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Abstract

Introduction—In the heart, pathways that transduce extracellular environmental cues (e.g. 

mechanical force, inflammatory stress) into electrical and/or chemical signals at the cellular level 

are critical for the organ-level response to chronic biomechanical/neurohumoral stress. 

Specifically, a diverse array of membrane-bound receptors and stretch-activated proteins converge 

on a network of intracellular signaling cascades that control gene expression, protein translation, 

degradation and/or regulation. These cellular reprogramming events ultimately lead to changes in 

cell excitability, growth, proliferation, and/or survival.

Areas covered—The actin/spectrin cytoskeleton has emerged as having important roles in not 

only providing structural support for organelle function but also in serving as a signaling “super 

highway,” linking signaling events at/near the membrane to distal cellular domains (e.g. nucleus, 

mitochondria). Furthermore, recent work suggests that the integrity of the actin/spectrin 

cytoskeleton is critical for canonical signaling of pathways involved in cellular response to stress. 

This review discusses these emerging roles for spectrin and consider implications for heart 

function and disease.

Expert Commentary—Despite growth in our understanding of the broader roles for spectrins in 

cardiac myocytes and other metazoan cells, there remain important unanswered questions, the 

answers to which may point the way to new therapies for human cardiac disease patients.
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1.0 Spectrin structure and function

1.1 What are spectrins and why should we care?

The evolution of metazoans from unicellular ancestors required the emergence of cellular 

systems to support, among other functions, cell adhesion, long-range communication, 

defense, and membrane integrity in the face of high mechanical stress [1, 2]. Importantly, 

with multicellular animals arose de novo cellular pathways to exert spatiotemporal control 

over gene programs, often involving redeployment of ancestral genes [1]. Spectrins are 

cytoskeletal proteins originating with early metazoans that help resolve some of these unique 

challenges faced by multicellular animals [2].

First discovered as a key constituent of detergent-extracted erythrocytes, or “ghosts,” the 

spectrin molecule is a long, flexible chain ~200 nm in length formed as a heterotetramer 

(dimer of anti parallel heterodimers) of α- and β-subunits [2, 3]. The human spectrin family 

includes two α- and five β-spectrin subunits (expanded from one α- and two β-subunits in 

invertebrates) encoded by distinct genes with additional diversity through alternative splicing 

(Table 1). Spectrins are widely expressed in mammalian tissues with αII- and βII-spectrin as 

the predominant non-erythrocytic isoforms. A characteristic feature of both α- and β-

spectrin structure is the presence of multiple triple-helical repeats (spectrin repeats), which 

confer flexibility to the spectrin molecule and facilitate protein-protein interaction including 

between α- and β-subunits themselves (involves coupling of incomplete helical repeats) [2]. 

Canonical α-spectrin consists of 20 spectrin repeats with a src homology domain (SH3) 

between repeat 9 and 10 and a C-terminal calmodulin-related domain. β-spectrin is 

comprised of a highly conserved N-terminal actin-binding region, followed by 17 spectrin 

repeats (except for βV-spectrin, which has 30 repeats) and a C-terminal domain with 

interesting and understudied signaling motifs including a pleckstrin homology domain. 

Repeat 15 in β-spectrin contains a highly conserved motif that facilitates interaction with 

ankyrins, cytoskeletal proteins that link membrane proteins to the spectrin-actin cytoskeleton 

[4]. An interaction between spectrin and protein 4.1 likely stabilizes spectrin-actin 

interaction [5, 6].

Expression of αI-, βI-and βIV-spectrins, in addition to αII- and βII-spectrins, has been 

reported in cardiomyocytes with distinct localization patterns [5, 7–9] that is affected by 

alternative splicing [10]. αII- and βII–spectrin are the predominant isoforms found at the Z-

line and sarcoplasmic reticulum (SR) membranes. In contrast, αI- and αII- spectrin along 

with βI-spectrin account for major spectrin components at the lateral membrane. Finally, 

αII-, βII-, βIV-spectrin are principal family members localized to intercalated disc (Figure 1) 

[5, 7, 11–14]. The localization of spectrin isoforms to myocyte membrane domains 

important for cell-cell communication (e.g. intercalated disc) and contraction (e.g. Z-lines, 
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SR membranes) suggests important roles in regulating both electrical and mechanical 

cardiac function.

