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Spectrogram based multi-task audio classification

Yuni Zeng1
· Hua Mao1

· Dezhong Peng1
· Zhang Yi1

Abstract Audio classification is regarded as a great challenge in pattern recognition.

Although audio classification tasks are always treated as independent tasks, tasks are essen-

tially related to each other such as speakers’ accent and speakers’ identification. In this

paper, we propose a Deep Neural Network (DNN)-based multi-task model that exploits

such relationships and deals with multiple audio classification tasks simultaneously. We

term our model as the gated Residual Networks (GResNets) model since it integrates Deep

Residual Networks (ResNets) with a gate mechanism, which extract better representations

between tasks compared with Convolutional Neural Networks (CNNs). Specifically, two

multiplied convolutional layers are used to replace two feed-forward convolution layers in

the ResNets. We tested our model on multiple audio classification tasks and found that our

multi-task model achieves higher accuracy than task-specific models which train the models

separately.

Keywords Multi-task learning · Convolutional neural networks · Deep residual

networks · Audio classification

1 Introduction

Sound provides us with rich information about its producer and environment. As the human

auditory system is able to segregate and identify complex sounds, we can imagine that a
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machine that can perform similar functions would be very useful in applications such as

speech recognition in noisy backgrounds [28]. Audio classification is an important aspect of

pattern recognition and has been widely used in professional media applications and enter-

tainment. Different audio classification tasks−such as speech-music discrimination, audio

emotion recognition, accent recognition, and music retrieving information−have driven

successful applications in recent years [9, 21, 28].

Most methods of audio classification treat tasks separately such as accent classifica-

tion [13], emotion recognition [5], speaker identification [22] and so on. However, some

tasks are closely related. For example, while accent recognition and speaker identifica-

tion are always regarded as two individual classification tasks, in most situations when

the speaker is confirmed, the accent is determined and unchangeable. In this case, accent

recognition and speaker identification are related. Relational information of Alzheimer’s

disease is exploited for feature selection to improve classification accuracy in [35]. Here,

we sought to use relationship to simultaneously predict different tasks, and hypothesized

that this would increase classification accuracy.

Multi-task Learning (MTL) is a subfield of machine learning in which multiple tasks

are solved simultaneously. Thus, MTL can exploit the intrinsic relationships among related

tasks [7, 37, 38]. The goal of MTL is to improve generalization performance by training

all tasks at same time from a shared representation. Because of the training way of MTL,

tasks can benefit from what are learned for other tasks [4]. Borrowing the idea from MTL,

we designed a multi-task model for audio classification tasks. Our model exploits the rela-

tionships found in audio and deals with multiple audio classification tasks jointly. We find

out that our model help to improve the accuracy of tasks comparing with the state-of-the-art

result obtained by task-specific models [29].

The inputs to our model are audio spectrograms, the visual representations of audio.

Spectrograms are very detailed and accurate images of audio that have been widely used

in audio classification tasks [11, 12, 28]. Deep Neural Networks (DNNs) are very good

at abstracting data, and have been used with great success in fields such as speech recog-

nition [1, 12] and image recognition [15, 30]. Specifically, we focus on Convolutional

Neural Networks (CNNs) in this paper. CNNs can efficiently exploit invariance presented

in spectrogram [27] for their convolutional and pooling operations.

Thus, we propose a new CNNs-based model for learning a shared representation among

all the spectrograms from different classification tasks. Called the Gated Residual Neu-

ral Networks (GResNets) model, it is a variation of a deep Residual Networks (ResNets)

model with the addition of a gate mechanism. Because of the notorious gradient van-

ishing/exploding problem in learning DNNs, ResNets use the linear connection of Long

Short-Term Memory (LSTM) [16] to ease the training of very deep CNNs [15]. Another

way for the LSTM to solve this problem is to use the gate mechanism [16]. In our GRes-

Nets, we combine both mechanisms to get better representations. Because of the strong

ability to learn invariance presented in spectrograms [27], CNNs are used as the component

of our GResNets like ResNets. Finally, the abstracted features are used for audio classifica-

tion in the last softmax layer. The experimental results demonstrated that multi-task models

for related audio classification tasks outperform the task-specific models of each task.

The rest of this paper is organized as follows. We begin with related works about audio

classification in Section 2. Next, we review the MTL, spectrogram, ResNets and gate

mechanism in Section 3. Section 4 introduce the structure of our proposed model. Then,

in Section 5 we use the proposed model for different multiple audio classification tasks.

