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Abstract

The recent Spectre attacks exploit speculative execution,

a pervasively used feature of modern microprocessors, to

allow the exfiltration of sensitive data across protection

boundaries. In this paper, we introduce a new Spectre-

class attack that we call SpectreRSB. In particular, rather

than exploiting the branch predictor unit, SpectreRSB

exploits the return stack buffer (RSB), a common pre-

dictor structure in modern CPUs used to predict return

addresses. We show that both local attacks (within the

same process such as Spectre 1) and attacks on SGX are

possible by constructing proof of concept attacks. We

also analyze additional types of the attack on the ker-

nel or across address spaces and show that under some

practical and widely used conditions they are possible.

Importantly, none of the known defenses including Ret-

poline and Intel’s microcode patches stop all SpectreRSB

attacks. We believe that future system developers should

be aware of this vulnerability and consider it in devel-

oping defenses against speculation attacks. In particular,

on Core-i7 Skylake and newer processors (but not on In-

tel’s Xeon processor line), a patch called RSB refilling

is used to address a vulnerability when the RSB under-

fills; this defense interferes with SpectreRSB’s ability to

launch attacks that switch into the kernel. We recom-

mend that this patch should be used on all machines to

protect against SpectreRSB.

1 Introduction

Speculative execution is a microarchitectural technique

used pervasively to improve the performance of all mod-

ern CPUs. Recently, it has been shown that speculatively

executed instructions can leave measurable side-effects

in the processor caches and other shared structures even

when the speculated instructions do not commit and their

direct effects are not visible. Moreover, since these in-

structions are speculative, normal permission checks do

not take effect until the instruction is committed. The

recent Spectre attack [23, 13, 31] has shown that this

behavior can be exploited to expose information that is

otherwise inaccessible. In the two variants of Spectre at-

tacks, attackers either mistrain the branch predictor unit

or directly pollute it to force the speculative execution

of code that can enable exposure of the full memory of

other processes and hypervisor.

Chen et al. demonstrated that known Spectre variants

are able to expose information from SGX enclaves [3].

New variants of Spectre that utilize other triggers for

speculative execution have been introduced including

speculative store bypass [17].

In this paper, we introduce a new attack vector Spec-

tre like attacks that are not prevented by deployed de-

fenses. Specifically, the attacks exploit the Return Stack

Buffer (RSB) to cause speculative execution of the pay-

load gadget that reads and exposes sensitive information.

The RSB is a processor structure used to predict return

address by pushing the return address from a call instruc-

tion on an internal hardware stack (typically of size 16

entries). When the return is encountered, the processor

uses the top of the RSB to predict the return address to

support speculation with very high accuracy.

We show that the RSB can be easily manipulated by

user code: a call instruction, causes a value to be pushed

to the RSB, but the stack can subsequently be manip-

ulated by the user so that the return address no longer

matches the RSB. We describe the behavior of RSB in

more details in Section 3.

In Section 4, we show an RSB based attack that ac-

complishes the equivalent of Spectre variant 1 through

manipulation of the RSB instead of mistraining the

branch predictor; we use this scenario to explain the prin-

ciples of the attack, even though it may not be practical.

The RSB is shared among hardware threads that execute

on the same virtual processor enabling inter-process (or

even inter-vm) pollution of the RSB. Thus, in Section 5,

we develop an attack that targets a different thread or



process on the same machine. In Section 6, we present

a third type of SpectreRSB: an attack against an SGX

compartment where a malicious OS pollutes the RSB

to cause a misspeculation that exposes data outside an

SGX compartment. This attack bypasses all software

and microcode patches on our SGX machine. Sec-

tion 7 overviews another potential attack targeting an un-

matched return in the kernel code; we present this attack

for completeness because it relies on a number of ingre-

dients that are difficult to find in practice.

We show how these attacks interact with deployed de-

fenses concluding that several practical deployments are

vulnerable to SpectreRSB. Thus, we believe that Spectr-

eRSB is as a dangerous speculation attack, that in some

instances is not mitigated by the primary defenses against

Spectre. It extends our understanding of the threat sur-

face of speculation attacks, allowing future defenses to

more effectively mitigate their risks. We discuss impli-

cations of the attack in Section 8.

Section 9 overviews related work, while Section 10

presents some concluding remarks.

Disclosure: We reported these attacks to the security

team at Intel. Although we did not demonstrate attacks

on AMD and ARM processors, they also use RSBs to

predict return addresses. Therefore, we also reported our

results to AMD and ARM.

2 Speculation Attacks and Defenses

Speculative execution has been an important part of

computer architecture starting from the 1950s. The

IBM Stretch processor implemented a predict not-taken

branch predictor to avoid stalling a processor pipeline

when a branch is encountered [1]. Computer architec-

ture advanced rapidly starting in the early 1980s lead-

ing to rapid increase in the amount of speculation that

is exploited with aggressive out-of-order execution. This

speculation is supported by sophisticated branch predic-

tor designs [41, 18, 35] that are highly successful in pre-

dicting both the branch direction and its target address.

In particular, the number of pipeline stages in production

CPUs has continued to grow to the point where mod-

ern pipelines commonly have between 15 and 25 stages.

