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ABSTRACT

This article is concerned with spectro-temporal (i.e., time varying

spectrum) analysis of ECG signals for application in atrial fibril-

lation (AF) detection. We propose a Bayesian spectro-temporal

representation of ECG signal using state-space model and Kalman

filter. The 2D spectro-temporal data are then classified by a densely

connected convolutional networks (DenseNet) into four different

classes: AF, non-AF normal rhythms (Normal), non-AF abnormal

rhythms (Others), and noisy segments (Noisy). The performance

of the proposed algorithm is evaluated and scored with the Phys-

ioNet/Computing in Cardiology (CinC) 2017 dataset. The experi-

ment results shows that the proposed method achieves the overall

F1 score of 80.2%, which is in line with the state-of-the-art al-

gorithms. In addition, the proposed spectro-temporal estimation

approach outperforms standard time-frequency analysis methods,

that is, short-time Fourier transform, continuous wavelet transform,

and autoregressive spectral estimation for AF detection.

Index Terms— Atrial fibrillation, deep learning, Kalman filter,

state-space model, spectrogram estimation

1. INTRODUCTION

Atrial fibrillation (AF) is a type of cardiac rhythm disturbance (ar-

rhythmia) which can lead to blood clots, stroke, heart failure, or

death. AF is the most common cardiac arrhythmia affecting around

33.5 million individuals worldwide in 2010 [1]. It is also estimated

that the number of patients with AF in Europe Union will be 14–

17 million by 2030 [2]. AF is defined as chaotic electrical activity

of atrial muscle fibers. During AF, atrioventricular (AV) node may

receive more than 500 impulses per minute, from which only occa-

sional impulses can pass through at variable rate, resulting irregular

ventricular response [3]. Manifestations of AF on ECG are the ab-

sence of P-wave and irregular RR intervals [4].

Aiming to detect AF automatically, various algorithms have

been developed [5–9]. In addition to traditional approaches, recent

deep learning (DL) techniques also provide a promising end-to-end

classification for ECG signals. Unlike traditional approaches, one of

the most significant advantage of using deep learning for classifica-

tion is that hand-crafted features are no longer needed, because deep

neural networks have the ability of learning the inherent features

when provided with a sufficient training data [10]. Whilst surpris-

ingly, the combination of AF and deep learning has just begun in

past two years (see, e.g., [11–14]).

However, within the most of the previous studies, only few have

resorted to use spectrogram for AF detection. It is hard to select

handmade features from 2D data for traditional methods, and thus in
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this case DL models are advantageous. Several studies [13, 15] have

endeavoured DL for AF detection in spectral domain, but the use

of spectral estimation methods such as short-time Fourier transform

(STFT) or continuous wavelet transform (CWT), may drop momen-

tous information during the transformation, and produce less infor-

mative images. Furthermore, previous studies (e.g. [12–14]) are

performed on almost clean dataset selected from small-scale num-

ber of patients and focusing on binary classification of ECG into AF

and non-AF rhythms, which is usually not practical in production

environment.

The contributions of the paper are: 1) We propose an extended

spectrogram estimation method by modeling signal in state-space

and use a Kalman filter and smoother for Bayesian spectral estima-

tion; 2) we leverage state-of-the-art densely connected convolutional

networks [16] for AF detection using the proposed presentation; 3)

we evaluate the method using PhysioNet/CinC 2017 dataset [17],

which is considered to be a challenging dataset which resembles

practical applications.

The paper is structured as follows: In Section 2, we introduce

the spectro-temporal method for ECG signals analysis. In Section

3, we use the proposed estimation method on AF detection together

with deep convolutional networks. In Section 4, we compare and

discuss experiments results, followed by conclusion in Section 5.

2. SPECTRO-TEMPORAL ECG ANALYSIS

The spectro-temporal signal analysis is an effective and powerful ap-

proach in many fields [18–20]. In this section we present a Bayesian

spectro-temporal ECG analysis approach, which is an extension of

the Bayesian spectrum estimation method of Qi et al. [21].

We model the time varying spectrum with a state-space model

and use Bayesian procedure (i.e., Kalman filter and smoother) for its

estimation [21, 22]. One of the significant advantage is that it can

be applied on both evenly and unevenly sampled signals [21] and

does not need stationarity guarantee nor windowing. However, as

we show here, it can also be combined with state-space methods for

Gaussian processes [23, 24].