1.2 Established roles for spectin in membrane stability and ion channel targeting

Spectrin serves as a principal component of the molecular scaffolding linking the plasma 

membrane and associated proteins to the actin cytoskeleton in numerous tissue types [2, 5, 

15]. In both erythrocytes and nucleated cell types, the spectrin-based cytoskeleton is critical 

in maintaining normal cell morphology, plasma membrane stability, and mechanical 

properties. A prototypical example of this canonical function is found in the erythrocyte 

where spectrin forms a polygonal network with actin that links to membrane proteins via 

ankyrin to support the lipid bilayer [2]. In neurons, super resolution microscopy has revealed 

a distinct periodic pattern of ring-like actin structures interconnected by spectrin tetramers 

aligned along the axon shaft [16]. Spectrin isoforms are found not only at the submembrane 

but also in the nucleus where they contribute to nucleoskeleton flexibility and chromosome 

stability [17, 18]. Interestingly, in this regard, studies point to an important role for nuclear 

αII-spectrin as a scaffold for repair of DNA interstrand cross-links [18]. Given its central 

role in formation of the erythrocyte membrane cytoskeleton, it is not surprising that defects 

in spectrin lead to erythrocyte membrane fragility, which ultimately may manifest as 

elliptocytosis and anemia [19]. Similarly, epithelial cells deficient in either βII-spectrin or 

ankyrin-G fail to maintain normal basolateral and apical membrane area, converting cells 

from columnar to squamous cell morphology [20].

Through its interaction with ankyrin family proteins, spectrins not only confer membrane 

stability but also play key roles in localization of ion channels, transporters and exchangers 

to membrane domains important for cell function. Classic examples of this function are 

found in the requirement of spectrin for membrane targeting of anion exchanger band 3 in 

erythrocytes [21, 22] and Na+/K+ ATPase in epithelial cells [23–25]. In neurons, βIV-

spectrin is highly enriched with ankyrin-G and voltage-gated ion channels at axon initial 

segments (AISs) and nodes of Ranvier [26–31] while βII-spectrin is found primarily at 

paranodal regions with ankyrin-B [32]. Defects in βIV-spectrin or ankryin-G result in loss of 

normal voltage-gated Na+ (Nav) channel clustering, abnormal cell membrane excitability 

and neurological dysfunction (e.g. ataxia) in mice [26, 33–35]. Similarly, spectrin and 

ankyrin have been shown to be important for organization of ion channels at several 

membrane domains in cardiac myocytes including the cardiac dyad and intercalated disc 

(Figure 1). Namely, βII-spectrin is enriched with ankyrin-B at the cardiac dyad, a micro 

domain integral to cardiomyocyte excitation-contraction coupling [8, 36–38]. Loss of βII-

spectrin or ankyrin-B results in abnormal targeting of Ca2+ cycling proteins (e.g. Na+/Ca2+ 

exchanger, ryanodine receptor SR Ca2+ release channels), aberrant Ca2+ cycling and 

arrhythmias [8, 37, 39]. In contrast, βIV-spectrin is highly localized with ankyrin-G at the 

cardiac intercalated disc, a specialized membrane domain important for electrical and 

mechanical cell-to-cell coupling [7, 40–42]. While it is clear that ankyrin-G is required for 

proper localization of βIV-spectrin and intercalated disc proteins, including Nav1.5 (primary 

cardiac Nav), the role of βIV-spectrin in ion channel targeting is less established [12, 40–43]. 

