
1

1− γ

∫ ∞

x

W ′(s)

W (s)
ds

)

= 1− (ψ′(0+)W (x))
1

1−γ .

This is analogous to equation (8.7) in [8].

The proof of Theorem 2.1 makes heavy use of excursion theory for the process S − X .
We refer the reader to [4], Chapters 6 and 7 for background reading. We shall spend a
moment setting up some necessary notation which will be used throughout the remainder of
the paper. The process Lt := St − x serves as local time at 0 for the Markov process S −X
under Px. Write L−1 := {L−1

t : t ≥ 0} for the right-continuous inverse of L. The Poisson
point process of excursion indexed by local time shall be denoted by {(t, ǫt) : t ≥ 0}, where

ǫt = {ǫt(s) := XL−1
t

−XL−1
t−+s : 0 < s < L−1

t − L−1
t−}
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whenever L−1
t − L−1

t− > 0. Accordingly, we refer to a generic excursion as ǫ(·) (or just ǫ
for short) belonging to the space E of canonical excursions. The intensity measure of the
process {(t, ǫt) : t ≥ 0} is given by dt× dn, where n is a measure on the space of excursions
(the excursion measure). A functional of the canonical excursion which will be of interest
is ǫ = sups<ζ ǫ(s), where ζ(ǫ) = ζ is the length of an excursion. A useful formula for this
functional that we shall make use of is the following (cf. [8], Equation (8.18)):

n(ǫ > x) =
W ′(x)

W (x)
, (11)

provided that x is not a discontinuity point in the derivative of W , which is only a concern
when X is of bounded variation, in which case there are at most countably many such dis-
continuities. Another functional of ǫ that we will also use is ρk := inf{s > 0 : ǫ(s) > k}, the
first passage time above k of the canonical excursion ǫ. Note that, for a ≥ x, it follows that,
under Px, the event that St = a coincides with the event that the process St climbs from x
to a for the first time. Consequently, L−1

a−x = τ+a .

Proof of Theorem 2.1:
(a) For a ≥ x we have

{σa < T−
0 } = {ǭs ≤ γ̄(x+ s) for all 0 ≤ s ≤ a− x}.

Recall that for each q ≥ 0, we have the exponential change of measure

dPΦ(q)

dP

∣

∣

∣

∣

{Xs:s≤t}

= eΦ(q)Xt−qt, t ≥ 0.

Then, recalling that for each t ≥ 0, L−1
t is a stopping time, we have for x > 0,

Ex

[

e−qσa1{σa<τ−0 }

]

= Ex

[

e−qL−1
a−x1{ǫs≤γ̄(x+s) for all 0≤s≤a−x}

]

= e−(a−x)Φ(q)
E
Φ(q)
x

[

1{ǫs≤γ̄(x+s) for all 0≤s≤a−x}

]

= e−(a−x)Φ(q) exp

(

−

∫ a−x

0

nΦ(q)(ǫ > γ̄(x+ s) ds)

)

= exp

(

−

∫ a−x

0

W (q)′(γ̄(x+ s))

W (q)(γ̄(x+ s))
ds

)

. (12)

Here, nΦ(q) is the excursion measure of S −X under PΦ(q), which is known to satisfy

nΦ(q)(ǭ > x) =
W (q)′(x)

W (q)(x)
− Φ(q);
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see for example formula (2.7) of [7]. Now changing variables in (12) gives (7).
(b) An application of the compensation formula yields

Ex

[

e−qT−

0 1{T−

0 <σa}

]

= Ex

[

∑

0<t≤a−x

e−qL−1
t−−qργ̄(t+x)(ǫt)1{ǫs≤γ̄(s+x)∀s<t}1{ǫt>γ̄(t+x)}

]

= Ex

[
∫ a−x

0

e−qL−1
t 1{ǫs≤γ̄(s+x)∀s<t}

∫

E

e−qργ̄(t+x)(ǫ)1{ǫ>γ̄(t+x)}n(dǫ) dt

]

= Ex

[
∫ a−x

0

e−qL−1
t 1{ǫs≤γ̄(s+x)∀s<t}f(γ̄(t+ x)) dt

]

=

∫ a−x

0

e−tΦ(q)
E
Φ(q)
x

[

1{ǫs≤γ̄(s+x)∀s<t}

]

f(γ̄(t + x)) dt

=

∫ a−x

0

e−tΦ(q) exp

(

−

∫ t

0

nΦ(q)(ǫ > γ̄(s+ x)) ds

)

f(γ̄(t+ x)) dt

=

∫ a−x

0

exp

(

−

∫ t

0

W (q)′(γ̄(s+ x))

W (q)(γ̄(s+ x))
ds

)

f(γ̄(t + x)) dt,

where in the first equality the time index runs over local times and the sum is the usual
shorthand for integration with respect to the Poisson counting measure of excursions, and

f(z) =

∫

E

e−qρz(ǫ)1{ǫ>z}n(dǫ) =
Z(q)(z)W (q)′(z)

W (q)(z)
− qW (q)(z)

is an expression taken from Theorem 1 (equation (18)) of [3]. The proof is completed by a
straightforward change of variables.