Recall that any periodic signal with fundamental frequency f0
can be expanded into a Fourier series

z(t) = a0 +

M
∑

j=1

[aj cos(2π j f0t) + bj sin(2π j f0 t)] , (1)

where the exact series if obtained with M → ∞, but for sampled

signals it is sufficient to consider finite series. This stationary model

is indeed the underlying model in the STFT approach. What STFT

effectively does, is that it does least squares fit of the coefficients

{aj , bj : j = 1, . . . ,M} at each window separately.



We now assume that the coefficients depend on time, and we put

a Gaussian process priors on them:

aj(t) ∼ GP(0, kaj (t, t
′)),

bj(t) ∼ GP(0, kbj(t, t
′)).

(2)

As shown in [23, 24], provided that the covariance functions are sta-

tionary, we can express the Gaussian processes as solutions to linear

stochastic differential equations (SDEs). In this paper we choose

covariance functions to have the form

kaj (t, t
′) = (saj )

2 exp(−λa
j |t− t′|),

kaj (t, t
′) = (sbj)

2 exp(−λb
j |t− t′|),

(3)

where saj , s
b
j > 0 are scale parameters and λa

j , λ
b
j > 0 are the in-

verses of the time constants (length scales) of the processes. The

state-space representations (which are scalar in this case) are then

given as

daj = −λa
j aj dt+ dW a

j ,

dbj = −λb
j bj dt+ dW b

j ,
(4)

where W a
j ,W

b
j are Brownian motions with suitable diffusion coef-

ficients qaj , q
b
j . We can also solve the equations at discrete time steps

(see, e.g., [25]) as

aj(tk) = ψa
jk aj(tk−1) + wa

jk,

bj(tk) = ψb
jk bj(tk−1) + wb

jk,
(5)

where ψa
jk = exp(−λa

j (tk − tk−1)), ψ
b
jk = exp(−λb

j (tk −

tk−1)), w
a
jk ∼ N (0,Σa

jk), w
b
jk ∼ N (0,Σb

jk), Σ
a
jk = qaj (1 −

exp(−2λa
j (tk − tk−1))), and Σb

jk = qbj (1 − exp(−2λb
j (tk −

tk−1))).
Let us now assume that we obtain noisy measurements of the

Fourier series (1) and times t1, t2, . . .. What we can now do is to

stack all the coefficients into the state x = [a0, a1, ..., aM , b1, b2, ...
, bM ]T , Hk = [1, sin(2πf0tk), . . . , sin(2πM f0 tk), cos(2πf0tk),
. . . , cos(2πfM tj)], which gives

Hkx = a0 +

M
∑

j=1

[aj cos(2π j f0t) + bj sin(2π j f0 t)] = z(tk).

(6)

The discrete-time dynamic model (5) can be written as

xk = Akxk−1 + qk (7)

where Ak contains the terms ψa
jk and φb

jk on the diagonal and qk ∼

N (0,Qk) where Qk contains the terms Σa
jk and Σb

jk on the diago-

nal.

If we assume that we actually measure (6) with additive Gaus-

sian measurement noise rk ∼ N (0, R), then we can express the

measurement model as

yk = Hkxk + rk. (8)

Equations (7) and (8) define a linear state-space model where we can

perform exact Bayesian estimation using Kalman filter and Rauch–

Tung–Striebel (RTS) smoother [22]. In the original paper [21], the

state vectors x1, ...,xN are assumed to perform random walk, but

here the key insight is to use a more general Gaussian process which

introduces a finite time constant to the problem.

The Kalman filter for this problem then consists of the following

forward recursion (for k = 1, . . . , N ):

m
−
k = Ak mk−1,

P
−
k = Ak Pk−1 A

⊤
k +Qk,

Sk = Hk P
−
k H

⊤
k +R,

Kk = P
−
k H

⊤
k /Sk,

mk = m
−
k +Kk

(

yk −Hk m
−
k

)

,

Pk = P
−
k −Kk Sk K

⊤
k ,

(9)

and the RTS smoother the following backward recursion (for k =
N − 1, . . . , 1):

Gk = Pk A
⊤
k+1 [P

−
k+1]

−1,

m
s
k = mk +Gk [m

s
k+1 −m

−
k+1],

P
s
k = Pk +Gk [P

s
k+1 −P

−
k+1]G

⊤
k .