With out-of-order execution, when a branch instruction

stalls (e.g., due to a cache miss on which it depends),

instructions that follow the branch are continuously be-

ing issued. Thus, the speculation window where instruc-

tions are getting executed speculatively can be large, typ-

ically limited by the size of structures such as the reorder

buffer, which can hold a few hundred instructions.

Speculation is designed to not affect the correctness

of a program. Although branch mispredictions occur

and speculative instructions can ignore execution faults

(e.g., permission error for memory access) these se-

mantics were not considered harmful as mis-speculation

will eventually be detected and the erroneously exe-

cuted instructions will be squashed, leaving no directly

visible changes to the program state held in structures

such as registers and memory. Micro-architectural struc-

tures such as caches and Translation Look-aside Buffers

(TLB) are affected by speculative operations, but the

contents of such structures typically only affect perfor-

mance, not the correctness of a program. In fact, prior

work has shown that there are beneficial prefetching

side-effects to speculatively executed instructions even

those that are eventually squashed [33].

2.1 Speculation Attacks

Spectre attacks have recently shown that the speculation

behavior of modern processors can be exploited. In gen-

eral, these attacks exploit four properties:

• P1: branch prediction validation happens in deep in

the CPU pipeline. As a result, speculative instruc-

tions near the branch can access unprivileged mem-

ory locations.

• P2: speculative instructions leave side-effects

in micro-architectural structures such as caches,

which can be inferred using well-known timing

side channel attacks like Flush+Reload [40] and

Prime+Probe [29].

• P3: the branch predictor can be mistrained (Spec-

tre 1), or directly polluted (Spectre 2). It is shared

across all programs running on the same physical

core [13, 23, 6], allowing code running in one priv-

ilege domain to manipulate branch prediction in an-

other domain (e.g., kernel, VM, hypervisor, another

process, or SGX enclave). Our attacks replace this

step with speculation control through the RSB.

• P4: permission checks are performed deep in the

pipeline and execution fault is generated only if the

instruction is committed, enabling speculative in-

structions to access data outside its privilege do-

main;

if (offset < array1_size)

y = array2[array1[offset] * 64];

Figure 1: Spectre attack variant 1

Spectre (Variant 1) is presented in Figure 1. In this

code, a victim process reads values from array1 using

the offset provided by the attacker. Then, the resulting

value is used to perform an access into array2. As we

discussed above, accesses into the array2 can be used



by the attacker to deduce the value of the index. The

index, in its turn, is controlled by the attacker since at-

tacker controls the offset. Therefore, the attacker can

use a carefully selected value of offset to read arbitrary

memory address which then will result in cache access

observable by the attacker. However, the if statement

ensures there are no out of bounds memory accesses al-

lowed. Unfortunately, the attacker can exploit specula-

tive execution and behavior of branch predictor to force

the victim process to perform an out of bounds memory

access in the following way:

a) The attacker mistrains the branch predictor by exe-

cuting the code several times with the value of the

offset such that the if statement is true (branch

instruction not-taken).

b) Next, to make the speculative window larger, the at-

tacker evicts array1 size from the cache, so that

the CPU has to load the value from memory. Since

the speculation result will not be resolved until this

value arrives, forcing it to come from memory ex-

pands the size of the speculation window to allow

more elaborate speculative gadgets to be executed.

c) Finally, the attacker chooses the malicious offset

such that it be larger than array1 size. The trained

branch predictor unit predicts the branch not-taken,

so that the CPU executes two memory accesses

speculatively and discloses the secret value through

the cache side channel.

Prior work [6] had shown that the branch predictor is

shared among processes on the same core. So, one thread

can pollute it for another across protection boundaries

(including across VMs). Thus, the attacker can poison

the branch target predictor for the victim and force it to

speculatively execute the gadget which reveals the sensi-

tive data within the victim. This is a dangerous attack be-

cause it allows cross process/cross VM Spectre attacks.

The closely related Meltdown attack relies on the fact

that a permission check for memory access during nor-

mal out-of-order execution of an instruction can happen

late in the instruction execution due to pipelining and in-

struction reordering (P4) allowing the CPU to load the

privileged data until the permission is later checked. Un-

like Spectre variants, Meltdown does not rely on using

misspeculation. Since an exception eventually will be

raised, this attack requires the ability to tolerate and re-

cover from the raised exception.

2.2 Defenses against Meltdown/Spectre

After the disclosure of Spectre and Meltdown in January,

2018 [13, 23, 27], a number of defenses were suggested.

Intel proposed defenses: Intel released a whitepa-

per [14] suggesting three types of defenses.

• To mitigate Spectre V1 attack, Intel recommends

inserting a LFENCE instruction after the branch as

a barrier to stop speculative execution. This de-

fense mechanism has now been adopted by com-

pilers such as GCC [30] and MSVC [32]. However,

this does not prevent attacks where the attacker con-

trols the program and does not use LFENCE instruc-

tions.

• To mitigate Spectre V2 attack, Intel introduced

three new processor interfaces through microcode

updates [16]:

– Indirect Branch Restricted Speculation

(IBRS) prevents software running in higher

privileged mode from using prediction results

from software running in lower privileged

mode.

– Single Thread Indirect Branch Predictors

(STIBP) prevents code executing on one log-

ical processor from impacting the indirect

branch prediction of code executing on an-

other logical processor.