It is likely that βIV-spectrin, in fact, plays a more prominent role in regulation of Nav1.5 

rather than targeting (discussed in more detail below). However, βIV-spectrin has been 
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linked to membrane targeting of other cardiac ion channels, specifically, the two-pore K+ 

channel, TREK-1 [12, 44]. TREK-1 channels encoded by KCNK2, belong to the two-pore-

domain background potassium channel protein family (K2P) and are expressed in nervous 

and cardiovascular systems where they regulate cell membrane excitability and participate in 

transduction of a variety of environmental stimuli [45, 46]. Interestingly, loss of βIV-spectrin 

or TREK-1 has been shown to produce arrhythmia in mice characterized by pronounced 

sinus node dysfunction in response to acute adrenergic stimulation [12, 44]. Interestingly, 

several groups have identified involvement of spectrin in post-golgi targeting and long range 

transport of ion channel cargo to the membrane, although its specific role remains 

controversial [2, 23, 47, 48]. In a similar vein, exciting work has identified a spectrin-based 

complex involving Mena, VASP and αII-spectrin for regulating actin dynamics [49].

1.3 Emerging roles for spectrins in control of signaling pathways

While the ways in which spectrins provide metazoans with increased membrane support and 

organization are relatively established, only recently has the field begun to appreciate 

alternative roles for spectrins in coordinating signaling and gene programs. Studies on mice 

lacking βII-spectrin (also known as embryonic liver fodrin, ELF) provide an excellent 

example of how spectrin might have evolved to mediate sophisticated cell signaling 

pathways [50]. Smad proteins are a group of transcription factors important for mediating 

TGF-β signaling that evolved with early metazoans [1]. βII-spectrin associates with Smad 

family members to regulate TGF-β-dependent signaling and βII-spectrin-deficient mice 

display systemic developmental defects including aberrant cardiac development [50]. More 

recently, studies have shown that analogous to this βII-spectrin/TGF-β/Smad signaling 

pathway,βIV-spectrin coordinates spatial and temporal organization of Ca2+/calmodulin 

kinase II (CaMKII) signaling in cardiomyocytes and neurons [7]. CaMKII is a 

multifunctional serine/threonine protein kinase with broad tissue distribution and a single 

ancestral gene, which likely evolved at a point in metazoan evolution just prior to spectrin 

(found in unicellular eukaryote and metazoan ancestor choanoflagellate, but not plants or 

yeast) [51–54]. βIV-spectrin organizes a macromolecular signaling complex with ankyrin-G 

to regulate CaMKII-dependent phosphorylation of the cardiac voltage-gated Na+ channel, 

Nav1.5 [7, 41, 55, 56]. This spectrin-based complex is important for CaMKII-dependent 

regulation of cardiac cell membrane excitability and cardiac function in response to both 

acute and chronic adrenergic stress [7, 55, 56]. Interestingly, spectrins via their association 

with ankyrins likely also regulate the negative axis of CaMKII-dependent signaling via 

targeting of protein phosphatase 2A [57–59].

2.0 Roles for spectrin in disease

2.1 Association between spectrin dysfunction and disease in multiple organ systems

Given the many ways that spectrins support metazoan cell function, the close link between 

spectrin dysfunction and human disease is not surprising. Mutations in spectrins and 

ankryins have been identified as the underlying cause of forms of hereditary sperocytosis 

and hemolytic anemia, as well as spinocerebellar ataxia in mice and humans [15, 19, 35]. In 

a similar vein, genome-wide association studies have uncovered ANK3 (encodes for 

spectrin-associated AnkG) as a susceptibility locus for human bipolar disorder [60] while 
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mutations in ANK3 have been linked to broad spectrum neurological disorders including 

autism [61, 62]. More recently, it has been reported that a homozygous nonsense mutation in 

SPTBN4 (encoding βIV-spectrin) is a novel candidate disease gene for congenital myopathy, 

neuropathy, and deafness in a consanguineous Kurdish family [63].

2.2 Spectrin dysfunction in cardiac arrhythmia and disease

Defects in spectrin-based pathways have been linked to cardiac arrhythmia and disease. 

