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Spectro-Temporal Sparsity Characterization

for Dysarthric Speech Detection
Ina Kodrasi , Member, IEEE, and Hervé Bourlard, Fellow, IEEE

Abstract—To assist the clinical diagnosis and treatment of neu-
rological diseases that cause speech dysarthria such as Parkinson’s
disease (PD), it is of paramount importance to craft robust features
which can be used to automatically discriminate between healthy
and dysarthric speech. Since dysarthric speech of patients suffer-
ing from PD is breathy, semi-whispery, and is characterized by
abnormal pauses and imprecise articulation, it can be expected
that its spectro-temporal sparsity differs from the spectro-temporal
sparsity of healthy speech. While we have recently successfully used
temporal sparsity characterization for dysarthric speech detection,
characterizing spectral sparsity poses the challenge of constructing
a valid feature vector from signals with a different number of un-
aligned time frames. Further, although several non-parametric and
parametric measures of sparsity exist, it is unknown which sparsity
measure yields the best performance in the context of dysarthric
speech detection. The objective of this paper is to demonstrate
the advantages of spectro-temporal sparsity characterization for
automatic dysarthric speech detection. To this end, we first provide
a numerical analysis of the suitability of different non-parametric
and parametric measures (i.e., l1-norm, kurtosis, Shannon entropy,
Gini index, shape parameter of a Chi distribution, and shape
parameter of a Weibull distribution) for sparsity characterization.
It is shown that kurtosis, the Gini index, and the parametric
sparsity measures are advantageous sparsity measures, whereas
the l1-norm and entropy measures fail to robustly characterize the
temporal sparsity of signals with a different number of time frames.
Second, we propose to characterize the spectral sparsity of an
utterance by initially time-aligning it to the same utterance uttered
by a (arbitrarily selected) reference speaker using dynamic time
warping. Experimental results on a Spanish database of healthy
and dysarthric speech show that estimating the spectro-temporal
sparsity using the Gini index or the parametric sparsity measures
and using it as a feature in a support vector machine results in a
high classification accuracy of 83.3%.

Index Terms—Non-parametric sparsity, parametric sparsity,
SVM, DTW, Parkinson’s disease.

I. INTRODUCTION

B
ECAUSE of increasing population numbers and aging, the

prevalence of neurological disorders such as Parkinson’s

disease (PD) is also increasing [1]. The number of people

requiring screening and treatment will continue to grow in the
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coming decades, likely putting a strain on the health care sys-

tem. Besides other motor and non-motor symptoms, many PD

patients develop speech dysarthria, which is an impairment that

affects several components of the speech production mechanism

such as phonation, articulation, and prosody [2].

To diagnose neurological disorders such as PD and evaluate

their progression, clinicians exploit several examinations which

assess different motor and sensory skills. However, such ex-

aminations can be subject to the expertise of the clinician and

might be affected by their familiarity with the patient. Aiming to

assist the clinical diagnosis and treatment of patients suffering

from neurological disorders, there has been a growing interest

in the research community to develop discriminatory features

which can be used for the automatic detection and monitoring

of dysarthric speech.

To quantify impacted phonation and characterize disturbances

in vocal fold vibration as well as excessive turbulence due to

incomplete closure of the vocal folds, features such as funda-

mental frequency, jitter, shimmer, or harmonics-to-noise ratio

(HNR) have been used [3]–[6]. To quantify impacted articu-

lation and characterize vocal tract atypicalities, features such

as Mel frequency cepstral coefficients (MFCCs), linear predic-

tion coefficients (LPCs), and perceptual LPCs have been used

[6]–[9]. Impacted articulation has also been characterized using

features such as vowel space area, vowel articulation index,

consonant spectral trend, or formant centralization ratio [6],

[10]–[13]. Segment-dependent changes in different speech pro-

duction components have also been characterized through cap-

turing changes in phoneme duration, frequencies, pitch, and

formant slopes [14]. Recently, we have proposed to jointly

quantify impacted phonation and articulation by characterizing

the temporal sparsity of the speech spectral coefficients [15],

[16]. Temporal sparsity refers to the sparsity (i.e., lack of energy)

of coefficients in a single subband across different time frames

and arises due to, e.g., pauses between phonemes. In [15], [16]

we have shown that because of temporal smearing from impre-

cise articulation, breathiness, and abnormal pauses, dysarthric

speech spectral coefficients are less temporally sparse than

healthy speech spectral coefficients. Further, it is shown that

a support vector machine (SVM) achieves a higher accuracy for

healthy and dysarthric speech detection when the feature vector

is constructed from temporal sparsity estimates rather than from

commonly used features such as fundamental frequency, jitter,

shimmer, or HNR [16].

While temporal sparsity can indeed be a powerful discrimi-

nator between healthy and dysarthric speech, spectral sparsity
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has never been exploited. It can be expected that impacted

phonation, articulation, and respiration do not only affect the

temporal sparsity of dysarthric speech signals but also their

spectral sparsity. However, spectral sparsity is a time-dependent

feature, additionally reflecting what is being uttered in each time

frame. Due to different speakers and speaking rates, utterances

uttered by healthy speakers and speakers with dysarthria are

unaligned and of different length. Hence, assessing and using

spectral sparsity as a discriminative feature between healthy and

dysarthric speech poses the challenge of constructing a valid

feature vector from speech signals with a different number of

unaligned time frames.

Further, both for temporal and spectral sparsity characteri-

zation, a natural question that arises is how to assess sparsity.

Although sparse representations arise in numerous areas such

as image processing [17], speech signal processing [18], [19],

computer vision [20], and pattern recognition [21], sparsity is

not uniquely defined and several non-parametric and parametric

measures of sparsity have been used in the literature. Commonly

used non-parametric sparsity measures are the l1-norm, the kur-

tosis, the Shannon entropy, and the Gini index [22]. Commonly

used parametric sparsity measures are the shape parameters of

a Chi or Weibull distribution [16], [23], [24]. To the best of our

knowledge, the suitability of these different sparsity measures

for dysarthric speech detection has never been investigated.