– Indirect Branch Predictor Barrier (IBPB)

stops software running before the barrier from

affecting the indirect branch prediction of

software running after the barrier.

• To mitigate Meltdown, Intel recommends unmap-

ping more privileged domain (kernel space) during

the execution of less privileged software, which has

been adopted by all popular operating systems, in-

cluding Windows, Linux, and macOS. This is the

KPTI defense described below.

Kernel Page-Table Isolation (KPTI): Gruss et. al [11]

introduced a protection technique called KAISER to pro-

tect against side channel attacks bypassing kernel level

address space randomization (KASLR) [12]. The pro-

tection is based on unmapping kernel pages while in user

mode, and remapping them on a mode switch to the ker-

nel. As a result, misspeculation from user code is not

able to access kernel memory, preventing Meltdown. It

has been reported that KPTI can introduce substantial

performance overhead [10]. KPTI cannot prevent attacks

within the same privilege mode (e.g., to access memory

outside a sandbox) [2, 34].

Return Trampoline (retpoline): retpoline [37] is a

software-based mitigation technique against indirect

branch target injection attack (i.e., Spectre V2). It “ex-

ploits” two properties of the branch target prediction en-

gine: (1) when executing a ret instruction, the predictor



will utilize the return stack buffer (RSB) instead of the

BTB; and (2) RSB cannot be polluted by attackers. The

retpoline technique essentially swaps indirect branches

for returns and deliberately pollutes the RSB with a use-

less gadget to control speculative execution. Retpoline

protection requires access to source code and recompila-

tion.

RSB refilling (also known as RSB stuffing) [15]: on

Intel’s Core i7 processors starting from Skylake (which

are called Skylake+), an underfill condition in the RSB

where a return occurs when the RSB is empty causes

the processor to speculate the return address through the

branch predictor. Thus, defenses deployed to protect in-

direct branches against Spectre variant 2 fail in this sit-

uations since return instructions can cause a misspecu-

lation through the branch predictor. To counter this sit-

uation, Skylake+ processors also implement RSB refill-

ing (a software patch): every time there is a switch into

the kernel, the RSB is intentionally filled with the ad-

dress of a benign delay gadget (similar to Retpoline) to

avoid the possibility of misspeculation. RSB refilling in-

terferes with SpectreRSB, although it was designed for

a completely different purpose. However, we note that

all Core i7 processors prior to Skylake are not patched

with RSB refilling and that different processor lines, im-

portantly including the Intel Xeon which are the primary

platform used on Intel-based cloud computing systems

and servers, are also unpatched, leaving them vulnerable

to SpectreRSB.

3 Attack Principles: Reverse Engineering

the Return Stack Buffer

In this section, we explain the operation of the Return

Stack Buffer (RSB), which is the microprocessor struc-

ture our attacks exploit to implement speculation attacks

that bypass all existing defenses. On modern processors,

sophisticated branch predictors are used to predict the di-

rection and target of conditional and indirect branches

and calls. Return instructions challenge such predictors

because the return address depends on the call location

from which a function invoked, which for many func-

tions that are called from different locations of a program

can lead to poor branch predictor performance. For ex-

ample, consider a function such as printf() which may

be called from many different locations of a program.

Relying on the previous history of where it returned to

can lead to very low prediction performance through the

branch predictor. We verify each of these mechanisms

on two Intel processors (a Haswell and a Skylake).

3.1 RSB Overview

To overcome this problem, the return address is predicted

using the RSB as follows. The RSB is a hardware stack

buffer where the processor pushes the return addresses

every time a call instruction is executed and uses that as

a return target prediction when the matching return is en-

countered. Figure 2a shows an example of the state of

the RSB after two function calls (F1 and F2) have been

executed. The figure also shows the state of the software

stack for the program where the stack frame information

and the return address of the function are stored. Fig-

ure 2b shows how the values on these stacks are used

when the return instruction from function F2 is executed.

At this point, the return address from the fast shadow

stack is used to speculate about the return address loca-

tion quickly. The instructions executed at this point are

considered speculative. Meanwhile, the return address is

fetched from the software stack as part of the teardown

of the function frame. The return address is potentially in

main memory (not cached) and is received several hun-

dred cycles later. Once the return address from the soft-

ware stack is resolved, the result of the speculation is

determined: if it matches the value from the RSB, the

speculated instructions can be committed. If it does not,

then a misspeculation has occurred and the speculatively

executed instructions must be squashed. This behavior

is similar to speculation through the branch predictor,

except it is triggered by return instructions. Note that

the misspeculation window could be substantially larger

since the return could be issued out of order, and other

dependencies have to be resolved before it is committed.

3.2 RSB sources of misspeculation

The RSB misspeculates when the return address value

in the RSB does not match the return address value in

the software stack, leading the program to misspeculate

to the address in the RSB. If this misspeculation can be

triggered intentionally by an attacker, spectre like attacks

become possible through the RSB. Thus, in this subsec-

tion, we explain the sources of misspeculation through

the RSB, and discuss whether they provide a vector for

attackers to trigger speculation attacks. We label these

sources as S1 to S4 to be able to refer to them in the

attack descriptions.

