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Abstract

Nonuniform sampling of images is a useful technique in computer graphics, because a properly designed
pattern of samples can make aliasing take the form of high-frequency random noise. In this paper, the tech-
nique of nonuniform sampling is extended from two dimensions to include the extra parameter dimensions
of distribution ray tracing. A condition for optimality is suggested, and algorithms for approximating opti-
mal sampling are developed. The technique is demonstrated at low sampling densities, so the characteris-
tics of aliasing noise are clearly visible. At supersampling rates, this technique should move noise into fre-
quencies above the passband of the pixel-reconstruction filter.
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General Terms: Algorithms
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1. Introduction

In 1979, Whitted demonstrated that ray tracing could be used to simulate a number of realistic shading
effects [Whitted80]. Unfortunately, ray tracing has a special difficulty with aliasing, a problem sometimes
encountered when sampling signals. To focus on this issue, Whitted’s algorithm can be cast into the form
of a two-dimensional sampling problem. At each point (x, y) on the image plane, a brightness sample is
defined by calculating the radiance of a ray from the viewpoint through that point. Assuming the image-
plane coordinates range between zero and one, the image brightness is defined by the mapping:

f : [0, 1]2 → radiance (1)

Any synthetic image might be described as (1), but the details of ray tracing have special implications: the
values of f can only be evaluated at a point, and it is virtually impossible to symbolically intergrate or low-
pass filter the function. In other words, the signal can be sampled but generally cannot be prefiltered to
avoid aliasing. An interesting approach to this problem is nonuniform sampling which an yield aliasing in
the form of high-frequency random noise [Dippé85, Cook86, Mitchell87].
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An elegant extension of Whitted’s algorithm is distribution ray tracing (previously "distributed ray trac-
ing"), introduced by Cook, Porter and Carpenter [Cook84]. Their algorithm simulates motion blur, shadow
penumbras from finite-area light sources, depth-of-field effects, and glossy reflections from partially pol-
ished surfaces. This is achieved by sampling in an additional set of parameter dimensions. For example, an
object in motion will have a position in the scene parameterized by the time t, and motion blurred pixels
can be calculated by averaging over many different samples of t. Depth-of-field effects are associated with
a finite aperture on the camera and are simulated by deflecting rays through different points on the lens,
parameterized by two more variables a, b. Glossy reflection results from varying the direction of a surface
normal, as if the surface were made up of randomly distributed microscopic facets parameterized by an ori-
entation θ , φ .

With these extra parameters, distribution ray tracing defines a multidimensional brightness function
f ′(x, y; t, u, . . .). A sample of this function is evaluated by performing a Whitted-style ray tracing opera-
tion. However, first moving objects would be transformed to their location at time t, a point light source is
defined by (u, v) representing a sample of the area light, the primary ray from the camera is deflected
through a focal point from a position (a, b) on the lens, etc. Once the scene is prepared for a given set of
parameter values, a ray-tracing calculation can be done. Assuming x, y, and D − 2 parameters range from
zero to one, we have the brightness mapping:

f ′: [0, 1]D → radiance (2)

The two-dimensional image is an integration over the parameters

f (x, y) =
1

0
∫

1

0
∫ . . .

1

0
∫ f ′(x, y; t, u, . . .) dt du . . . (3)

Additional integration or convolution (with a filter) may be done in x and y to define a bandlimited image
function i(x, y) suitable for alias-free digitization. The integration in (3) cannot be evaluated analytically,
but the process of distribution ray tracing estimates f (x, y) by averaging many samples per pixel. This pro-
cess can be viewed as a Monte Carlo integration, or as a classical statistical sampling problem of estimat-
ing the mean value of f in a region of the image plane, or it can be viewed as a sampling problem in the
signal processing sense. These viewpoints are not independent, and all of them can be found with varying
degrees of emphasis in discussions of distribution ray tracing [Cook84, Lee85, Cook86, Kajiya86,
Shirley90].