The objective of this paper is to demonstrate the advan-

tages of spectro-temporal sparsity characterization for automatic

dysarthric speech detection. To this end, we first provide a nu-

merical analysis of the applicability of different non-parametric

and parametric measures, i.e., l1-norm, kurtosis, Shannon en-

tropy, Gini index, shape parameter of a Chi distribution, and

shape parameter of a Weibull distribution, for spectro-temporal

sparsity characterization. We show that kurtosis, the Gini index,

and the parametric sparsity measures can accurately characterize

sparsity, whereas the l1-norm and entropy measures fail to ro-

bustly characterize the sparsity of signals with a different number

of time frames. Second, we propose to characterize the spectral

sparsity of an utterance by initially time-aligning it to the same

utterance uttered by a (arbitrary selected) reference speaker by

means of dynamic time warping (DTW) [25]. Spectral sparsity

can then be estimated for each time frame and the spectral

sparsity feature vector can be constructed by concatenating the

sparsity estimates for all time frames. Using a Spanish database

of healthy and dysarthric speech, we show that compared to

temporal sparsity, spectral sparsity is a more powerful dis-

criminator for dysarthric speech detection. Additionally, it is

shown that exploiting both the temporal and spectral sparsity

characterization, an even higher classification accuracy can be

achieved. Out of the considered sparsity measures, the Gini

index and the parametric sparsity measures yield the highest

performance when using spectro-temporal sparsity as a feature

vector in an SVM for healthy and dysarthric speech detection.

The paper is organized as follows. In Section II we pro-

vide insights on the spectro-temporal sparsity of healthy and

dysarthric speech signals. In Section III we define the considered

non-parametric and parametric measures of sparsity. Section IV

presents a numerical analysis of the suitability of the considered

sparsity measures for comparing the spectro-temporal sparsity of

speech signals. Section V presents the method proposed to align

signals and construct spectral sparsity characterization features.

In Section VI we present experimental results evaluating the

applicability of the considered sparsity measures for dysarthric

speech detection.

II. SPECTRO-TEMPORAL SPARSITY OF HEALTHY

AND DYSARTHRIC SPEECH

Supported by empirical observations, e.g., in [24], [26], [27],

it is widely accepted that speech spectral coefficients are spectro-

temporally sparse.1 On the one hand, spectral sparsity refers

to the sparsity of coefficients in a single time frame across

different subbands and arises due to, e.g., formant transitions

in voiced sounds. On the other hand, temporal sparsity refers to

the sparsity of coefficients in a single subband across different

time frames and arises due to, e.g., pauses between phonemes.

In [15], [16] we have shown that because of temporal smearing

from imprecise articulation, breathiness, and abnormal pauses,

dysarthric speech spectral coefficients are less temporally sparse

than healthy speech spectral coefficients. However, it can be ex-

pected that imprecise articulation, breathiness, abnormal pauses,

and vocal tremor also affect the spectral sparsity of dysarthric

speech spectral coefficients.

Fig. 1 depicts the spectrograms of the same utterance uttered

by a healthy speaker and a speaker suffering from PD. In

addition, bounding boxes highlighting the spectral coefficients

that are used to compute the temporal sparsity at the exemplary

subband index k = 50 and the spectral sparsity at the exemplary

time frame index l = 20 are also depicted. Several observations

can be made for the depicted exemplary spectrograms. First,

it can be observed that speech spectral coefficients are indeed

spectro-temporally sparse, independently of whether healthy or

dysarthric speech is considered. In both spectrograms, speech is

present only in some time frames, and in these time frames, only

some subbands have significant energy while several subbands

have (nearly) no energy. Second, the depicted spectrograms

show that the dysarthric speech signal is smeared when com-

pared to the healthy speech signal, with energy in time-frequency

bins where the healthy speech signal has no energy (cf. e.g., the

spectral coefficients at subband index k = 50). Such smearing

should yield a difference in the spectro-temporal sparsity of

the healthy and dysarthric speech spectral coefficients. Third,

the depicted spectrograms show that to compare the temporal

sparsity of healthy and dysarthric speech in each subband,

vectors of spectral coefficients of different lengths need to be

taken into account. In these exemplary spectrograms, the healthy

utterance has a length of L = 40 time frames, whereas the

1In this paper, spectro-temporal sparsity refers to the fact that speech is present
only in some time frames, and in these time frames, only some subbands have
significant energy while several subbands have (nearly) no energy. It should
be noted that establishing a theoretically solid definition of how many time
frames and subbands should lack energy for the speech spectral coefficients to
be considered sparse is beyond the scope of this paper. Instead, our objective is
to establish an accurate characterization of the difference in the number of time
frames and subbands lacking energy for healthy and dysarthric speech spectral
coefficients.
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Fig. 1. Spectrogram of the same utterance uttered by a (a) healthy speaker
and (b) speaker suffering from PD. The dashed bounding box highlights the
coefficients to consider when computing the temporal sparsity at subband index
k = 50. The solid bounding box highlights the coefficients to consider when
computing the spectral sparsity at time frame index l = 20. It can be observed
that speech spectral coefficients are spectro-temporally sparse, with many time
frames and subbands having (nearly) no energy. Further, it can be observed
that the spectro-temporal sparsity of healthy and dysarthric speech spectral
coefficients differs. To compare the temporal sparsity of healthy and dysarthric
speech in each subband, vectors of different lengths need to be considered,
whereas to compare the spectral sparsity, time frames corresponding to the same
phonetic content need to be considered.

dysarthric utterance has a length ofL = 48 time frames. Finally,

the depicted spectrograms show that spectral sparsity is a time-

dependent feature. In these exemplary spectrograms, comparing

the spectral sparsity at time frame index l = 20 is meaningless,

since signals are not aligned and the spectral coefficients at this

time frame might represent different phonetic content for the

healthy and dysarthric speech. To compare the spectral sparsity

of healthy and dysarthric speech, time frames corresponding to

the same phonetic content need to be considered.

III. NON-PARAMETRIC AND PARAMETRIC

SPARSITY MEASURES

In this section, the considered non-parametric and parametric

measures of sparsity are defined. Speech spectral coefficients

are denoted by Sk,l, with k the subband index and l the time

frame index. In addition, the vector of spectral magnitudes in

subband k is denoted by

ak = [|Sk,1| |Sk,2| · · · |Sk,L|]
T , (1)

with L being the total number of time frames. Similarly, the

vector of spectral magnitudes in time frame l is denoted by

al = [|S1,l| |S2,l| · · · |SK,l|]
T , (2)

with K being the total number of subbands. Furthermore, the

I-dimensional vector a = [a1 a2 · · · aI ]
T is used to refer to

any vector ak, k = 1, . . . , K and al, l = 1, . . . , L.