Interestingly, spectrin dysfunction has been shown to alter both electrical and mechanical 

function suggesting that spectrin may be a therapeutic node for effectively treating both 

arrhythmias and underlying substrate in disease.αI-spectrin deficiency in mice results in a 

dilated cardiomyopathy, although the presence of severe anemia complicates the phenotype 

in these animals [5, 64]. Global deletion of βII-spectrin in mice is embryonic lethal, with 

profound developemental defects in heart and other organs [50]. In particular, βII-spectrin 

deficiency leads to a dramatic loss or disorganization of dystrophin, F-actin, α-smooth 

muscle actin, and tropomyosin, contributing to compromised myocyte contractile function. 

At the same time, loss of βII-spectrin promotes aberrant expression/activity of myocardial 

transcription factors Nkx2.5, GATA4, and MEF2c, together with pronounced defects in 

TGF-β/Smad signaling (addressed above), which likely contributes to loss of the normal 

myocardial trabeculated pattern and severe thinning of the compact layer by E14.5. Cardiac 

specific βII-spectrin deletion in mice, although not embryonic lethal, results in pronounced 

arrhythmia and increased mortality/remodeling in response to chronic pressure overload [8]. 

Human ANK2 variants (encoding ankyrin-B) result in a broad spectrum arrhythmia 

syndrome recapitulated by mice deficient in ankyrin-B [37, 65, 66]. Recently, a novel human 

ANK2 variant associated with increased susceptibility to arrhythmias was shown to alter 

binding to βII-spectrin [67].

Beyond rare, inherited disorders, mounting data support a role for dysfunction in spectrin-

based pathways in common forms of cardiac disease. Recent studies have identified 

downregulation of both spectrin and ankyrin family proteins in animal models and human 

patients with common forms of acquired cardiac disease [12, 67–69]. Specifically, 

significant decreases in the levels of βII-spectrin, βIV-spectrin, and ankyrin-B have been 

reported in human failing hearts [12, 67], which are also observed in animal models of heart 

failure and myocardial infarction [67, 69]. Similar changes in βII-spectrin,βIV-spectrin, and 

ankyrin-B expression have been observed in atria of human AF patients and canine model of 

sinus node dysfunction [44, 66, 67]. In general, chronic stress conditions appear to promote 

decreased spectrin/ankyrin levels at the protein but not transcript levels, indicating abnormal 

post-translational processing, linked to elevations in the Ca2+ activated protease, calpain [67, 

68], a phenomenon also observed in tramautic brain injury [70]. Interestingly, αII-spectrin 

breakdown products have been suggested as biomarker for brain injury during open heart 

surgery in neonates with congenital heart disease [71]. Together, these data indicate the 

highly conserved loss of spectrin across species in response to adverse cardiac remodeling 

from either pressure overload and/or ischemic stress, suggesting a potentially prominent role 

in contributing to and driving disease remodeling.
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2.3 Molecular mechanisms linking spectrin dysfunction to disease

The molecular mechanisms underlying maladaptive remodeling and arrhythmias in animals 

with spectrin dysfunction remain unclear, due in part to the lack of appropriate animal 

models (e.g. cardiac-specific spectrin knockout models like for βII-spectrin). Several 

possible mechanisms have been touched on already in this review and include defects in ion 

channel localization/activity and/or aberrant cell signaling, perhaps converging on pathways 

important for myocyte survival and fibrosis. For example, in the case of cardiac-specific βII-

spectrin deletion, there is loss of normal Ca2+ homeostasis due in part to a precise defect in 

the expression and localization of SR ryanodine receptor Ca2+ release channels (without 

global changes in t-tubule structure or Cav1.2), giving rise to increased frequency of 

spontaneous Ca2+ waves and arrhythmogenic after depolarizations [8]. In addition to the 

pro-arrhythmic contributions from these changes, the resulting defect in Ca2+ handling may 

drive myocyte loss, hypertrophy, and an accelerated decline in contractile performance 

through Ca2+-dependent signaling pathways (e.g. CaMKII, calcineurin). At the same time, it 

is possible that defects in βII-spectrin may disrupt intracellular signaling and gene 

expression programs directly through its role in coordinating cell signaling networks (e.g. 