S1: Overfill or Underfill of the RSB due to limited

structure size: The RSB structure is typically sized to

match common nesting depths of call stacks in programs.

On low-end machines, the RSB can be as shallow as 4

entries in size. More typically, on desktops, it is in the

range of 16 entries, and for server class processors, it can

be larger (e.g., 24 entries on the AMD Ryzen [8]). As

illustrated in Figure 3, when the RSB overfills, it typi-
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main:
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frame
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local variables
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(a) Calling a function (F2)
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address

arguments
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0x00008250

local variables
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(b) Return from a function (F2)

Figure 2: Example of function call and return effect on software call stack and RSB
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call F1

ret

F1:

call F2

ret
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call F3

ret

…

FN-1:

call FN
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call FN+1

ret
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F2 return

code

RSB

F1 frame

F2 frame
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.

.

.
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.

.

(a) Executing N nested function

calls, where N is the size of RSB

main:

call F1

ret

F1:

call F2

ret

F2:

call F3

ret

…

FN-1:

call FN

ret

FN:

call FN+1

ret
F2 return

F3 return

code

RSB

F1 frame

F2 frame

Software stack

FN frame

FN+1 return

.

.

.

.

.

.

FN+1 frame

FN return

(b) Executing the N+1 nested

function calls

Figure 3: Example of overfill of RSB

cally overwrites the older entries in the stack. Eventu-

ally, when the stack is unrolled as the nested calls return,

we reach the function whose value has been overwritten

causing an underfill of the stack (in Figure 3, the entry

for F1 got overwritten).

In an underfill, there is no value available on the RSB

to guide speculation. Different CPUs handle this situ-

ation differently. For example, the Intel CPUs that we

checked switch over to the branch predictor if the RSB

is empty, which can be used to trigger attacks through

the branch predictor [25]. However, AMD appears not to

follow this strategy.

S2: Direct pollution of the RSB: This is the primary

vector that we use in our proof of concept attacks. Call

instructions implicitly push a return address to the RSB

and the software stack. However, an attacker can then

replace the address on the software stack (by writing di-

rectly to that location), or just remove it altogether (as

shown in Figure 4a). In this case, the value in the RSB

remains and does not match a value on the software stack

causing misspeculation when a return is executed (as

shown in Figure 4b). By controlling the call address, the

main:

call F1

ret

F1:

call F2

ret

F2:

pop F2 frame

ret

F1 return

F2 return

code

RSB

F1 frame

F2 frame

Software stack

F2 frame

(a) Removing the current return

address from the software stack

main:

call F1

ret

F1:

call F2

ret

F2:

pop F2 frame

ret

F1 return

F2 return

code

RSB

F1 frame

Software stack

miss-matched

return address

(b) Return address in the RSB

and the software stack do not

match

Figure 4: Example of direct pollution of the RSB

attacker can control the misspeculation address.

It is also possible to convert a call instruction into a

push and jmp, in which case a return value exists on the

software stack that is not matched by a value in the RSB.

A return could also be replaced by a pop and a jump,

causing a value to remain in the RSB that has been re-

moved from the software stack.

S3: Speculative pollution of the RSB: speculatively ex-

ecuted calls push a value on the stack, although the de-

tails are specific to the architecture. Once misspeculation

is discovered the call is squashed but the speculatively

pushed return address remains on the RSB. This provides

the opportunity for a malicious attacker to push a return

address that is outside the address space accessible by

the program (e.g., a kernel address) without raising an

exception or having to handle the side effects of a call. 1

1We did not use this vector, but its conceivable to use it to bypass

Supervisor Mode Execution Prevention (SMEP) [9] to jump to a ker-

nel gadget. For example, the user may attempt to jump to user code

in PhysMap implementing a ret2dir [21] rather than a ret2usr [20] at-

tack; the difficulty is that the user cannot pollute the RSB with kernel



S4: RSB use across execution contexts: on a context

switch the RSB values left over from an executing thread

are reused by the next thread. Once we switch to a new

thread, if the thread executes a return, then it will mis-

speculate to an address provided by the original thread.

The same is true with a switch over to the Operating Sys-

tem (provided RSB refilling is not implemented), or to an

SGX context.

4 SpectreRSB: Basic attack example

In this section, we illustrate the attack principles by

showing a basic speculation attack launched from a pro-

cess to part of its address space that it cannot directly ac-

cess (similar to Spectre variant 1 [13]). This attack repre-

sents the simplest instance of SpectreRSB and therefore

we use it to explain the attack in detail. It is unlikely to be

practical: it is difficult to implement the gadget to manip-

ulate the stack using high level sandboxing primitives to

allow the attack to break sandbox boundaries. On an un-

patched machine, this attack enables the attacker to read

kernel memory via the Meltdown bug. However, KPTI

prevents using it to allow user code to read kernel data.

We note that this attack does not rely on any speculation

through branches or the branch predictor. For this reason,

the attack bypasses defenses that focus only on securing

speculation through the branch predictor. Most of our

experiments were conducted on the machines shown in

Table 1; the i7-6700 machine is a Core i7 Skylake with

SGX2.