A. Non-Parametric Sparsity Measures

The most commonly investigated non-parametric sparsity

measures are the lp-norm measures, with 0 ≤ p ≤ 1 [22]. While

the l0-norm is the traditional sparsity measure, it is sensitive

to noise and unsuited in practice to be used in applications

where signal sparsity is the desired outcome. The l0-norm is

non-convex and optimization problems with non-convex penalty

functions are typically hard (if not impossible) to solve, partic-

ularly for large scale problems [28]. A commonly used convex

relaxation of the l0-norm is the l1-norm, defined as [29]

l1(a) =

I
∑

i=1

ai. (3)

Another popular non-parametric sparsity measure is the kurtosis

κ [30], [31], which characterizes whether the data is light- or

heavy-tailed relative to the normal distribution. The kurtosis is

defined as

κ(a) =

∑I
i=1 a

4
i

(

∑I
i=1 a

2
i

)2 . (4)

Rao and Kreutz-Delgado use entropy measures such as the

Shannon entropy ǫ as non-parametric measures of sparsity [32].

The Shannon entropy is defined as

ǫ(a) = −
I

∑

i=1

ãi ln ãi, (5)

with ãi =
a2

i

‖a‖2
2

. Finally, Hurley and Rickard have shown that

an advantageous non-parametric sparsity measure is the Gini

index G, originally proposed in economics as a measure of

wealth inequality [22], [33]. The Gini index is defined as

G(a) = 1− 2
I

∑

i=1

a(i)

l1(a)

(

I − i+ 1
2

I

)

, (6)

with a(i) denoting spectral magnitudes ordered in ascending

order, i.e., a(1) ≤ a(2) ≤ · · · ≤ a(I). Hurley and Rickard have

thoroughly analyzed the above-mentioned non-parametric spar-

sity measures, showing that only the Gini index satisfies all prop-

erties that an advantageous sparsity measure should have (such

as (in)sensitivity to multiplicative constants, additive constants,

or data length) [22]. Nevertheless, the Gini index is typically not

used in the speech and audio research community to compare the

sparsity of different signals, with lp-norm measures and kurtosis

being used instead.

B. Parametric Sparsity Measures

In contrast to non-parametric measures, sparsity can also be

assessed by parametric measures such as the shape parameter

of a Chi distribution or the shape parameter of a Weibull dis-

tribution [16], [23], [24], [27]. In [24], [27], empirical analyses

show that the Chi and Weibull distributions model histograms of

speech spectral amplitudes with a high accuracy. Such models

hold both locally, i.e., when observing the distribution of speech

spectral amplitudes in a single time-frequency bin, as well
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as globally, i.e., when considering the distribution of speech

spectral amplitudes in a single subband across time. Assuming

that the global distribution of speech spectral amplitudes can be

well-modeled with a Chi or Weibull distribution, a maximum

likelihood (ML) procedure can be used to estimate the distri-

bution shape parameter that characterizes sparsity, with lower

shape parameter values describing more sparse data. Differently

from the well-investigated non-parametric sparsity measures, to

the best of our knowledge these parametric measures of sparsity

have not been thoroughly analyzed with respect to, e.g., their

sensitivity to data length or to erroneous assumptions about

the data distribution. In the remainder of this section, the ML

estimation procedures of the shape parameter of the Chi and

Weibull distributions are presented.

The density function of the Chi distribution is given by

p
C
(a) =

2

Γ(µ)

( µ

σ2

)µ

a2µ−1e−
µ

σ2
a2

, (7)

with σ2 = E{a2}, µ the shape parameter, and Γ(·) the complete

Gamma function. For µ < 1, the Chi distribution in (7) models

sparse spectral coefficients, with lower values of µ correspond-

ing to more sparse spectral coefficients [23], [24]. Given the

spectral magnitudes ina, the shape parameterµ can be estimated

using the following ML estimation procedure. Ignoring the terms

independent of µ, the log-likelihood function is given by

lnLC(µ) = −I ln Γ(µ) + Iµ lnµ− Iµ lnσ2

+ (2µ− 1)

I
∑

i=1

ln ai −
µ

σ2

I
∑

i=1

a2i . (8)

To compute an ML estimate of the shape parameter µ, the neg-

ative of the log-likelihood function in (8) should be minimized.

Since no analytical solution can be found, an iterative optimiza-

tion technique such as the Newton method can be used [34]. To

improve the robustness and convergence speed, the analytical

gradient of the negative log-likelihood function can be used in

the optimization routine, i.e.,

∂[− lnLC(µ)]

∂µ
= Iψ(µ)− I − I lnµ+ I lnσ2

− 2

I
∑

i=1

ln ai +
1

σ2

I
∑

i=1

a2i , (9)

with ψ(·) the digamma function.

The density function of the Weibull distribution is given by

p
W
(a) =

θ

ξ

(

a

ξ

)θ−1

e−(
a
ξ )

θ

, (10)

with θ the shape parameter and ξ the scale parameter which can

be expressed as

ξ =
σ

√

Γ
(

1 + 2
θ

)

. (11)

Given the spectral magnitudes in a, the shape parameter θ can

be estimated using the following ML estimation procedure.

The log-likelihood function of θ is given by

lnLW(θ) = I ln θ − Iθ ln ξ + (θ − 1)
I

∑

i=1

ln ai −
1

ξθ

I
∑

i=1

aθi .

(12)

To compute an ML estimate of the shape parameter θ, the

negative of the log-likelihood function in (12) should be mini-

mized with an iterative optimization technique. To improve the

robustness and convergence speed of the optimization routine,

the gradient of the negative log-likelihood function can also be

provided, i.e.,

∂[− lnLW(θ)]

∂θ
= −

I

θ
+ I lnσ −

I

2
η +

I

θ
λ −

I
∑

i=1

ln ai

+
1

ξθ

(

1

2
η −

1

θ
λ − lnσ

) I
∑

i=1

aθi

+
1

ξθ

I
∑

i=1

aθi ln ai, (13)

where the variables η = lnΓ(1 + 2
θ
) and λ = ψ(1 + 2

θ
) have

been defined for ease of notation.

IV. NUMERICAL ANALYSIS OF SPARSITY MEASURES

Similarly to the analysis presented in [22], in this section we

investigate the suitability of all considered measures to assess the

sparsity of data drawn from a set of parameterized distributions.

Differently from [22], we do not only consider non-parametric

sparsity measures, but also parametric sparsity measures. Fur-

thermore, since our end goal is to compare the sparsity of speech

spectral coefficients, the considered parameterized distributions

differ from [22].

When comparing the sparsity of vectors of spectral coeffi-

cients from different speech signals, we would like the used

sparsity measure to have the following properties.

i) Clearly, the used measure should reflect differences in

the sparsity between the vectors, i.e., for the vector that

is more sparse, the l1-norm, the Shannon entropy, and

the estimated shape parameters of the Chi and Weibull

distributions should be smaller, whereas the kurtosis and

the Gini index should be larger (cf. the definition of the

sparsity measures in Section III).

ii) As described in Section II, when comparing the temporal

sparsity of vectors of spectral coefficients from different

speech signals, the vectors will typically be of different

lengths. Hence, the used sparsity measure should be

insensitive to data length, i.e., when a vector is extended

with coefficients with the same sparsity, the sparsity

measure should not change.

iii) For the parametric sparsity measures, i) and ii) should

hold also when the true distribution of the speech spectral

magnitudes deviates from the assumed distributions (i.e.,

the Chi or Weibull distribution).