The question investigated in this paper is how to extend the techniques of nonuniform sampling, used in
Whitted-style ray tracing, to the multiple dimensions of distribution ray tracing. This is not simply the
problem of generating a D-dimensional image from samples of f ′, which might be a obvious extension of
the two-dimensional methods. We are still interested in the characteristics of noise in a two-dimensional
image, and we expect the parameter dimensions t, u, v, . . . to play a qualitatively different role than the
image coordinates x, y.

2. Incomplete Block Sampling Designs

An important problem in distribution ray tracing is how to choose samples effectively to produce the high-
est quality image with the fewest rays. We might simply choose samples randomly with a uniform distribu-
tion in [0, 1]D. In sequential sampling, random samples are made until we are statistically confident that
the average value has a low variance [Lee85, Kajiya86]. This procedure is usually improved by stratified
sampling, where the interval [0, 1] is divided into N levels, dropping a random sample into each subinter-
val. This spreads the samples out more evenly and often results in a lower variance of the average.

In the two-dimensional antialiasing problem of Whitted-style ray tracing, each pixel area [0, 1]2 can be
divided into N × N subsquares for stratified sampling. This is more or less the same as jittered sampling, a
common approach to the antialiasing problem [Dippé85, Cook86, Kajiya86, Painter89]. However, this is
not a practical approach to sampling the parameter space of distribution ray tracing because of the high
number of dimensions. Stratification of all D dimensions would result in N D blocks to be sampled. This



-3-

could easily be tens of thousands of samples per pixel, many more than would be reasonable or necessary.
In practice, stratification has been applied to distribution ray tracing, but with incomplete block sampling
designs that do not fully populate the N D blocks.

Cook created incomplete block designs by subdividing the pixel area into an N × N mesh of subsquares.
The time dimension was divided into N 2 levels, and pairs of "area-like" parameters like (u, v) and (a, b)
were subdividing into N × N meshes. N 2 samples are then made which projected onto each subsquare of
the pixel once, each level of time once, each subsquare of the (u, v) dimension once, etc. Thus only N 2 of
the possible N D blocks are occupied by a sample. Little has been said about how these associations
between blocks should be chosen, but it is clear that linear correlation between parameter values should be
avoided [Cook86]. Linear correlation would mean a tendency for samples to fall on hyperplanes in [0, 1]D

which could cause aliasing. The visual consequences of parameter correlation are objectionable and con-
spicuous.

Shirley describes another incomplete block design called "N-rook" sampling, where N out of N D blocks
are populated [Shirley90]. Let π1, π2, . . π D−1 be permutations of the sequence (0, 1, . . . , N − 1). Then we
choose one sample in each subinterval of each parameter dimension. The nth sample is placed in level n of
the x dimension, in level π1(n) of the y dimension, level π2(n) of the t dimension, etc. Once again, little is
known about what are good or bad choices for the permutations, except to avoid linear correlation. An
example in two dimensions is shown below:

•

•

•

•

•

•

•

•

Figure 1. An 8-Rook Sampling Design in Two Dimensions

There seems to remain an important piece of unfinished business. We do not really know very much about
what constitutes a good sampling design versus a bad one. Av oiding linear correlation is known to be
important. Explicit in the two incomplete block designs described above is the property that the sampling
pattern is "good" when projected onto certain lower-dimensional planes or axes. For example, the N-rook
patterns are fully populated stratified designs when projected onto any coordinate axis.

Linear correlation could be avoided by randomly choosing sampling designs of either Cook’s style or
Shirley’s. Moreover, sequential sampling (i.e., sampling until statistical confidence is achieved) is probably
capable of giving satisfactory image quality [Lee85], whether the sampling design is good or not. The dan-
ger is that many more samples might be computed than are necessary.