Figure 5 presents an overview of a basic SpectreRSB

attack. The attack starts at line 22 with the call to

speculative, with an argument which is the memory

address of the sensitive data to be read. speculative

calls gadget, which serves two purposes: (1) the re-

turn address is pushed to the RSB (the return address

is to line 17 where we have the payload gadget to be

executed speculatively); and (2) we jump to the (inline

assembly) function gadget which will manipulate the

software stack to create the mismatch between the RSB

and the software stack. In this case, gadget cleans up the

effects of the function call to itself, popping off the frame

including the return address.

At this point, before the return, the stack state is

consistent with a return from speculative back to main.

However, the RSB holds a return value from gadget to

speculative. Thus, in line 12 when the return exe-

cutes, the CPU speculatively executes at line 17. The

flush of the top of the stack (line 10) ensures that the true

value of the return address will be fetched from mem-

ory rather than from the caches creating a large specu-

addresses using S2 without raising an exception, but may be able to do

that using S3 (we note that PhysMap is marked as non-executable in

most recent Linux distributions.)

1. Function gadget()

2. {

3. push %rbp

4. mov %rsp, %rbp

5. pop %rdi //remove frame/return address

6. pop %rdi //from stack stopping at

7. pop %rdi //next return address

8. nop

9. pop %rbp

10. clflush (%rsp) //flush the return address

11. cpuid

12. retq //triggers speculative return to 17

13. } //committed return goes to 23

14. Function speculative(char *secret_ptr)

15. {

16. gadget(); //modify the Software stack

17. secret = *secret_ptr; //Speculative return here

18. temp &= Array[secret * 256]; //Access Array

19. }

20. Function main()

21. {

22. speculative(secret_address);

23. for (i = 1 to 256) //Actual return to here

24. {

25. t1 = rdtscp();

26. junk = Array[i * 256]; //check cache hit

27. t2 = rdtscp();

28. }

29. }

Figure 5: SpectreRSB basic attack example

lation window. Note that the speculation window based

on the return. Speculative execution at line 17 reads the

secret which can be any mapped address even if inac-

cessible to the user process during normal execution and

then communicates it out through the flush reload cache

side channel by accessing a data dependent index in the

Array (line 18). Finally, the real return value is obtained,

and the misspeculation is squashed, returning us to line

23, where we probe the cache to identify which data de-

pendent cache set was accessed to expose the value of

the secret.

5 Attacks across different

threads/processes

In this section, we investigate different vectors of Spectr-

eRSB which exploit S4 (RSB use across execution con-

text) to pollute the RSB. These attacks potentially allow

an attacker to attack another process (Similar to Spectre

V2), perhaps even across VMs, making the attack dan-

gerous on the cloud. In general, these attacks require

a machine not implementing RSB refilling (pre-Skylake,

or Xeon, for example), to make sure that a context switch

does not overwrite the polluted addresses from the RSB

(Figure 6).

The attacker establishes co-location with the victim

on the same core similar to Spectre 2. The attack pat-



Figure 6: Attack 2: Basic Attack Flow

tern proceeds as follows. (1) after a context switch to

the attacker, s/he flushes shared address entries (for flush

reload). The attacker also pollutes the RSB with the tar-

get address of a payload gadget in the victim’s address

space; (2) the attacker yields the CPU to the victim; (3)

The victim eventually executes a return, causing specula-

tive execution at the address on the RSB that was injected

by the attacker. Steps 4 and 5 switch back to the attacker

to measure the leakage.

5.1 Attack 2a: Attack across two colluding

threads

In this attack, the attacker and the victim are two collud-

ing threads following the steps in Figure 6. In the first at-

tack, we let the two threads synchronize using futex op-

erations to control their interleaving. The RSB pollution

happens in the first thread which also flushes the top of

the stack of the second thread, while the return happens

in the second. The attack succeeded, proving that Spectr-

eRSB works from one thread to another. However, since

the return is in user mode, we cannot read kernel data.

For the attack to be useful, we should either launch an

attack such that the victim colluding thread returns while

in the kernel (enabling us to read kernel data while its

memory is mapped), or work across process boundaries

such that the victim thread is a different process and we

leak its sensitive data (attack 2c).

5.2 Attack 2b: Attack with two colluding

threads with return from inside kernel

Next, we wanted to see if we can use this attack to cause

a return while the victim thread is in the kernel mode

in step 3. To ensure this, we have the colluding victim

execute a blocking system call, which typically has them

deep inside a call stack in the kernel before blocking. The

attacker after polluting the RSB, waits for the victim to

unblock, perhaps even triggering the event that unblocks

it. At this point the victim continues execution inside

the kernel, and recurses back out of its call stack, with

one or more returns, triggering the vulnerability. This

attack requires a machine without SMEP enabled. We

demonstrated the attack with SMEP disabled.

5.3 Attack 2c: Attacks across Process

boundary

The attacks above assume two colluding threads. In

principle, it can be generalized across different address

spaces, but this requires overcoming some challenges.

First, the attacker has to be able to identify gadgets exist-

ing in the victim binary instead of being able to use their

own. This may also require them to recover the ASLR

offset of the victim, but there are a number of existing at-

tacks that make that possible. However, once these gad-

gets are found, the same attack pattern can follow by first

polluting the RSB, then using eviction to remove the top

of the stack containing the return address from the cache

to extend the speculation window. Synchronization is

difficult, but can be simplified if the attacker is able to

trigger operations in the victim (e.g., if the victim is a

server accepting connections). We did not create a PoC

of this attack.