To illustrate the behavior of the considered sparsity measures

with respect to i), we draw I = 10000 coefficients from a Chi
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Fig. 2. Sparsity of I = 10000 coefficients drawn from a Chi distribution with
different values of the shape parameter µ. All measures are scaled between 0.1
and 1. Solid cyan lines for each sparsity measure illustrate the 95% confidence
interval for 100 repetitions of drawing coefficients.

distribution for different values of µ, i.e., µ ∈ [0.1, 1]. For each

drawn set of coefficients, the different non-parametric and para-

metric sparsity measures are computed. For each µ, coefficients

are drawn 100 times such that the 95% confidence interval for

the different sparsity measures can be computed. As µ increases

(i.e., as the drawn coefficients become less sparse), the l1-norm,

the Shannon entropy, and the estimated shape parameters for

the Chi and Weibull distributions should increase, whereas the

kurtosis and the Gini index should decrease. Fig. 2 depicts the

computed non-parametric and parametric sparsity measures for

the different sets of coefficients. All sparsity measures are scaled

between 0.1 and 1 for visual convenience. It can be observed

that all considered measures reflect the decrease in sparsity as

µ increases. We therefore conclude that all considered sparsity

measures satisfy i) if the speech spectral coefficients follow the

commonly assumed Chi distribution.

To illustrate the behavior of the considered sparsity measures

with respect to ii), we draw a variable set of coefficients I ∈
[20, 20000] from a Chi distribution with a fixed value of the shape

parameter µ = 0.5. For each I , coefficients are drawn 100 times

such that the 95% confidence interval for the different sparsity

measures can be computed. Since the coefficients are drawn

from the same distribution, an advantageous sparsity measure

should quickly converge as the number of drawn coefficients

increases. Fig. 3 depicts the computed non-parametric and para-

metric sparsity measures for the different sets of coefficients.

All sparsity measures are scaled between 0.1 and 1 for visual

convenience. It can be observed that the parametric measures

(i.e., µ̂ and θ̂) converge quickly. Further it can be observed that

out of the considered non-parametric measures, only the kurtosis

κ and the Gini index G converge, with the l1-norm and the

Shannon entropy ǫ yielding a different sparsity assessment as

the number of drawn coefficients increases. Since the sparsity

measure needs to be insensitive to data length when comparing

spectral coefficients from different signals, these results show

Fig. 3. Sparsity of a variable set of coefficients drawn from a Chi distribution
with µ = 0.5. All measures are scaled between 0.1 and 1. Solid cyan lines for
each sparsity measure illustrate the 95% confidence interval for 100 repetitions
of drawing coefficients.

Fig. 4. Density function of the Beta distribution for different values of the
shape parameter β.

that the only applicable measures are the kurtosis, the Gini index,

and the parametric sparsity measures.

To illustrate the behavior of the considered sparsity measures

with respect to iii), we repeat the previously presented numerical

analysis using coefficients drawn from a Beta distribution. The

density function of the Beta distribution is given by

p(a) = β(1− a)β−1, for a ∈ [0, 1], (14)

with β denoting the shape parameter. Fig. 4 depicts the density

function of the Beta distribution for different values of the shape

parameterβ. It can be observed that forβ = 1, the uniform distri-

bution is obtained. Asβ increases, fewer coefficients with a large

amplitude are obtained, while the number of coefficients with

a small amplitude increases. Hence, when drawing coefficients

from a Beta distribution for increasing values of the shape param-

eter β, the sparsity of the drawn coefficients increases. Being a
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Fig. 5. Sparsity of I = 10000 coefficients drawn from a Beta distribution with
different values of the shape parameter β. All measures are scaled between 0.1
and 1. Solid cyan lines for each sparsity measure illustrate the 95% confidence
interval for 100 repetitions of drawing coefficients.

Fig. 6. Sparsity of a variable set of coefficients drawn from a Beta distribution
with β = 4. All measures are scaled between 0.1 and 1. Solid cyan lines for
each sparsity measure illustrate the 95% confidence interval for 100 repetitions
of drawing coefficients.

bounded distribution, the Beta distribution cannot model speech

spectral magnitudes. The objective of the following numerical

analysis is to illustrate the behavior of the considered sparsity

measures if the distribution of the speech spectral magnitudes

differs from the commonly assumed distributions.

The behavior of the considered sparsity measures when as-

sessing the sparsity of coefficients drawn from a Beta distribution

is depicted in Figs. 5 and 6. Fig. 5 depicts the normalized sparsity

measures for a fixed sample size I and increasing values ofβ, i.e.,

I = 10000, β ∈ [1, 10], whereas Fig. 6 depicts the normalized

sparsity measures for increasing sample size and a fixed value

of β, i.e., I ∈ [20, 20000], β = 4. For each considered β and I ,

coefficients are drawn 100 times such that the 95% confidence

interval for the different measures of sparsity can be computed.

Fig. 5 shows that also when the coefficients are drawn from

a Beta distribution, all considered sparsity measures reflect

the change in sparsity, i.e., as the sparsity of the coefficients

increases, the l1-norm, the Shannon entropy, and the estimated

shape parameters of the Chi and Weibull distributions decrease,

whereas the kurtosis and the Gini index increase. Furthermore,

Fig. 6 shows that similarly to Fig. 3, only the kurtosis, the Gini

index, and the parametric measures of sparsity converge as the

sample size increases, whereas the l1-norm and the Shannon

entropy do not converge.

In summary, the presented numerical analyses show that for

data generated according to a Chi distribution (which has been

empirically shown to model speech spectral amplitudes with

a high accuracy) or a Beta distribution (which cannot model

speech spectral amplitudes), the kurtosis, the Gini index, and

the parametric measures of sparsity are the only measures which

can be used to robustly compare sparsity. In Section VI, these

measures are used to create the feature vector for an SVM

classifying healthy and dysarthric speech. As will be shown in

Section VI, characterizing the spectro-temporal sparsity using

kurtosis, which has been often investigated as a measure for

characterizing pathological speech [31], yields the worst clas-

sification accuracy, whereas using the Gini index and the para-

metric sparsity measures results in a similarly high classification

accuracy.