(10)

The final posterior distributions are then given as:

p(xk | y1:N ) = N (xk | ms
k,P

s
k). k = 1, . . . , N. (11)

The magnitude of the sinusoidal with frequency fj = j f0 at time

step k can then be computed by extracting the elements correspond-

ing to âj(tk) and b̂j(tk) from the mean vector ms
k:

[S]j,k =
√

â2j (tk) + b̂2j (tk). (12)

From now, matrix S is called spectro-temporal data matrix.

3. ATRIAL FIBRILLATION DETECTION USING

SPECTRO-TEMPORAL ECG CLASSIFICATION

3.1. Processing chain

The processing chain of the proposed scheme is illustrated in Fig. 1.

The raw ECG is first segmented, and then the spectro-temporal

data matrix of each segment is computed using (12). The resulting

spectro-temporal data matrices are then averaged and normalized

to generate fixed-length spectro-temporal feature matrix. Finally,

the 2D feature matrix (spectro-temporal image) is fed into a deep

convolutional neural network (CNN) for classification.

In this work, we use a modified version of Pan-Tompkins algo-

rithm for QRS detection. The original Pan-Tompkins algorithm [26]
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Fig. 1. Processing chain of ECG classification



is sensitive to burst noise, and it easily misinterprets noise with R

peak. To address this limitation at least partially, we slightly mod-

ify the original algorithm such that it iteratively checks the number

of detected R peaks and if that number is smaller than a threshold,

it ignores the detected R peaks and their neighbourhood samples in

the ECG signal, and again applies the Pan-Tompkins algorithm on

the rest of the signal. In this way, if there are few instances with

high-amplitude burst noise, our algorithms can handle those.

As the next step we have a representation averaging procedure

that aims to produce an input for deep CNNs classifier by aver-

aging the fixed length spectral blocks containing three QRS com-

plexes. If z = [z1, z2, ..., zN ]⊤ ∈ R
N is the original ECG signal

and p̄i ∈ {1, 2, · · · , N} is the position of ith R peak in z, then

p̄ = [p̄1, p̄2, ..., p̄D]⊤ holds the positions of all R peaks in z. Now,

we associate each p̄i, i ∈ {2, · · · , D − 1}, to a segment of z such

that it potentially covers three adjacent QRS complexes. To do so,
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Fig. 2. Results of representation averaging (right sides) on four types

of ECG signals (left sides), using proposed spectral analysis method.

Red circles indicate detected R peaks.

we collect β samples before and after each p̄i. Following this pro-

cedure, the ECG segment associated to ith R peak can be extracted

from z as z(i) = [zp̄i−β , · · · , zp̄i , · · · , zp̄i+β ]
⊤, and using equation

(12), the spectro-temporal data matrix corresponding to this ECG

segment is S(i) ∈ R
M×(2β+1) where M and 2β + 1 are frequency

and time steps, respectively.

The spectro-temporal feature matrix S‡ is obtained by averaging

over all spectro-temporal data matrices and multiplying with their

maximum mask:

S
‡ =

∑D−1
i=2 S(i)

D − 2
◦ max

2≤i≤D−1
S
(i). (13)

The choice of parameter β is important, as it regulates the length

of output and how much takes into average. Usually, β should at

least covers three QRS complexes or more for good evidence of R-R

interval. The reason for adding max operation in averaging is that it

could help preserving intricate details of spectro-temporal data. Ex-

amples on representation averaging for four classes of ECG signals

are shown in Fig. 2.

3.2. Time–Frequency Analysis

Although for ECG classification, we employ the spectro-temporal

representation described in Section 2, other standard time–frequency

analysis methods are also examined for the sake of comparison. We

use magnitude of CWT, magnitude of STFT, and square root of non-

logarithmic power spectral density using Burg autoregressive model

(BurgAR) [27] of ECG signal.

Fig. 3 shows the spectro-temporal representation of an ECG seg-

ment by different methods. (a) is the original signal of Rec.3246 in

CinC 2017. We control frequency range (M ) and smoothing option

of Kalman method, as shown in subfigures (b), (c), and (d). Subfig-

ure (e) shows result by the original method in [21]. Subfigures (f),

(g), and (h) show STFT, CWT, and BurgAR methods results respec-

tively, where we apply 11 length 10 overlapping Hanning windows

on STFT, BurgAR, and CWT (with Morse wavelet). For our pro-

posal, we choose 10 for length scale λ, and 1 for variance of both

process and measurement noise R and q.