6 SpectreRSB Atack 3: Attacks on SGX

Having established attack 1 of the SpectreRSB where

the attacker pollutes the RSB for its own process to

cause misspeculation, we next investigate whether Spec-

treRSB attacks work on SGX compartments (similar to

SGXSpectre [3]).

In this attack we consider, a malicious untrusted user

code manipulates the RSB to try to cause misspecula-

tion inside the enclave. In this attack, we pollute the

RSB with the target address of a payload gadget from

untrusted user code (this can equally be done by a mali-

cious OS). Note that the gadget could be in the untrusted

user code since user code and SGX enclaves share the

same address space. The next step is to do an enclave

call to switch it the trusted execution mode. The enclave

call has to have an unmatched return to cause specula-

tion execution at the address that was injected from the

untrusted code. Finally, the untrusted code after return-

ing from the enclave call can check the cache to record

the leakage.

Triggering an unmatched return: the RSB assumes

that strictly paired call-return behavior. In attacks that

cross execution boundaries, the attacker pollutes the

RSB, but would then like to trigger a return in the vic-

tim process code (or OS/SGX code) to which they have

no access. However, if the attacker manages to catch

the victim inside of a function call, then when the victim

executes again, it will encounter an unmatched return.

This could rely on timing or a blocking call inside of a

function that will cause the scheduler to unschedule the



victim. In this Proof of Concept attack, we placed an

unmatched return directly in the enclave, but we expect

to be able to do that using the strategies above for other

enclaves.

Attack results: This attack successfully works on fully

patched machines. The attack bypasses all software and

microcode patches:it bypasses Retpoline since no indi-

rect jumps are used. It bypasses the microcode patches

since they do not appear to limit speculation through the

RSB. It bypasses RSB refilling (which is only imple-

mented on Skylake+, but not on the Xeon processors)

since no mode switches to the kernel are triggered dur-

ing the attack. Thus, SGX is vulnerable to SpectreRSB

even on fully patched machines.

7 Potential Attack 4: From user to Kernel

In this section, we briefly discuss the possibility of an-

other attack where user code pollutes the RSB and then

triggers an unmatched return in the kernel (we call this

attack 4). This attack is likely to be difficult, if not im-

possible, so we describe it only for completeness. The

main insight is that a return from the kernel to a polluted

address in the RSB will cause speculation while in ker-

nel mode. This means that the kernel address space is

still mapped, allowing us to read from kernel. This at-

tack assumes the following ingredients: (1) that the RSB

is shared between the user and the kernel: we find that

this is the case on two Intel processors; (2) We need to

be able to trigger an unmatched return in the kernel. Al-

though some programming constructs such as tail recur-

sion, continuations, setjmp/longjmp and others can break

call-return semantics, we have not attempted to find such

unmatched returns in the kernel; and (3) We need to

figure out the stack address of the kernel, and evict it

from the cache. This last step is necessary to make sure

that the speculation window is sufficiently large to exe-

cute a useful gadget speculatively (without this, we can

only execute a gadget a few instructions long specula-

tively). Luckily, the mapping between the stack kernel

address and the physical address is deterministic in Linux

on x86-64 (it uses the Physmap address directly instead

of double mapping it). This makes deriving the conflict

set straightforward once we identify the kernel stack ad-

dress.

We explore a proof of concept attack with an un-

matched return in a kernel module that we build. Later,

we discuss concrete possibilities for how to make this

happen with multiple threads. The attack is shown in

Figure 7, and works only on an unpatched machine or

a machine not implementing RSB refilling. After pol-

luting the RSB in steps 1-3, and flushing the top of the

kernel stack in step 4, before issuing a system call to

our kernel module with the unmatched return . The mis-

0x1014 nop

0x1010 call rsb_pollute

0x1011 movzx %al, %rbx

0x1012 shl &9, %rbx

0x1013 movzx (%[array], rbx, 1), %rcx

0x1020 flushing_kernel_stack

1

.

.

.

rsb_pollute:

0x2010 pop r10

0x2011 jmp 0x1014

2

0x1040 sys_call()

.

.

.

6

0xff40 ret

.

.

.

3

4

5

RSB

Cache

0x1011

7

push ret address

pop  ret address

load data 

Figure 7: Attack 4: Basic Attack Flow

matched return triggers a misspeculation to step 7 to ex-

ecute in supervisor mode. This attack does not work

on patched Skylake+ processors due to RSB refilling but

works on the Xeon machine. We also discover that Su-

pervisor Mode Execution Prevention (SMEP) checks are

not speculatively bypassed since the speculative program

counter is known at the time of speculation. Thus, the at-

tack as shown requires SMEP to be disabled to enable

the kernel to return to user code. An alternative strategy

to bypass this limitation is to try to use the return address

of the gadget in PhysMap (as discussed under S3 in Sec-

tion 3), but most Linux distributions disable execution

of PhysMap addresses. We only demonstrated the attack

with SMEP disabled. We also assumed that we know the

address of the kernel stack pointer to flush it in step 4.