3. Nonuniform Sampling in Two Dimensions

Before tackling the problem of sampling in D dimensions, it will be useful to review the two-dimensional
problem of sampling in the (x, y) dimensions. This is the problem in Whitted-style ray tracing. Typically,
the image is "supersampled" at a high rate (by casting rays), and then filtered and resampled to a lower rate
to produce the pixels of a digital image. The filter may be an average over the pixel area, or it may be a
more sophisticated low-pass filter. The process of sampling is represented mathematically by multiplica-
tion of the image signal with delta-function pulses, as diagramed below:
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Figure 2. Conversion of Ray-Casting Samples into Pixels

The reconstruction filter interpolates samples to recreate a continuous image. The low-pass filter makes
sure that image is bandlimited so aliasing will not result when it is resampled at the pixel rate. These two
filters are traditionally combined into one, but when supersampling is nonuniform, it is often the case that
reconstruction and low-pass filtering are distinctly separate stages [Mitchell87, Painter89].

If the supersampling pattern is nonuniform, and its spectrum has certain characteristics, the sampling error
(or aliasing) will take the form of random noise at high frequencies. This is desirable for two reasons. If
noise is concentrated in the high frequencies, more of it will be attenuated by the low-pass filter pictured in
Figure 2. Secondly, randomness and high frequency both help to make the noise less perceptible to a
human observer.

This can be understood by looking at the sampling process in the frequency domain. Let f (x, y) represent
the continuous image, s(x, y) represents the sampling pattern (delta functions), and let r(x, y) be the com-
bined reconstruction/low-pass filter. F , S, and R will represent the corresponding spectra. In the spatial
domain, the sampling and filtering process is expressed by:

i(x, y) = r(x, y)*[ f (x, y) ⋅ s(x, y)] (4)

And in the frequency domain:

I (ω x , ω y) = R(ω x , ω y) ⋅ [F(ω x , ω y)*S(ω x , ω y)] (5)

where ⋅ and * represent multiplication and convolution respectively.

The reconstruction filter is described above as a linear low-pass filter, which is ideal for uniform samples
but can give a distorted reconstruction of nonuniform samples. Nonuniform reconstruction for images is
not perfectly understood; but in practice, nonlinear or space-varying filters (which are not representable by
a convolution) give better results [Dippé85, Mitchell87, Marvasti87]. The result is still some type of low-
pass filter (i.e., a "smooth" surface interpolating the sample spikes). When the reconstruction and low-pass
stages (in Figure 2) are implemented separately, the low-pass stage could be a linear filter [Painter89]. If
the supersampling rate is much higher than the pixel rate, the linear low-pass stage should dominate the
behavior of the system. We will model the reconstruction as a linear low-pass filter for the purposes of
qualitative analysis.

The spectrum of the sampling pattern S will be a delta-function spike at the origin (the DC component) and
some pattern of noise surrounding it. The convolution F*S (shown in Figure 3) of a image spectrum with
the nonuniform-sampling spectrum gives a copy of the true image spectrum (the symmetric shape at the
center of the figure) and a halo of noise energy (represented by the scattered dots). The low-pass filter R
(represented by the dotted box) attenuates energy outside its bounds.
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Figure 3. Spectrum of Nonuniformly Sampled Image

If the spectrum of the sampling pattern has energy concentrated in high frequencies, then the halo of noise
will be pushed farther out from the origin, and more of it will be outside of the pass band of the filter. The
best known patterns having this high-frequency characteristic are the Poisson-Disk stochastic point pro-
cesses. These patterns are random, but include a constraint that no two points can be closer than some min-
imum distance (as if each point was surrounded by a hard disk) [Ripley77]. The spectral consequences of
this sampling pattern were first investigated by Yellott, who found this arrangement in the photoreceptors of
monkey retinas [Yellott83].

More commonly used are patterns based on jitter processes. These are formed by randomly perturbing the
points in a periodic uniform lattice. Jitter sampling contains more low-frequency energy in its spectrum
than Poisson-disk patterns, and images produced with it have a more grainy appearance at low sampling
rates [Mitchell87]. However, jitter sampling is easy to generate, and straightforward adaptive-sampling
schemes exist for generating jitter samples at variable density [Dippé85, Cook86, Kajiya86, Painter89].
Some of these methods could also be described as stratified sampling.