V. TIME ALIGNMENT FOR SPECTRAL SPARSITY

CHARACTERIZATION

As described in Section II, the spectro-temporal sparsity of

dysarthric speech spectral coefficients differs from the spectro-

temporal sparsity of healthy speech spectral coefficients. In [16]

we have shown that creating the temporal sparsity feature vector

can be straightforwardly done by computing the spectral mag-

nitudes in each subband, computing the sparsity measure, and

concatenating the sparsity estimates for each subband. Charac-

terizing spectral sparsity on the other hand is not straightforward

since signals are unaligned and of different length (cf. Fig. 1).

In this section we propose to use DTW [25] to align all available

signals to the corresponding signals from a (arbitrary selected)

reference speaker before estimating the spectral sparsity. It

should be noted that since the phonetic content of each utterance

is known in advance, the desired alignments can also be obtained

using a Hidden Markov Model-based system in forced alignment

mode. Since experimental results suggest that DTW already

yields a very good alignment performance for our application,

DTW is used in this manuscript.

Let Sr denote the (Lr ×K)-dimensional subband represen-

tation of an utterance from the reference speaker r, with Lr

denoting the total number of time frames. Similarly, let St

denote the (Lt ×K)-dimensional subband representation of the

same utterance from another speaker t, with Lt denoting the

total number of time frames. The representations Sr and St are

typically not aligned (due to different speakers and speaking

rates) and are generally of different lengths, i.e., Lr �= Lt. We

propose to align these two representations through DTW using

the logarithmic magnitude and a simple Euclidean distance as the

cost function [25]. For each time frame l inSr, l = 1, . . . , Lr, we

extract all time frames in St that are mapped to it by DTW. Each
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frame l in the reference utterance is mapped to one or multiple

frames in St. If the number of time frames in Sr is larger than

the number of time frames inSt, the same frame inSt is mapped

to multiple frames in Sr. If the number of time frames in Sr is

smaller than the number of time frames in St, multiple frames

in St are mapped to the same frame in Sr. The spectral sparsity

is individually estimated for each of these extracted time frames

and the spectral sparsity of St for time frame l is computed as

the average of the spectral sparsity estimates across all extracted

time frames. This process is repeated for all available utterances

and speakers. Following such a procedure, the dimension of

the spectral sparsity feature vector is Lr, i.e., it is dictated

by the number of time frames in the subband representation

of the utterance from the reference speaker r. In Section VI-D

it is shown that the classification performance of a classifier

exploiting the so-computed spectral feature vector is insensitive

to the selected reference speaker r.

It should be noted that since the characterization of spectral

sparsity requires time frames corresponding to the same phonetic

content to be considered, using spectral sparsity for healthy

and dysarthric speech classification is only applicable when

recordings of the same speech material across all speakers are

available. Hence, such a feature vector cannot be used in e.g.,

spontaneous speech tasks.

VI. RESULTS AND DISCUSSION

In this section, empirical analyses of the spectro-temporal

sparsity of healthy and dysarthric speech caused by PD are pre-

sented. The spectro-temporal sparsity is assessed using kurtosis,

the Gini index, and the parametric sparsity measures. For each

sparsity measure, statistical significance analyses are conducted

to compare the mean spectro-temporal sparsity estimates across

healthy speakers and PD patients. In addition, the classification

accuracy of an SVM aiming at healthy and dysarthric speech

classification using the proposed sparsity estimates is investi-

gated and compared to using state-of-the-art features such as

fundamental frequency, jitter, shimmer, HNR, and MFCCs.

A. Databases and Preprocessing

We consider Spanish recordings of 45 healthy speakers and

45 PD patients from [35], with all speakers being Colombian

Spanish native speakers. Both groups of speakers contain 22

male and 23 female speakers. The age of the healthy speakers

ranges from 31 to 86 years old, with a mean age of 61.0 and

a standard deviation of 9.7. The age of the PD patients ranges

from 33 to 81 years old, with a mean age of 61.0 and a standard

deviation of 9.5. All recordings are done in a sound-proof booth

using an omnidirectional Shure SM63 L microphone. Hence,

the considered database is well-balanced in terms of age and

gender and the recording conditions between the two groups of

speakers are the same.

All PD patients were diagnosed by neurologist experts, were

labeled according to the Unified Parkinson’s Disease Rating

Scale (UPDRS) scale [36], and were recorded no more than

3 hours after the morning medication. The number of years after

diagnosis ranges from 0.4 to 43 years, with a mean of 11.0

and a standard deviation of 9.5. The UPDRS scores range from

13 to 75, with a mean score of 39.1 and a standard deviation

of 15.1.

The sampling frequency of all recordings is 44.1 kHz and

we consider recordings of 10 words uttered by all speakers. All

recordings are downsampled to 16 kHz and manual voice activity

detection is performed to extract the speech-only segments. Con-

catenating the extracted speech-only segments for each speaker

yields a signal with a mean length of 6.1 s across the healthy

speakers and 6.0 s across the PD patients.

The signals are processed in a weighted overlap-add short-

time Fourier transform (STFT) framework using a tight analysis

window with a frame size of 48 ms (i.e., 768 samples) and an

overlap of 50%.

B. Classifier Settings and Statistical Significance Analyses

For healthy and dysarthric speech classification, we use an

SVM with a radial basis kernel function [7], [8], [16]. The

validation strategy is a stratified 9-fold cross-validation, en-

suring that each fold has the same number of healthy speak-

ers and PD patients. In each fold, features are normalized

using the mean and standard deviation of the training data.

To select the soft margin constant C and the kernel width

γ for the SVM, nested 5-fold cross-validation is performed

on the training data in each fold with C ∈ {10−2, 104}, γ ∈
{10−4, 102}. The hyper-parameters used in each fold are se-

lected as the ones resulting in the highest mean accuracy

on the training data. Finally, the classification performance

is evaluated in terms of the mean and standard deviation

of the classification accuracy on the testing data across all

folds.

To compare the performance of multiple SVMs (constructed

using different feature vectors) in Sections VI-D, VI-E, and

VI-F, statistical tests need to be conducted. Since training data

across different folds overlap in a cross-validation framework,

the test accuracy values obtained for an SVM in different folds

are not independent. Consequently, usual statistical tests for

multiple comparisons such as ANOVA [37] or the Friedman

test [38] are inappropriate [39], [40]. To the best of our knowl-

edge, a powerful statistical test applicable to comparing the per-

formance of multiple classifiers in a cross-validation framework

does not exist [39], [40]. In such a framework, only pairwise

comparisons followed by multiple comparison corrections can

be used [40]. To account for the lack of independence in the test

accuracy values, we conduct pairwise comparisons using the

corrected resampled t-test [41]. To control the family-wise error

rate, Bonferroni-Holm corrections are applied [42]. Although

such statistical analyses are presented in Sections VI-D, VI-E,

and VI-F, it should be noted that these analyses should be

taken with skepticism since their statistical power is yet to be

determined.