8 Discussion and Mitigations

In the first attack, a process launches an attack within

the same address space either on the kernel or on data

outside of its software containment. An attack from user

mode to the kernel is possible in the original spectre: the

BTB is poisoned, and then an indirect jump in the kernel

space triggers the misspeculation to the payload. This

attack is prevented by the Retpoline defense which only

covers BTB poisoning, and assumes that the user code is

compiled to use Retpoline. Importantly, none of the Intel

microcode patches seem to restrict speculation through

the RSB.

In attack 2 of SpectreRSB, we attempted to carry out

the attack across execution threads. Attack 2a demon-

strates a practical attack across two colluding threads in

the same process. Attack 2b, shows how two collud-

ing threads can cooperate to make an attack like attack

4 more predictably execute a return in kernel mode. Fi-

nally, Attack 2c in principle can carry out a SpectreRSB

attack across different processes, bypassing all known

defenses. Although we did not demonstrate this attack

completely yet, we believe that none of the defenses stop



Table 1: Experiment Environment

CPU Model Kernel version kernel patch Intel patch

Machine1 Intel Xeon(R)-E51620 4.15.0-22-generic Retpoline, Kpti ✓

Machine2 Intel Core(TM)-i7-6700 4.4.117 Retpoline, Kpti, RSB refilling ✓

Table 2: Attack senarios vs. defense mechanisms (✓attack can bypass defence or ✗otherwise). KPTI prevents reads

from user mode to kernel memory but not reads from user to user or from kernel to kernel.

Attack no Attack Name lfence IBRS STUBP IBPB retpoline RSB refilling SMEP/SMAP

Attack 1 Same-process ✓ ✓ ✓ ✓ ✓ ✓ ✓

Attack 2a Colluding threads (user) ✓ ✓ ✓ ✓ ✓ ✗ ✓

Attack 2b Colluding threads (kernel) ✓ ✓ ✓ ✓ ✓ ✗ ✗

Attack 2c Cross-process ✓ ✓ ✓ ✓ ✓ ✗ ✓

Attack 3 Return in SGX ✓ ✓ ✓ ✓ ✓ ✓ ✓

Attack 4 Kernel from user ✓ ✓ ✓ ✓ ✓ ✗ ✗

it and it should be considered a dangerous threat vector

on the cloud.

The attack on SGX bypasses all known defenses, in-

cluding RSB refilling, and should be considered a dan-

gerous open vulnerability on SGX systems. Changing

the microcode patches to protect speculation through the

RSB, or implementing RSB refilling upon entrance to

SGX enclaves can potentially mitigate this vulnerability.

In Attack 4, our intuition was that a SpectreRSB attack

that causes a return in the kernel to misspeculate would

defeat both KPTI (in kernel mode, the kernel pages are

available) and Retpoline (which only protects indirect

jumps and calls, but not returns). While this is gener-

ally true, we discovered a number of complications that

can be overcome under some conditions. RSB refill-

ing, which is implemented on Intel Skylake+ processors,

stops the attack. On other processors, SMEP prevents a

return to a gadget in user space, however, a return to a

gadget in kernel space if one can be identified is possi-

ble. Finally, we need to be able to determine the address

of the top of the kernel stack in order to be able to evict,

to increase the speculation window.

To mitigate SpectreRSB, we suggest that all proces-

sors, not just Skylake+ immediately support the RSB re-

filling patch which should interfere with all attacks that

require a context switch to the kernel (attacks 3 and

4). Adding RSB refilling on an SGX enclave entrance

should also be considered to stop attack 2. We also sug-

gest that Intel microcode patches consider extending pro-

tection to the RSB, and not just the branch predictor. We

summarize the proposed SpectreRSB attacks as well as

their ability to bypass defenses in Table 2.

9 Related Work

In addition to the defenses against Meltdown and Spec-

tre discussed in Section 2, we overview other potential

defenses, as well as newly published related attacks. We

first overview some of the defenses against side channel

attacks on CPU caches, which are the primary channel

used by the Meltdown and Spectre attacks to communi-

cate privileged data out. We show that due to the fact

that their threat model assumptions do not hold in spec-

ulation attacks, they fail to mitigate these attacks. More-

over, although making the cache secure protects the pub-

lished proof of concept attacks, other side channels exist

and it is straightforward to switch to them to communi-

cate speculative data. Thus, a principled solution against

speculation attacks should not rely on closing any partic-

ular side channel.

Software defenses against side channel attacks assume

that the programmer and/or compiler are interested in

preventing leakage from their program. In contrast, part

of our threat model is an attacker that either writes the

code to generate leakage, or identifies potential unin-

tended code gadgets to cause the leakage. Thus, we be-

lieve that software side channel attacks are unlikely to

provide beneficial defenses against speculation attacks.