4. Sequential Poisson-Disk Sampling

Poisson-disk samples are typically generated by a "dart-throwing" algorithm which is computationally
expensive and which makes it difficult to control the final density of samples (one initially choses the hard-
disk diameter, not the desired sample density) [Dippé85, Mitchell87].

With the following new algorithm, it is possible to generate good high-frequency sampling patterns with
sequentially increasing density. Begin by choosing the first sample at random in a region. To add the
(n + 1)th sample, generate mn uniformly distributed random candidate points (where m is a constant param-
eter). For each of these random points, compute the distance to the closest of the n points already in the
pattern. Then chose the candidate point with the largest closest-point distance, and add it to the pattern. By
scaling up the number of random candidate points, in proportion to n, we maintain a constant ratio m of
candidates to pattern points in the process. Thus we expect the statistics of the pattern (the autocorrelation,
etc) to also scale and remain similar as the sample density increases. The high-frequency quality of the pat-
tern increases with m.

This is an O(n2) algorithm, but it is an improvement over the poorly defined termination of the dart-
throwing algorithm (which runs until it cannot add new samples). The speed was improved dramatically by
using grid methods for the nearest-neighbor calculation. This point process is not strictly hard-disk,
because it is possible (although unlikely) for samples to lie very close together. Howev er, the resulting
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patterns are excellent if m is not too small. The following figure shows some snapshots from this process,
using m = 10:
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Figure 4. Sequential Generation of High-Frequency Samples

It is sometimes useful to perform this algorithm with wrap-around boundary conditions, so the pattern can
be replicated periodically over the plane (with much longer period than the pixel rate, of course). The algo-
rithm can be extended to higher dimensions, and it could also be used to generate isotropic high-frequency
sampling patterns on the surface of a sphere. That may be useful because area light sources and glossy
reflections require sampling solid angles. The alternative of stratified sampling of latitude and longitude is
not isotropic because strata near the pole are very different in shape than equatorial strata. The concept of
choosing the best samples from random candidates will be used again in the algorithms applied to distribu-
tion ray tracing.

By "hard disk" we usually mean a circular region of avoidance around each sample. By using an ellipse or
other shape, the spectrum of the pattern can be made anisotropic in some fashion. The human visual sensi-
tivity extends higher into vertical and horizontal frequencies than it does into diagonal frequencies, so a
Poisson-diamond pattern might be better than Poisson-disk. Bouatouch et al support this idea in their
experiments with uniform quincunx sampling [Bouatouch91]. This is an issue that could be studied further.

5. Motion Blur and Spatiotemporal Sampling

If two-dimensional sampling can push noise into high frequencies, can the same effect be obtained while
sampling the extra parameters of distribution ray tracing? Let us begin by considering motion blur effects,
where a single extra parameter t is added. This is not an obvious three-dimensional generalization of the
problem of the previous section. f ′(x, y; t) is sampled in three dimensions, but we are still concerned with
the resulting sampling noise in the two-dimensional image i(x, y).

To derive the spectrum of i(x, y), let fs(x, y, t) = f ′(x, y; t) ⋅ s(x, y, t) be the sampled multiparameter image
function, where s(x, y, t) is a distribution of delta functions in space/time. The sampled image function is
low-pass filtered spatially with r(x, y), and integrated over an exposure-time interval for motion blur:

i(x, y) = r(x, y)*

1

0
∫ fs(x, y, t) dt (6)

The spectrum is a little easier to derive if we replace the integration over a time interval with the equivalent
operations of convolution with a box function in t followed by sampling one slice through t. Then using
the Convolution Theorem, we find the spectrum of i(x, y) to be:†

I (ω x , ω y) = R(ω x , ω y)
∞

− ∞
∫ Sinc(ω t /2π ) ⋅ Fs(ω x , ω y, ω t)dω t (7)

The important difference between the expression for the static-image spectrum (5) and the spectrum of the

† This actually corresponds to the integration of time from − 1
2 to 1

2 . A phase-shift factor could be added to
reflect integration from 0 to 1.