TGF-β/SMAD signaling [50], as discussed in the previous section). In a similar vein, the 

link between βIV-spectrin and CaMKII signaling provides a potential mechanism underlying 

pathogenesis induced by spectrin dysfunction. Aberrant CaMKII activity/expression is a 

common finding across a broad spectrum of cardiac disease states and has been linked to not 

only altered ion channel activity but also changes in transcriptional, inflammatory, apoptotic 

and fibrotic pathways [52]. It is interesting to consider the possibility that given its role its 

association with CaMKII, βIV-spectrin may dually regulate electrical and mechanical 

function in cardiac myocytes.

3. Expert commentary

Although we have learned a great deal about spectrin since its discovery almost 50 years 

ago, there remain a host of important unanswered questions, especially related to its role in 

cardiac physiology and disease. As addressed in this review, spectrin satisfies a number of 

unique metazoan needs from membrane support to long range signaling, which begs the 

question: Why has the metazoan (more specifically, cardiac) cell evolved to impart both 

structural and signaling functions to a single protein family (also observed with integrins, 

catenins, etc.)? Similarly, how has a single class of proteins evolved to participate in so 

many different cellular processes? A compelling theory in this regard is that spectrin family 

members evolved with metazoans to “uncouple” cellular reprogramming from 

environmental cues, effectively subjugating the individual cell to the needs of the organism 

[1]. It is interesting to consider the corollary then that loss of an essential support for this 

uncoupling would effectively cause cells to revert to a “unicellular” ancestral state to the 

detriment of the organism. Aside from these larger more philosophical questions, further 

investigation is required to address the more basic but no less important questions related to 

the roles of spectrin isoforms in controlling cardiac myocyte function, consequences at the 

organ and organismal level, and ultimately novel ways for repairing the spectrin-based 

cytoskeleton in the setting of disease. For example, while the structure and function of 

elaborate spectrin/actin networks have been mapped out in erythrocytes, neurons and other 
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cells [16, 20, 31, 72], we lack the same level of detailed information in cardiomyocytes. At 

the same time, intriguing gaps remain in our understanding of the broader roles for spectrin 

aside from membrane support and ion channel targeting. For instance, how is spectrin able 

to link distal signals to the nucleus and ultimately altered gene expression? Aside from 

chromosome repair, are spectrins able to alter cell gene programs via interplay with 

signaling molecules (e.g CaMKII) and/or transcription factors (e.g. Smads) and what are the 

consequences for cardiac disease?

Finally, it is important to note that in order to answer these and other pressing questions 

related to spectrin biology, we must overcome considerable technical challenges in 

dissecting the multiple aspects of pleiotropic protein function. Conventional biomedical 

science relies almost exclusively on large system perturbations (e.g. total gene knockout/

overexpression) to elucidate function at the molecular level. While such studies have 

generated important insight across disciplines, their binary “all-or-nothing” nature 

potentially obfuscates a finer level of detail essential for accurate assessment of the system 

as a whole. It will be important, going forward, to establish novel paradigms for “molecular 

sensitivity analysis” to study the more nuanced aspects of the actin/spectrin signaling 

network discussed here.

4. Five-year view

In light of the recent developments in our understanding of spectrin and other cytoskeleton 

proteins, it is exciting to consider how our view will continue to evolve over the next five 

years. First, technological advances (e.g. high throughput CRISPR gene editing, “big data” 

science) will allow us to develop more nuanced views of protein function over the traditional 

“all-or-nothing” knockout/overexpression approach. Second, due in part to improved 

technology, we will develop a more complete view of how specific extracellular stimuli 

(chronic and acute) lead to very different cell-level responses (adaptive vs. maladaptive) and 

how cytoskeletal proteins like spectrin help transduce these signals. Finally, we hope that 

these advances will lead to a more complete grasp of how to manipulate cytoskeletal 

components to protect cell membrane integrity in the face of chronic adverse conditions 

without launching a cellular reprogramming that ultimately compromises organ function.
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Key issues

• Spectrins are cytoskeletal proteins originating with early metazoans that help 

resolve some of the unique challenges faced by multicellular animals.