Hardware assisted cache side channel defenses: Since

speculation attacks rely on a microarchitectural covert

channel in the payload gadget to communicate the data

out, defenses against side channel attacks are a poten-

tial approach to mitigate speculation attacks. One simple

technique to make caches immune to side channel attacks

is static partitioning to create isolation [5]. Domnitser et

al. propose a dynamically partitioned cache, providing

isolation to limit leakage but also allowing some con-

tention for performance [4]. We note that partitioning

does not prevent leakage from within the same process

such as the attacks under Spectre variant 1 and Melt-

down.Locking of critical data [38, 24, 28] in the cache

prevents it from being replaced by the attacker’s prime

or flush operations. The solution requires support from

the OS, programming language, and compiler to mark

the critical data, in addition to a bit for each cache line to

indicate whether it is locked. The notion of sensitive data



does not exist in the context of speculative attacks un-

less all out of bounds data is marked as sensitive (which

would be impossible to fit in the caches). Randomiza-

tion, exemplified by NewCache [39], randomizes the vic-

tim selection process on cache replacements, so that the

attacker cannot glean useful information from its cache

misses. The solution requires an index remapping table,

extra bits in the cache to indicate which lines are subject

to the random victim selection, and also support from the

software layers to mark such critical data [39]. Kayaalp

et al. [19] propose a defense that relaxes the inclusion

property, which is a necessary component of the LLC at-

tacks. Again, since an attack can be launched within the

same process, neither randomization nor relaxed inclu-

sion help with attacks within the same process (such as

SpectreRSB attack 1 and 3, or the Meltdown bug).

Hardware Solutions: It is almost certain that future gen-

erations of CPUs will be designed to mitigate Meltdown

and Spectre class attacks. To protect against Meltdown,

it is possible to move the permission checks earlier in

the pipeline, preventing the temporary load of the secret

data. It is likely that AMD and ARM already implement

this defense. Protecting against Spectre (including Spec-

treRSB) is substantially more difficult. To this end, Safe-

Spec [22] proposes using shadow hardware structures

where speculative data resides. If the instructions fetch-

ing the data commit, the data is moved from these struc-

tures to the permanent structures (e.g., caches or TLBs).

On the other hand, if an instruction is squashed, the data

is discarded from the shadow structures. As a result,

speculatively accessed data is never visible to committed

instructions. SafeSpec requires additional space to store

the shadow state, but results in modest improvements in

the processor performance, while completely closing this

class of vulnerabilities. PoisonIvy [26] is an architectural

solution to track speculative data and prevent it from be-

ing exposed outside of the chip. The threat model fo-

cuses on accessing data while speculating on integrity

verification. They seek to prevent the data from being

speculatively read and therefore observed by a physical

attacker that monitors the memory bus. PoisonIvy sup-

ports this capability by using information flow tracking

to track data that is generated past a speculative check

or data that is dependent on it. PoisonIvy does not pre-

vent side channel leakage from speculatively accessed

data. PoisonIvy results in approximately 20% slowdown

in CPU performance. Both of these proposals require

deep redesign of the processor architecture and therefore

cannot protect current systems.

Other attacks: Since the disclosure of the Spec-

tre/Meltdown attacks, two closely relevant attacks have

also been reported [36, 3]. Utilizing a verification tool,

Trippel et.al. [36] discovered that by leveraging the in-

validation message of cache coherence protocols, it is

possible to replace Flush+Reload with Prime+Probe to

retrieve the content fetched by speculative instructions.

In the SGXPECTRE attack, Chen et al. [3] demonstrated

that it is possible to steal secret information from an SGX

enclave using Spectre attack principles. Evtyushkin et

al. presented BranchScope, an attack that can pollute the

direction predictor (rather than the target predictor) com-

ponent of the branch predictor unit [7]. Branchscope is

likely to be less potent than attacks that poison the branch

target buffer since it only controls the binary prediction

of branch taken or not taken. It has not been demon-

strated to be useful in a speculation attack, although it

is possible that it can be. Although not a speculative at-

tack, Branch Shadowing [25] empties the RSB to force

returns inside of an SGX compartment to use the branch

predictor, leaving a side channel footprint (observable

through a side channel attack on the branch target buffer)

enabling the control flow to be tracked. Recently, a so

called variant 4 of Spectre was disclosed [17] which uses

speculative store bypass: a speculation technique where

load instructions speculatively execute without checking

the load store queue for a preceding store. This tech-

nique represents another trigger for speculation, but it is

not clear whether it can be used in practical attacks yet.

10 Concluding Remarks

In this paper, we introduced a new type of speculation at-

tacks (SpectreRSB) that is triggered by the Return Stack

Buffer (RSB), rather than the branch predictor unit. The

RSB is used to predict the address of return instructions.

We demonstrated a number of vectors that allow an at-

tacker to cause RSB misspeculation. Using these tech-

niques, we construct a number of attack vectors includ-

ing attacks within the same process, attacks on SGX en-

claves, attacks on the kernel, and attacks across differ-

ent threads and processes. SpectreRSB bypasses all pub-

lished defenses against Spectre, making it a highly dan-

gerous vulnerability.

Interestingly, there is a patch that was proposed to pro-

tect against the behavior of Intel Core i7 Skylake gener-

ation and newer processors called RSB refilling. RSB

refilling interferes with SpectreRSB attacks that experi-

ence at least one mode switch from user to kernel. We

recommend that this patch should be deployed immedi-

ately across all processor generations (and not just Sky-

lake+). In the long run, we believe that these patches

are ad hoc and that new attack vectors will continue to

emerge. Current systems are fundamentally insecure un-

less speculation is disabled. However, we believe that it

is possible to design future generations of CPUs that re-

tain speculation but also close speculative leakage chan-

nels, for example by keeping speculative data in separate

CPU structures than committed data.
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