C. Spectro-Temporal Sparsity of Healthy and

Dysarthric Speech

In this section, the spectro-temporal sparsity of healthy and

dysarthric speech spectral coefficients is compared.
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Fig. 7. Subband-dependent temporal sparsity estimate averaged across 45 healthy speakers and 45 PD patients using different sparsity measures: (a) kurtosis κ,

(b) Gini index G, (c) estimated shape parameter of the Chi distribution µ̂, and (d) estimated shape parameter of the Weibull distribution θ̂. Sparsity measures for
each speaker are estimated from a signal of 10 words, with a mean length of 6.1 s across the healthy speakers and 6.0 s across the PD patients.

The temporal sparsity vector is computed by concatenating all

utterances for each speaker and estimating the sparsity in each

subband. Since the STFT window size is 768 samples and taking

into account only half of the spectrum, the temporal sparsity

vector is an 385-dimensional vector. The computation of the

spectral sparsity vector requires a reference speaker for align-

ment (cf. Section V). For the analyses presented in this section,

we consider an additional (i.e., not part of the database described

in Section VI-A) healthy male speaker r1 as a reference speaker.

The STFT representation of each utterance from all speakers in

the database is first aligned to the STFT representation of the

same utterance from r1. For each speaker and each utterance,

the spectral sparsity is estimated in all (aligned) time frames.

Finally, for each speaker, the spectral sparsity estimates from

all utterances are concatenated to create the spectral sparsity

vector. Since the total number of time frames for all utterances

from r1 is 238, the spectral sparsity vector is an 238-dimensional

vector (cf. Section V).

While the considered non-parametric sparsity measures can

be directly computed (cf. Section III-A), numerical optimization

routines on the speech spectral magnitudes should be used for

the parametric sparsity measures (cf. Section III-B). For the

results presented in the following, the optimization routines are

initialized with µ = 1 and θ = 1.

Fig. 7 depicts the subband-dependent temporal sparsity es-

timates using kurtosis, Gini index, and shape parameters of

the Chi and Weibull distributions. The measures are averaged

across all healthy speakers and PD patients. Fig. 7(a) shows

that the kurtosis, which is commonly investigated for dysarthric

speech characterization, yields no distinct differences between

the temporal sparsity of healthy and dysarthric speech. However,

Fig. 7(b)–(d) show that the Gini index and the parametric sparsity

measures yield clear differences between healthy and dysarthric

speech across all subbands, with dysarthric speech being less

temporally sparse than healthy speech.

To determine whether the previously discussed results are

statistically significant, a statistical analysis is conducted. To

compare the difference in mean temporal sparsity between

healthy and dysarthric speech, an independent samples t-test is

conducted for each subband. If the obtained p-value is smaller

than 0.05, we consider there to be a statistically significant

TABLE I
PERCENTAGE OF SUBBANDS (OUT OF 385) WHERE A STATISTICALLY

SIGNIFICANT DIFFERENCE CAN BE FOUND BETWEEN THE TEMPORAL SPARSITY

(CHARACTERIZED USING κ, G, µ̂, θ̂) OF HEALTHY AND DYSARTHRIC SPEECH.
SIGNIFICANCE IS DETERMINED USING AN INDEPENDENT SAMPLES T-TEST AND

THE STATISTICAL SIGNIFICANCE THRESHOLD IS CONSIDERED TO BE p < 0.05

difference between the sparsity of healthy and dysarthric speech.

Table I presents the percentage of subbands (out of 385) showing

a statistically significant difference for each sparsity measure.

As expected from the previous analysis, on the one hand the

kurtosis measure results in the smallest number of subbands

with a statistically significant difference between the temporal

sparsity of healthy and dysarthric speech. On the other hand, the

Gini index and the parametric sparsity measures show significant

differences for many more subbands (ranging from 64.9% to

71.2%).

Fig. 8 depicts the time-dependent spectral sparsity estimates

using kurtosis, Gini index, and shape parameters of the Chi and

Weibull distributions. For visual convenience we present the

measures for a single (arbitrarily selected) utterance, with the

results generalizing to all other utterances. The measures are

averaged across all healthy speakers and PD patients. Fig. 8(a)

shows that when using kurtosis for characterizing the spectral

sparsity of the considered utterance, dysarthric speech appears

to be more sparse than healthy speech in all time frames.

However, Fig. 8(b)–(d) show that when using the Gini index

or the parametric sparsity measures, dysarthric speech appears

to be more sparse than healthy speech only in some time frames

(e.g., from l = 1 to l = 3). In other time frames (e.g., from

l = 8 to l = 10), healthy speech appears to be more spectrally

sparse than dysarthric speech. Informally inspecting and com-

paring the spectrograms of the considered utterance for several

speakers suggests that from l = 1 to l = 3, dysarthric speech is

typically dominated by articulation deficiencies, whereas from

l = 8 to l = 10, dysarthric speech is typically dominated by

breathiness and vocal tremor. On the one hand, articulation
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Fig. 8. Time-dependent spectral sparsity estimate for an exemplary utterance averaged across 45 healthy speakers and 45 PD patients using different sparsity

measures: (a) kurtosis κ, (b) Gini index G, (c) estimated shape parameter of the Chi distribution µ̂, and (d) estimated shape parameter of the Weibull distribution θ̂.

TABLE II
PERCENTAGE OF TIME FRAMES (OUT OF 238) WHERE A STATISTICALLY

SIGNIFICANT DIFFERENCE CAN BE FOUND BETWEEN THE SPECTRAL SPARSITY

(CHARACTERIZED USING κ, G, µ̂, θ̂) OF HEALTHY AND DYSARTHRIC SPEECH.
SIGNIFICANCE IS DETERMINED USING AN INDEPENDENT SAMPLES T-TEST AND

THE STATISTICAL SIGNIFICANCE THRESHOLD IS CONSIDERED TO BE p < 0.05

deficiencies can manifest as unexcited frequency components,

resulting in dysarthric speech appearing to be more spectrally

sparse than healthy speech. On the other hand, breathiness and

vocal tremor can manifest as smearing of energy, resulting in

dysarthric speech appearing to be less spectrally sparse than

healthy speech. This evidence suggests that kurtosis yields an

inaccurate characterization of the spectral sparsity of healthy and

dysarthric speech, whereas the Gini index and the parametric

sparsity measures yield a more accurate characterization.