(c) The first part follows by letting a→ ∞ in (b) and the second part by looking at the
complement and then using a similar argument as in (a). �

3 Creeping

In principle there are two ways for U to enter (−∞, 0) continuously; either it goes below zero
by creeping during an excursion away from the curve γ̄ or it creeps over zero whilst moving
along the curve γ̄ at the moment that γ̄ = 0 (see Fig. 2). This leads to the next definition.

Definition 3.1 We say that the process U exhibits type I creeping under Px if Px(UT−

0
=

0; σa∗(x) > T−
0 ) > 0. We say that the process U exhibits type II creeping under Px if a∗(x) <

∞ and Px[σa∗(x) = T−
0 ] > 0. Note that necessarily UT−

0
= 0 on the event {σa∗(x) = T−

0 }.

In Section 4 we shall make some remarks regarding type I creeping. However, for the present,
let us dwell on type II creeping, for which there exists an integral test.

Corollary 3.2 Fix x > 0 and recall that a∗(x) = inf{s ∈ [x,∞) : γ̄(s) < 0}. Assume
a∗(x) <∞. We have for all q ≥ 0,

Ex

[

e−qT−

0 1{T−

0 =σa∗(x)}

]

= exp

(

−

∫ a∗(x)

x

W (q)′(γ̄(s))

W (q)(γ̄(s))
ds

)

.
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Fig. 2: Two different ways for U to make first passage into (−∞, 0).

If X is a compound Poisson process, then the time X spends at the maximum has strictly
positive Lebesgue measure and hence one would intuitively expect that type II creeping
occurs. In fact, under some assumptions on the behaviour of γ̄, it turns out that only
spectrally negative Lévy processes of bounded variation possess the type II creeping property.

Corollary 3.3 Fix x > 0 and assume that γ : [0,∞) → (1,∞) is continuous. Further
suppose that a∗(x) < ∞. Then X exhibits type II creeping under Px if and only if X is of
bounded variation.

Proof: First observe that the assumptions on γ imply that γ̄ : (x, a∗(x)) → (x, 0) is
a continuously differentiable bijection. Further let C1 := min0≤s≤a∗(x) |1 − γ(s)| > 0 and
C2 := max0≤s≤a∗(x) |1− γ(s)| <∞.

If X is of bounded variation, and hence takes the form (2), we have by a change of
variables and (5),

∫ a∗(x)

x

W ′(γ̄(s))

W (γ̄(s))
ds =

∫ x

0

W ′(t)

W (t)|1− γ(γ̄−1(t))|
dt

≤
1

C1

∫ x

0

log(W )′(t) dt

=
1

C1

[

log(W (x))− log(1/d)
]

and hence type II creeping follows. On the other hand, if X is of unbounded variation, it
follows similarly that

∫ a∗(x)

x

W ′(γ̄(s))

W (γ̄(s))
ds ≥

1

C2

∫ x

0

log(W )′(t) dt ≥
1

C2

[

log(W (x))− log(W (0+))
]

.

The last expression equals infinity since W (0+) = 0 (see (5)) and, consequently, type II
creeping cannot occur. �

We conclude this section with an example of type II creeping for a process X which
includes a Gaussian component σ > 0 in the case that γ̄ has infinite gradient when hitting
zero. This shows that relaxing the conditions on γ can lead to type II creeping in the
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unbounded variation case. To this end, we need some auxiliary quantities. Let a > 0 be
fixed and define, for y ∈ [0, a],

f(y) := y − (a− y)
1
2 .

Clearly f(0) < 0 and f(a) > 0. Since f is strictly increasing on [0, a] and continuous, by the
Intermediate Value Theorem, there exists a unique x∗ ∈ (0, a) such that f(x∗) = 0. This x∗

will now serve as starting point for X . Additionally, let γ ∈ (1,∞) and define for s ∈ [0,∞),

γ(s) :=

{

1 + 1
2
(a− s)−

1
2 , s ≤ a,

γ, s > a.

Hence, using the definition of x∗, we see that

γ̄(s) =

{

(a− s)
1
2 , s ≤ a

(1− γ)(s− a), s > a.

In particular, a∗(x∗) = a. Changing variables and using the fact that σ > 0 (which implies
that W ∈ C1(0,∞) and limu↓0 uW (u)−1 = σ2/2) yields

∫ a

x∗

W ′(γ̄(s))

W (γ̄(s))
ds = 2

∫ x∗

0

uW ′(u)

W (u)
du ≤ 2x∗ sup

0<u≤x∗

uW ′(u)

W (u)
<∞.