sinc(x) = sin(π x)/π x.
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motion-blurred image (7) is the integration over ω t . This means the three-dimensional spectrum (at least,
the portion passed by the R and Sinc filters) will be projected onto the spatial (ω x , ω y) plane. Ideally, we
would like the noisy part of this spectrum to be pushed out of a cylindrical region around the ω t axis, so its
projection will contain only the highest possible spatial noise frequencies.
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Figure 5. Cylinders of Medium and Low Spatial Frequencies

This suggests that the best general sampling pattern will be one with little power in the low-spatial-
frequency region around the ω t axis. Figure 5 depicts the spectrum of the sampling pattern with cylindrical
regions around the ω t axis enclosing spatial frequencies below some bandlimit. The wide cylinder on the
left contains frequencies up to some medium value, and the cylinder on the right represents a lower ban-
dlimit. We would like these cylinders to be as vacant of power as possible. In fact, the practical require-
ment is to have the power within each cylinder be concentrated at the highest possible frequencies. It is
also important to give the highest priority to removing the lowest spatial frequencies, so we require the
power in the right-hand cylinder to be concentrated at higher temporal frequencies than in the left-hand
cylinder.
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Figure 6. Marginal Distributions of Samples in Space and Time

These conditions in the frequency domain imply some conditions on the arrangement of samples in space
and time. The two graphs in Figure 6 illustrate situations corresponding to the spectra in Figure 5. They
show the projection of samples onto the spatial plane (dots) and onto the time axis (tick marks). We are not
yet certain where these samples should be in space/time, but we will be able to give conditions on their pro-
jections into space and time.

If there is no movement in a region of the image, then only the spatial projection of the pattern is important,
so we could begin by constraining it to form an optimal distribution, like Poisson-disk.

We are interested in the power contained within cylinders of spatial frequencies, in Figure 5, and in the
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temporal-frequency distribution of that power. Imagine that we have convolved the spectrum with a cylin-
der and sampled the result on the ω t axis (this is equivalent to averaging over spatial frequencies inside the
cylinders). That operation corresponds approximately to selecting the samples within a cylindrical region
of space, and considering their time distribution. The narrower cylinder of frequencies in Figure 5 corre-
sponds to a wider region of space in Figure 6. The temporal distribution of samples, shown in Figure 6,
represent one-dimensional patterns of the highest possible frequency (such as Poisson-rod distributions).

Therefore, the desired property of space/time sampling patterns is that in any cylindrical region of space,
the distribution of samples in time will be a high-frequency pattern. An interesting consequence of this is
that samples which are adjacent in space should differ greatly in time or other parameter coordinates. This
is quite different from the most obvious three-dimensional analog of Poisson-disk sampling. A Poisson-
sphere point distribution would not necessarily have this property of high-frequency time distribution.

6. A Scanning Sample-Generation Algorithm

A simple scanning algorithm is one possible way to generate sampling patterns which approximate the con-
ditions described in the previous section. Begin by stratifying the x and y dimensions into a mesh of sub-
squares, assuming that one jittered sample is contained in each. The goal is to assign each sample a value
of the parameter t. This is done in scanning order, from left to right, and top to bottom.

•P

P P P

S

S

S S S S S

S

Figure 7. Neighborhood of the Next Unprocessed Subsquare

Figure 7 illustrates the situation at some point in the scanning process. We wish to choose a parameter
value for the subsquare containing the dot. In the 5 × 5 region surrounding the dot, some subsquares above
and behind (indicated by "P" or "S") have already been assigned t values. Call these the P-cells and S-cells
(meaning primary and secondary).

We would like the new t value to fit into a high-frequency Poisson-rod distribution, as shown in Figure 6.
In a manner reminiscent of the sequential Poisson-disk algorithm of section 4, we generate a set of primary
candidate t values with uniform random distribution in [0, 1]. For example, let us say we generate 100 pri-
mary candidates. The candidates are sorted by their maximum closest distance to the t values of the P-
cells. Distance is defined with wrap-around boundary conditions, so the pattern can used periodically from
frame to frame.. From the sorted list, we might pick (for example) the 10 with largest max-min distance.
Any one of these 10 values should be a good choice to complete a coarse Poisson-rod distribution as sug-
gested on the left of Figure 6.