To determine whether the previously discussed results are sta-

tistically significant, an independent samples t-test is conducted

for each time frame. If the obtained p-value is smaller than

0.05, we consider there to be a statistically significant difference

between the spectral sparsity of healthy and dysarthric speech.

Table II presents the percentage of time frames (out of 238)

showing a statistically significant difference for each sparsity

measure. On the one hand, the kurtosis measure results in the

smallest number of time frames with a statistically significant

difference between the spectral sparsity of healthy and dysarthric

speech. On the other hand, the Gini index and the parametric

sparsity measures show significant differences for more time

frames (ranging from 24.4% to 26.1%).

In summary, these results demonstrate that the spectro-

temporal sparsity of dysarthric speech spectral coefficients dif-

fers from the spectro-temporal sparsity of healthy speech spec-

tral coefficients. In addition, these results show that the Gini

index and the parametric sparsity measures yield a more robust

characterization of sparsity than the kurtosis measure.

D. Classifier Sensitivity to Reference Speaker Selection

Computing spectral sparsity requires a reference speaker to

be selected beforehand for alignment (cf. Section V). Before

TABLE III
CLASSIFICATION ACCURACY [%] USING AN SVM WITH SPECTRAL SPARSITY

ESTIMATES (CHARACTERIZED USING κ, G, µ̂, θ̂)
FOR 5 DIFFERENT REFERENCE SPEAKERS

investigating the advantages of using spectral sparsity as a

feature vector for classifying healthy and dysarthric speech in

Section VI-E, in this section we show that the performance of

such a classifier is not sensitive to the used reference speaker.

We consider 5 healthy speakers ri, i = 1, . . . , 5, as reference

speakers (with r1 being the same reference speaker used in

Section VI-C). These speakers are not part of the database

described in Section VI-A, and hence, they do not appear in the

training/testing data. For each ri, the spectral sparsity feature

vector for all speakers in the database is estimated based on

the newly aligned STFT representations using kurtosis, Gini

index, and parametric sparsity measures. The dimension of the

spectral sparsity feature vector is 238 when using r1, 234 when

using r2, 232 when using r3, 278 when using r4, and 294

when using r5. The estimated spectral sparsity is used as a

feature vector for an SVM as described in Section VI-B and

the classification accuracy using different sparsity measures for

different reference speakers is investigated.

Table III shows the classification accuracy when using the

considered spectral sparsity measures for different reference

speakers. In addition, the mean and standard deviation of the

classification accuracy across all reference speakers are also

presented. It can be observed that although different classifi-

cation accuracies are obtained for different reference speakers,

the performance is not highly sensitive to the reference speaker

selection. The standard deviation of the classification accuracy

for different reference speakers is low, ranging from 2.9% to

4.0%.

To determine whether a statistically significant difference ex-

ists between the performance of classifiers for different reference
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TABLE IV
CORRECTED PAIRWISE COMPARISON RESULTS (p-VALUES) OF THE DIFFERENCE IN CLASSIFICATION ACCURACY OF SVMS WITH SPECTRAL SPARSITY ESTIMATES

(CHARACTERIZED USING κ, G, µ̂, θ̂) FOR DIFFERENT REFERENCE SPEAKERS

TABLE V
MEAN AND STANDARD DEVIATION OF THE CLASSIFICATION ACCURACY [%]
ACROSS ALL FOLDS USING AN SVM WITH TEMPORAL SPARSITY, SPECTRAL

SPARSITY, AND SPECTRO-TEMPORAL SPARSITY ESTIMATES (CHARACTERIZED

USING κ, G, µ̂, θ̂)

speakers, the statistical analysis described in Section VI-B is

conducted. For each sparsity measure, the corrected p-value

for all pairwise comparisons of reference speakers is computed.

Since 5 reference speakers are used, 10 pairwise comparisons are

conducted for each measure. If the obtained p-value is smaller

than 0.05, we consider there to be a statistically significant

difference between the performance of the classifiers being

compared.

Table IV shows the obtained p-value for each sparsity measure

and all pairwise comparisons. It can be observed that all pairwise

comparisons result in a p-value that is greater than 0.05. Hence,

statistical tests suggest that the performance of an SVM using

spectral sparsity is insensitive to the reference speaker selec-

tion, independently of the measure used to characterize spectral

sparsity.

E. Classification Accuracy Using Spectro-Temporal Sparsity

In this section we compare the performance of an SVM

aiming to discriminate between healthy and dysarthric speech

using temporal sparsity, spectral sparsity, and spectro-temporal

sparsity (characterized using different sparsity measures). The

temporal sparsity feature vector is an 385-dimensional vector

constructed as described in Section VI-C. The spectral spar-

sity feature vector is an 238-dimensional vector constructed

as described in Section VI-D using the (arbitrarily selected)

reference speaker r1. The spectro-temporal sparsity feature

vector is constructed by concatenating the temporal and spec-

tral sparsity feature vectors, resulting in an 623-dimensional

vector.

Table V presents the classification accuracy of an SVM using

the different considered feature vectors. It can be observed

that independently of the used sparsity measure, characterizing

spectral sparsity yields a better classification accuracy than char-

acterizing temporal sparsity. Furthermore, it can be observed

that when using the Gini index and the parametric sparsity

measures, characterizing both temporal and spectral sparsity

improves the classification accuracy even further. As expected

from the analyses in Section VI-C, Table V shows that the com-

monly used kurtosis measure (characterizing temporal, spec-

tral, or spectro-temporal sparsity) yields the worst classification

accuracy, whereas the Gini index and the parametric sparsity

measures result in a significantly higher classification accuracy.

When constructing the feature vector based on temporal sparsity,

the highest classification accuracy of 68.9% is obtained using

the Gini index. When constructing the feature vector based on

spectral sparsity, the highest classification accuracy of 76.7%

is obtained using the shape parameter of the Chi distribution.

When constructing the feature vector based on spectro-temporal

sparsity, the highest classification accuracy of 83.3% is obtained

using the Gini index. Since computing the Gini index is com-

putationally faster than the iterative ML estimation procedures

required for the parametric sparsity measures, it can be said

that the Gini index is an advantageous measure to use for

spectro-temporal sparsity characterization.

It should be noted that using a nested cross-validation frame-

work to find optimal hyper-parameters for each fold can yield

positively biased final classification accuracy values. We have

also analyzed the performance of the considered classifiers

when hyper-parameters optimized for one fold are used for the

complete database (i.e., 9 different hyper-parameter settings).

While the final classification accuracy values can be slightly

lower depending on the exact hyper-parameters, the standard

deviation of the accuracy across different hyper-parameters is

low. Most importantly, the performance trend across different

features remains the same as in Table V.