• Spectrins provide metazoans with increased membrane support and 

organization, but also help coordinate signaling and gene programs.

• Spectrin dysfunction is associated with multiple human diseases, including 

hereditary forms of spherocytosis, hemolytic anemia, neuropathy and 

myopathy.

• Defects in spectrin have been shown to alter both electrical and mechanical 

cardiac function suggesting that spectrin may be a therapeutic node for 

effectively treating both arrhythmias and underlying substrate in cardiac 

disease.
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Figure 1. Spectrin isoforms organize macromolecular complexes at distinct membrane domains 
to regulate myocyte function
αI-, αII-, βI-, βII- and βIV-spectrin are all expressed in cardiac myocytes with differential 

localization to key cellular domains (e.g. intercalated disc, cardiac dyad, lateral membrane 

and nucleus). αII/βIV-spectrin complexes with Nav1.5 (via ankyrin-G) and CaMKII at the 

intercalated disc (βII-spectrin and TREK-1 are also expressed in this region, not depicted). 

At the cardiac dyad, αII/βII-spectrin targets protein phosphatase 2A (PP2A, via ankyrin-B) 

and regulates expression/localization of sarcoplasmic reticulum ryanodine receptor Ca2+ 

release channels (RyR2). αI- and βI-spectrin are found exclusively at the lateral membrane 

where they likely control membrane targeting of Na+/Ca2+ exchanger (NCX via ankyrin-B) 

and Na+/K+ ATPase (not depicted). Several spectrin isoforms, including αII-, βII- and βIV-

spectrin, are found in the nucleus where they are implicated in transcriptional regulation 

(e.g. by shuttling of Smad proteins into the nucleus) and in nucleoskeleton support via 

emerin.
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Table 1

Characteristics, tissue expression and disease associations of spectrin isoforms

Gene Isomer Size
(amino
acids, full
length)

Tissue
Expression

Associated diseases

SPTA1 αI-spectrin 2419 Erythrocytes, neutrophils and 
lung alveolar lavage

spherocytosis, type 3 pyropoikilocytosis elliptocytosis-2 spta1-
related spherocytosis hereditary spherocytosis hereditary 
elliptocytosis hypophosphatasia

SPTAN1 αII-spectrin 2472 Brain, spinal cord, cardiac 
muscle, retina, liver

epileptic encephalopathy, early infantile, 5 west syndrome 
infantile epileptic encephalopathy quadriplegia neonatal lupus 
erythematosus ohtahara syndrome spastic quadriplegia

SPTB βI-spectrin 2137 Skeletal muscle, heart, 
neutrophils

sptb-related spherocytosis elliptocytosis 3 pyropoikilocytosis 
hereditary elliptocytosis gnathomiasis otopalatodigital syndrome 
hereditary spherocytosis

SPTBN1 βII-spectrin 2364 Brain, spinal cord, heart, liver Williams-Neuren syndrome, neurofibromatosis type 2

SPTBN2 βIII-spectrin 2390 Brain, salivary glands, retina and 
cervix

spinocerebellar ataxia 5 spinocerebellar ataxia, autosomal 
recessive 14 spectrin-associated autosomal recessive cerebellar 
ataxia spinocerebellar ataxia ataxia

SPTBN4 βIV-spectrin 2564 Brain, heart, lung, retina and 
pancreas

Cardiac arrhythmia, myopathy

SPTBN5 βV-spectrin 3674 Adipocytes, platelets and breast 
tissue

Macular disorders
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