The set of 10 values selected above are now considered as secondary candidates. For each secondary can-
didate, compute the maximum closest distance to the t values of the S-cells, and pick the one with the
largest max-min distance. This should be a good choice to complete the denser distribution as suggested on
the right of Figure 6. We are trying to meet two constraints, picking 100 primary candidates and evaluating
how well they match the situation on the left of Figure 6, then selecting 10 secondary candidates to match
the conditions on the right.



-9-

7. Experiments with Scan-Generated Sampling Patterns

Figures 8 and 9 demonstrate the use of this sampling pattern on a ray-traced scene containing spinning
wheels. Figure 8 was made by choosing t values with a uniform random distribution. Figure 9 uses the
spectrally optimized t values generated by the scanning algorithm. In fact, a 32 × 32 pattern of samples was
generated and replicated periodically on the plane. Both image were generated with just one sample per
pixel so the sampling noise can be seen clearly. Essentially, we are looking at the raw supersamples fs,
which would be passed into the filter stages of Figure 2 in order to make an antialiased digital image.

Figures 10a and 10b show the corresponding noise spectra (with lighter shades indicating higher power).
These were obtained by subtracting Figures 8 and 9 from a reference image (generated with 100 rays per
pixel), to create an error image. The discrete Fourier transform of the error images show a typical "white
noise" spectrum in Figure 10a, corresponding to the random sampling. However, Figure 10b shows a con-
siderable concentration of power in the higher frequencies.

Even though the mean square error of Figures 8 and 9 are about the same, the frequency distribution of
power has a large impact on subjective appearance. A series of randomly-sampled images like Figure 8
were generated using from 1 to 9 samples per pixel, and several expert observers were asked to select the
best comparison with Figure 9. Figure 9 was obviously better looking that 1 sample per pixel and obvi-
ously worse than 9. The consensus was that three or four random time samples per pixel were required to
match the subjective quality of Figure 9.

Figures 11 and 12 show a similar comparison of the technique applied to depth-of-field effects. Figure 11
was generated with uniformly random values of (a, b), the parameters controlling the deflection of primary
rays through the camera aperture. Figure 12 used parameter values generated by the scanning algorithm.
The only difference from scanning generation of t values is the use of a two-dimensional Euclidean dis-
tance for the max-min distance selections. Once again, both figures were generated with one ray per pixel.
Figure 11 shows the clumpy pattern of sampling error characteristic of white noise, and Figure 12 shows
the finer structure of high-frequency noise.

A critical observer may notice, from the point-spread, that the simulated camera has a square lens. There is
no special problem in simulating a round lens, which should have been done if this were not a simple
experimental ray tracer.

Figures 13 and 14 demonstrate another two-parameter experiment, using parameter values to perturb the
normal vector of a surface and simulate glossy reflection. Figure 13 uses random perturbations and Figure
14 uses scan-generated parameters.

These images provide evidence that the condition for optimal parameter sampling is correct. The scanning
sample-generation algorithm should not be thought of as a definitive way to generate optimal samples, how-
ev er. It is an ad hoc way to generate a pattern with approximates the conditions defined in section 5, but
only in a 5 × 5 region, and probably not with perfect isotropy. There is a great deal of opportunity for
experiment and improvement.

8. N-Parameter Sampling

Suppose an image of the spinning-wheels picture (seen in Figures 8 and 9) is generated with motion blur
and also an area light source, creating shadows with penumbras. Using an optimized pattern of t parame-
ters ensures that the spinning spokes of the wheels are well sampled as in Figure 9. Using an optimized
pattern of (u, v) parameters ensures that the penumbra around the rim of the wheels has good high-
frequency sampling noise. However, in regions where both distribution ray-tracing effects are combined—
in a moving penumbra—the sampling noise has a coarser white-noise appearance.
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Figure 15. 8-Rook Sampling Patterns

It is not sufficient to optimize the t and (u, v) distributions of samples alone. The joint distribution of
(t, u, v) matters. Figure 15 demonstrates this concept. Here, two patterns both have the same projected
("marginal") distributions in u and v (in this case, uniform periodic). However, the overall joint distribu-
tions of the two patterns are very different. Suppose a signal was sampled with the pattern on the right. If
the signal contains only variations in the u or only in the v dimensions, it may be sampled well enough.
But if the image contains variation along the diagonal perpendicular to the row of samples, severe aliasing
might occur. In distribution ray tracing, a similar situation can occur, and aliasing caused by poor joint dis-
tribution of the parameter samples can be projected onto the image.