If we compare subfigures (c), (f), (g), and (h), we can find three

advantages of Kalman method over STFT, BurgAR and CWT: the

result is more smooth and it has higher and more unified resolution

on both time and frequency. For STFT and BurgAR, the resolution

is confined by window length selection. CWT solves this by replac-

ing window with wavelet, but due to uncertainty principle of signal

processing, the required resolution in time and frequency can not be

met simultaneously. We can see in (g) that the time resolution is very

low in low frequency bands. Our approach models the time-varying

Fourier series coefficients of signal in state-space, which achieves

observation-wise spectrogram estimation.

3.3. Densely Connected Convolutional Networks

In recent years, deep learning techniques especially various convolu-

tional neural networks, emerge as dominant methods for image clas-

sification. However, one flaw is that the information during training,

principally the gradient, may disappear if the network is exceed-

ingly deep (with many layers), which is usually called ”vanishing

gradient” [28]. Generally, this root problem can be alleviated by

several basic ways, for instance, with layer-wise and pre-training,

or with a properly selected activation function. Densely connected

convolutional networks (DenseNet) [16], who won the 2017 best pa-

per award of CVPR, provide state-of-the-art performance without
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Fig. 3. Comparison of different spectrogram estimation methods on

Rec. 3246.

degradation or over-fitting even when stacked by hundred of layers.

DenseNet can be seen as a refined version of deep residual networks

(ResNet) [29], where the former one introduces explicit connection

on every two layers in a dense block, as shown in Fig. 4.

The DenseNet we implement here, which we refer as Dense18+

is slightly different from the original proposal, where we employ

both max and average global pooling on last layer as shown in Fig. 5.

Each dense block contains four 3 × 3 convolutional layers, with

growth rate of 48.

4. EXPERIMENTS

4.1. ECG Dataset and Evaluation Metrics

We have conducted experiments on the PhysioNet/CinC 2017

dataset [17] to evaluate the performance of the proposed method.

The dataset contains 8528 short ECG recordings (9s to 60s) at 300Hz

Fig. 4. Dense Block: each of of the convolutional layers takes all of

the preceding outputs as input.

sampling rate. For model assessment we use stratified 10-fold cross-

validation. The detailed performance is evaluated using a 4-class

confusion matrix, where the diagonal entries are the correct classifi-

cations and the off-diagonal entries are the incorrect classifications.

This confusion matrix is the result of stacking 10 confusion matrices

of the test data in the 10-fold cross-validation. In addition, the F1

score,

F1 = 2 ·
Precision · Recall

Precision + Recall
, (14)

for each class is calculated to summarize the performance of the pro-

posed method for that specific class: Normal (F1N ), AF (F1A),

Others (F1O), and Noisy (F1∼). Finally, the overall performance

of the proposed algorithm is evaluated using the suggested evalua-

tion metric by PhysioNet/CinC 2017 [17]:

F1overall =
1

3
(F1N + F1A + F1O). (15)

4.2. Results

We first compare the results of our proposal (Kalman) and other

spectro-temporal representation methods (CWT, STFT, and Bur-

gAR) upon a same classifier Dense18+. The settings for spectro-

gram estimation we choose here are the same as described in Section

3. All spectro-temporal feature matrices (images) are then unifiedly

resized (down-sample by local averaging) to 50× 50 for Dense18+.

As shown in rows (1)–(4) of Table 1, the proposed Bayesian

spectro-temporal method achieves an overall F1 score of 80.17,

which surpasses STFT (77.79), CWT (79.55), and BurgAR (77.95)

for ECG classification. It also has the highest F1 scores for detec-

tion of Normal, AF, and other rhythms: 88.80, 79.64, and 72.08,

respectively. In addition, the proposed method has the lowest cross-

validation standard deviation (StdF1) 1.06, suggesting higher ro-

bustness and reliability.

The detailed performance of all four methods (i.e., Kalman,

CWT, STFT, and BurgAR) are reported in four confusion matri-

ces in Fig. 6. Each confusion matrix is row-wise normalized. The

diagonal entries show the Recall of each rhythm and off-diagonal

entries show the misclassification rates. For example, the first row of

the first confusion matrix shows 90.6% of normal rhythms are cor-

rectly classified as normal, but 0.4%, 8.0%, and 0.9% are incorrectly

classified as AF, Others, and Noisy.