To determine whether a statistically significant difference

exists between the performance of SVMs using the different

considered feature vectors, the statistical analysis described in

Section VI-B is conducted. The correctedp-value for all pairwise

comparisons is computed. Since 12 SVMs are used (i.e., 12 dif-

ferent sparsity-based feature vectors), 66 pairwise comparisons

are conducted. If the obtained p-value is smaller than 0.05, we

consider there to be a statistically significant difference between

the performance of the SVMs being compared.

Table VI shows the obtained p-value for all pairwise com-

parisons, with bold entries indicating a significant difference at

the considered threshold of 0.05. For notational convenience,
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TABLE VI
CORRECTED PAIRWISE COMPARISON RESULTS (p-VALUES) OF THE DIFFERENCE IN CLASSIFICATION ACCURACY OF SVMS WITH DIFFERENT SPARSITY-BASED

FEATURE VECTORS. BOLD ENTRIES INDICATE SIGNIFICANT DIFFERENCES AT A THRESHOLD OF 0.05

subscripts are introduced for the different sparsity measures,

with {·}
T
, {·}

S
, and {·}

ST
denoting the characterization of tem-

poral sparsity, spectral sparsity, and spectro-temporal sparsity,

respectively. Overall it can be observed that using kurtosis to

characterize (temporal, spectral, or spectro-temporal) sparsity

yields the most significant differences in classification accuracy

when compared to using any other sparsity measure. More

precisely, using κ
T

yields a significantly worse classification

accuracy than using any other measure. Further, using κ
S

yields

a significantly worse classification accuracy than using G
S
, G

ST
,

µ̂
ST

, and θ̂
ST

. Finally, using κ
ST

yields a significantly worse

classification accuracy than using G
S

and G
ST

. The differences

in classification accuracy when using the Gini index and the

parametric sparsity measures to characterize (temporal, spectral,

or spectro-temporal) sparsity often appear to be not significant,

with the most significant differences arising when comparing

G
ST

to the remaining measures. Hence, it can be said that using

G
ST

yields a significantly better classification accuracy than

using several other sparsity-based feature vectors such as µ̂
T
,

θ̂
T
, or θ̂

S
.

In summary, the presented statistical analyses confirm the pre-

viously derived conclusions, i.e., characterizing sparsity using

kurtosis yields the worst classification accuracy. Further, these

analyses confirm that the Gini index and the parametric sparsity

measures are more advantageous, with G
ST

appearing to yield

the most significant differences when compared to the remaining

feature vectors. However, we advise the reader to treat these

statistical analyses with caution since their statistical power is

yet to be determined (cf. Section VI-B).

F. Classification Accuracy Using Spectro-Temporal Sparsity

and State-of-the-Art Features

The results presented in Section VI-E show that using G
ST

yields the highest classification accuracy among the proposed

sparsity-based features. In this section, the classification accu-

racy obtained using G
ST

is compared to using state-of-the-art

TABLE VII
MEAN AND STANDARD DEVIATION OF THE CLASSIFICATION ACCURACY [%]

ACROSS ALL FOLDS USING AN SVM WITH THE PROPOSED G
ST

FEATURE AND

STATE-OF-THE-ART FEATURES

features such as fundamental frequency f0, jitter, shimmer,

HNR, and MFCCs. We extract f0, jitter, shimmer, HNR, and

15 MFCCs using the open-source toolkit openSMILE [43]. For

each extracted quantity, feature vectors are constructed using 4

functionals, i.e., mean, standard deviation, kurtosis, and skew-

ness [7], [16]. Hence, the feature vectors for f0, jitter, shimmer,

and HNR are 4-dimensional vectors, whereas the feature vec-

tor for MFCCs is an 60-dimensional vector (15 MFCCs × 4

functionals).

Table VII presents the classification accuracy of an SVM

using G
ST

and the considered state-of-the-art features.2 It can

be observed that out of all considered features, the proposed

G
ST

feature yields the highest mean classification accuracy of

83.3% and the lowest standard deviation of 6.7%. The classifi-

cation accuracy obtained using f0, jitter, shimmer, and HNR is

generally low, ranging from 52.2% to 60.0%. Out of the consid-

ered state-of-the-art features, using MFCCs yields the highest

classification accuracy of 76.7%, confirming the applicability of

MFCCs to capture articulation deficiencies.

To determine whether a statistically significant difference

exists between the performance of an SVM using G
ST

and the

2The classification accuracy obtained using G
ST

is clearly the same as in
Section VI-E.
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TABLE VIII
CORRECTED PAIRWISE COMPARISON RESULTS (p-VALUES) OF THE DIFFERENCE

IN CLASSIFICATION ACCURACY OF SVMS WITH THE PROPOSED G
ST

FEATURE

AND STATE-OF-THE-ART FEATURES. BOLD ENTRIES INDICATE SIGNIFICANT

DIFFERENCES AT A THRESHOLD OF 0.05

considered state-of-the-art features, the statistical analysis de-

scribed in Section VI-B is conducted. The corrected p-value for

all pairwise comparisons is computed. Since 5 state-of-the-art

feature vectors are considered, 5 pairwise comparisons are con-

ducted. If the obtained p-value is smaller than 0.05, we consider

there to be a statistically significant difference between the per-

formance of SVMs usingG
ST

and the considered state-of-the-art

feature.

Table VIII shows the obtainedp-value for all pairwise compar-

isons, with bold entries indicating a significant difference at the

considered threshold of 0.05. It can be observed that statistical

analyses suggest that using G
ST

yields a significantly better per-

formance than using f0, jitter, shimmer, or HNR. Further, these

analyses suggest that the difference in classification accuracy

when using G
ST

and MFCCs is not significant. However, as

described in Section VI-B, these statistical analyses need to be

treated with skepticism.

VII. CONCLUSION

In this paper it has been proposed to use the spectro-temporal

sparsity characterization as a robust feature for dysarthric speech

detection. While characterizing the temporal sparsity is straight-

forward, to characterize the spectral sparsity it has been proposed

to first align all available signals to the corresponding signals

from an arbitrary selected reference speaker using DTW. The

suitability of non-parametric sparsity measures (i.e., l1-norm,

kurtosis, Shannon entropy, and Gini index) and parametric

sparsity measures (i.e., shape parameters of a Chi and Weibull

distributions) for spectro-temporal sparsity characterization has

been investigated. It has been shown that out of the considered

measures, the Gini index and the parametric sparsity measures

yield the most discriminative sparsity assessment of healthy and

dysarthric speech. Further, it has been shown that compared to

temporal sparsity, spectral sparsity is a more powerful discrim-

inator for dysarthric speech detection.
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