It is also not sufficient to just optimize the joint distribution of (t, u, v) without considering the marginal
distributions of t and (u, v). The scanning algorithm was used to generate samples in (t, u, v) with Poisson-
sphere joint distributions, and this resulted in relatively poor image quality. The region of moving penum-
bra was much improved, however.

The best image quality in the moving-penumbra test was achieved by generating sampling patterns in
which both the joint distribution and the marginal distributions are spectrally optimized. Figure 16 shows
the spinning wheels image, using a sampling pattern which combines a joint distribution of (t, u, v) which is
Poisson-sphere, and a marginal distribution of t which is Poisson-rod. This suggests that as the parameter
space becomes higher in dimension, sampling patterns must be found which meet the conditions of Figure
6 in a combination of marginal and joint distributions. This combination of conditions was met by extend-
ing the scanning algorithm to select a series of primary, secondary, and tertiary candidates.

9. Adaptive Sampling

No matter how optimal a supersampling pattern may be, we cannot ignore the computational efficiency of
adaptive sampling. It is often the case (except in the most complex scenes) that many portions of an image
can be sampled at relatively low density. A simple solution might be to use a few discrete levels of sam-
pling density. The two-level sampling algorithm described by the author in [Mitchell87] was very easily
adapted to use a five-dimensional (x, y, t, u, v) periodic pattern of 1024 samples.

In that scheme, an image is sampled at a low base rate. It is a good idea to make this base rate selectable by
the user, and typically one or a few samples per pixel area are sufficient. The results of the base-rate sam-
pling are then used to estimate local bandwidth and identify regions that require sampling at a higher rate.

Variable sampling rates can be achieved by simply scaling the stored pattern. If the pattern is optimal in the
sense discussed above, it will only be necessary to scale the pattern in x, y. As the sampling rate per pixel
area increases, the rate per parameter dimension should also increase and the distribution should remain
spectrally optimal, as indicated in Figure 6.

10. Conclusions

Optimal nonuniform sampling is a familiar approach to the aliasing problem in Whitted’s ray-tracing algo-
rithm. This paper takes a first step in extending this technique to the multidimensional algorithm of
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distribution ray tracing. This is nontrivial for two reasons. First, a simple extension of the stratified/jitter
sampling techniques to higher dimensions requires a number of samples exponential in the dimension.
Secondly, this is not simply the problem of generating a D-dimensional image, which would be an obvious
extension of the two-dimensional theory.

An analysis of the sampling problem in distribution ray tracing suggests a criteria for sampling patterns that
can force aliasing noise into higher frequencies. Samples contained in any circular region in space (on the
x, y image plane) should have parameter values which form a pattern of the highest possible frequency. It
appears that in addition to requiring the overall joint distribution of parameter values to be high-frequency
(e.g., a Poisson-hypersphere distribution), it is important to insure that certain marginal distributions are of
the highest frequency (e.g., time values being Poisson-rod, (u, v) parameters being Poisson-disk, etc.). This
problem could be studied further.

A scanning sample-generation algorithm is proposed, which gives sampling patterns which locally approxi-
mate the optimal. This was good enough to demonstrate the correctness of the optimality condition in a
number of test images. Further work could be done on better sample-generation algorithms, perhaps using
exhaustive Monte Carlo search.

Much more difficult sampling problems arise in the current most advanced rendering algorithms. These
problems are made explicit in several recent works [Kajiya86, Heckbert90, Shirley90].
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