4.3. Discussion

Let us now discuss the reasons why the Kalman filter based ap-

proach produces better results in the classification. One way to study

the resulting classifier is to investigate its first convolutional layer

which corresponds to the (dominant) features that the deep CNN

has learned [31]. The layer is shown in Fig. 7. The figure shows

that the network has larger activation on shape, edge and intensity

of ”peaks” and more importantly, the details of background. The

”peaks” and details are very crucial for AF detection, because they
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Methods F1N F1A F1O F1∼ F1overall StdF1 Precision

(1) STFT + Dense18+ 88.06 75.23 70.03 52.67 77.79 1.41 79.38

(2) CWT + Dense18+ 88.77 78.08 71.79 53.25 79.55 1.39 80.73

(3) BurgAR + Dense18+ 88.11 76.24 69.49 55.91 77.95 1.51 79.23

(4) Kalman + Dense18+ 88.80 79.64 72.08 51.78 80.17 1.06 81.33

(5) Kalman + Dense18 88.16 76.61 70.81 49.21 78.53 1.14 80.02

(6) Kalman + Res18[29] 87.19 74.98 68.31 47.01 76.83 1.08 78.04

(7) Martin[15] 87.8 79.0 70.1 65.3 79.0 N/A 81.2

(8) Zhaohan[30] 87 80 68 N/A 78 N/A N/A

Table 1. 10-fold cross-validation results using different spectrogram estimation methods and deep CNNs architectures.
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Fig. 6. Normalized confusion matrix on different methods.

can respectively represent R-R interval and shape of P wave. In com-

parison to CWT, STFT, and BurgAR, the background details are bet-

ter preserved in the Kalman method. Furthermore, the Kalman ap-

proach works well with non-stationary signals that we have in the

AF rhythm.

In Fig. 8, we show how features are correlated by performing

Variational Autoencoder (VAE) [32] and t-Stochastic Neighbour

Embedding (t-SNE) [33] visualization on the last concatenate layer

before Softmax classifier of Dense18+. We can find that after the

training of deep CNNs, the learnt features are well embedded and

correlated by classes in high dimensional feature space (mapped into

two dimension). Although AF and Normal rhythm classes are well

separated, the Other and Noisy classes still have strong overlap with

them, which can also be seen in the confusion matrices in Fig. 6.

We assume that the representation averaging procedure may well

represent AF and Normal rhythms, however, it faints the differences

Fig. 7. Feature-map (Left 16 columns) and activation (right 16

columns) visualization of first convolutional layer on Rec. 1005

(AF). From top to bottom, every 4 rows are Kalman, CWT, BurgAR

and STFT respectively.

from Other and Noisy classes, which causes low performance in

Other and Noisy classes. The classes of the Kalman approach seem

have less overlap compared to CWT, STFT, and BurgAR.

In Table 1, rows (4)–(6) compare the performance when apply-

ing Kalman method with other two different deep CNNs architec-

tures: Dense18 and Res18, which both have the equivalent depth

(convolutional layers) with Dense18+ in this paper. The results state

that DenseNet has a better overall performance than ResNet in AF

detection, and our modification on last pooling layer (Dense18+)

improves the performance (F1overall) by 1.64 percentage points to

original Dense18 networks.

We also compared our performance with [15, 30], where the au-

thors adopted a similar approach for AF detection, that is, spectro-

gram and deep CNNs, during 2017 PhysioNet/CinC Challenge. The

results show that our combination using spectro-temporal analysis

and DenseNet outperforms them. Although our method is in line

with the state-of-the-art algorithms, the winners of the challenge

used fine-tuned hand-crafted features which also reflect the expert

knowledge to achieve the cutting-edge performance (83%). In the

future we will investigate hybrid methods which incorporate expert



Kalman CWT

STFT Pburg

Kalman CWT
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Fig. 8. Left and right 4 groups show VAE and t-SNE visualization

on the last concatenate layer of Dense18+ respectively. Data are

selected from cross validation test dataset. Green, yellow, blue, and

purple represent Normal, Others, AF, and Noise, respectively.

knowledge to the deep learning models.

5. CONCLUSION

In this paper, we present a new spectro-temporal analysis method

by assuming the time-varying Fourier coefficients of signal have

Gaussian process priors. We express the solution in linear state-

space and use a Bayesian Kalman filter/smoother for parameter esti-

mation. Combining the aforementioned spectro-temporal represen-

tation with CNNs for ECG classification outperforms other time-

frequency analysis methods (i.e., STFT, CWT, and BurgAR) with

the same classifier for AF detection. The proposed method provides

the classification performance of 80.2% for overall F1 score.
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