Hence, type II creeping occurs under Px∗.

4 Additional results relevant to risk theory

Let us return to the setting of the stochastic perturbation U in the setting of insurance risk.
It is also possible to obtain the analogous statements to Theorem 1.2 and 1.3 in [7]. The
analogue of the first of these two theorems concerns the expectation of a path functional
which can be interpreted as the net present value of tax paid until ruin and reads as follows.

Theorem 4.1 Let x > 0 and recall a∗(x) = inf{s ∈ [x,∞) : γ̄(s) < 0} ∈ (0,∞]. For q ≥ 0
we have

Ex

[
∫ T−

0

0

e−quγ(Su) dSu

]

=

∫ a∗(x)

x

exp

(

−

∫ t

x

W (q)′(γ̄(s))

W (q)(γ̄(s))
ds

)

γ(t) dt.

Proof: For t ≥ 0, let S−1
t := inf{u > 0 : Su > t} be the right-inverse of S and note

that with probability one the functions t 7→ S−1
t and t 7→ σt agree almost everywhere. Then,

similarly to the proof of Theorem 1.2 in [7], changing variables and applying Fubini’s theorem
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gives

Ex

[
∫ T−

0

0

e−quγ(Su) dSu

]

= Ex

[
∫ ∞

0

1{u<T−

0 }e
−quγ(Su) dSu

]

= Ex

[
∫ ∞

0

1{S−1
t <T−

0 }e
−qS−1

t γ(t) dt

]

= Ex

[
∫ ∞

0

1{σt<T−

0 }e
−qσtγ(t) dt

]

=

∫ a∗(x)

x

Ex[
−qσt1{σt<T−

0 }]γ(t) dt.

Replacing the expectation with the expression in Theorem 2.1 (a) completes the proof. �

Remark 4.2 Fix x > 0 and suppose γ(s) = γ ∈ (1,∞). A computation as in Remark 2.3
shows that

Ex

[
∫ T−

0

0

e−quγ(Su) dSu

]

=
γ

γ − 1

∫ x

0

(

W (q)(t)

W (q)(x)

)
1

γ−1

dt.

Similarly, if one assumes that γ(s) ≡ γ ∈ (0, 1), it is straightforward to recover the second
formula in Remark 1.1 of [7].

Although unnecessary, for the sake of presentational convenience, we shall restrict our-
selves to the case that γ : [0,∞) → (1,∞) in order to state an analogue of Theorem 1.3
in [7]. In that case, γ̄ is a strictly decreasing function and accordingly has an inverse, γ̄−1.
Note that in [7] it was assumed that γ : [0,∞) → [0, 1) such that

∫∞

0
(1 − γ(s))ds = ∞.

If we refer to the latter as a light tax regime then we may think of the current setting as a
heavy tax regime. We have the following result, the second part of which addresses the issue
of type I creeping.

Theorem 4.3 Fix x > 0 and suppose a∗(x) <∞. Let κ = L−1
L
T
−

0
−, the last moment that tax

is paid before ruin. Denote by ν the Lévy measure of −X. For any z > 0, x > θ ≥ y ≥ 0
and α, β ≥ 0, we have

Ex

(

e−ακ−β(T−

0 −κ);AT−

0
∈ dθ, UT−

0 − ∈ dy,−UT−

0
∈ dz

)

=
1

γ(γ̄−1(θ))− 1
exp

{

−

∫ x

θ

W (α)′(v)

W (α)(v)(γ(γ̄−1(v))− 1)
dv

}

·

[{

W (β)′(θ − y)−
W (β)′(θ)

W (β)(θ)
W (β)(θ − y)

}

ν(y + dz)1{y<θ}dy

+W (β)(0+)ν(θ + dz)δθ(dy)

]

dθ

where δθ(dy) is the Dirac measure which assigns unit mass to the point θ. Furthermore, for
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0 < θ < x we also have

Ex

(

e−ακ−β(T−

0 −κ);AT−

0
∈ dθ, UT−

0
= 0

)

=
1

γ(γ̄−1(θ))− 1
exp

{

−

∫ x

θ

W (α)′(y)

W (α)(y)(γ(γ̄−1(y))− 1)
dy

}

·
σ2

2

{

W (β)′(θ)2

W (β)(θ)
−W (β)′′(θ)

}

dθ,

where σ is the Gaussian coefficient in the Lévy-Itô decomposition.

The proof of this theorem is virtually identical to the proof of Theorem 1.3 in [7] once the
obvious adjustments have been made and accordingly are left as an exercise to the reader.
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