Finally, we conclude our work in Section 6.
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2 Related works

Many methods in machine learning are adapted for the single audio classification task.

Support Vector Machine (SVM) was used to classify two English accents [25] and

eight emotions with continuous wavelet-transform features [29], respectively. In another

study, a Gaussian Mixture Model (GMM) was trained for an accent-classification task by

fusing several acoustic and text-language subsystems [13]. In [5], SVM, principal compo-

nent analysis and artificial neural network were combined to classify six emotions from

speech.

Deep learning methods have also been widely used for audio classification tasks. A

CNNs-based neural network called convolutional deep belief network was developed for

several individual audio classification tasks, such as speaker identification, speaker gender

classification, and music genre classification [21]. In [11], a CNNs based model was trained

from fixed-length spectrogram features and single-label audio data for various predomi-

nant instrument recognition in polyphonic music. In [22], a CNNs and Gated Recurrent

Unit (GRU)-based neural network was proposed for speaker identification and verification.

Additionally, LSTM was used in a hybrid emotion inference model that was proposed for

inferring user emotion in a real-world voice-dialogue application, and a recurrent autoen-

coder was proposed to pre-train the LSTM to improve accuracy [32]. Further, GMM and

DNNs were combined to identify distant accents in reverberant environments [26]. The

authors found that this combination of classifiers outperformed the individual GMM and

DNNs classifiers.

All the methods above focus on the single audio classification task. However, few studies

have focused on the multiple audio classification tasks through MTL method. Two reports

concentrated on emotion recognition from spoken language and song at the same time [31,

33]. Especially [33] showed that MTL-SVM models have significantly better performance

for audio emotion recognition than task-specific SVM models. Additionally, the authors

have also used an MTL approach on SVM for cross-corpus acoustic recognition of emotion

in speaking and singingk [34].

Many recent deep learning approaches also have used MTL. Deep Relationship Net-

works [24] were proposed to learn the relationshio between tasks. The model shares

convolutional layers, while learning task-specific fully-connected layers. [14] introduced a

joint many-task model to solve complex task in the field of nature language processing.

3 Preliminaries

Our multi-task model abstract the shared features from spectrograms and GResNets is a

variation of CNN-based ResNets. Thus, here we review basic information related to MTL,

spectrograms, ResNets and gate mechanism.

3.1 Multi-task learning

MTL is a scope of machine learning where multiple learning tasks are solved at the same

times. The goal of MTL is to improve the prediction accuracy of multiple classification

tasks by learning them jointly. Models which combine neural network method with MTL

use a shared hidden layers on all tasks [4].

Mathematically, given a data set S = {(x1, Y1), · · · , (xN , YN )} where N is the number of

sample, xi denotes the ith sample and Yi = (y1
i , y2

i · · · , yT
i ) represents the set of labels. Let
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NT indicate the set of tasks and T be the number of tasks. For each task t ∈ NT , we select

p samples where p < N samples from audio set as the trainset {(x1, y
t
1), · · · , (xp, yt

p)}.

The MTL aims to learn a fitted model F to get accurate labels for each input:

(y1
i , y2

i , ..., yT
i ) = F(θ, xi), (1)

where i ≤ p. θ denotes the parameters of the multi-task model. We assume that the cost

function is J (·), and the parameters of the multi-task model are learned by minimizing the

following formula:

T∑

t

J (xt , Yt , θ). (2)

3.2 Spectrogram

A spectrogram is regarded as a very detailed and accurate representation of audio informa-

tion. A common spectrogram is an image where one axis represents time, the other axis is

frequency and the color of each point indicates the amplitude of those points. Thus, a spec-

trogram shows amplitude changes for every frequency component in the signal. Figure 1

gives an example of audio spectrograms that contain different emotions. From the spec-

trograms, we can observe that the amplitude of happy and angry emotions diverge in the

5000Hz to 15000Hz frequency range.

3.3 Deep residual networks

Compared fully-connected neural networks, CNNs [20] are also designed to recognize

pattern directly from pixel images but with less parameters. CNNs have led to a series of sig-

nificant achievements in audio classification. Using sparse connectivity and shared weights

ease network optimization by reducing the number of parameters and the risk of overfit-

ting [18]. The basic layers of CNNs are convolutional layer and pooling layer. Figure 2

shows a typical architecture for CNNs.

A convolutional layer is composed of several kernels and aims to get the feature

maps [10]. To generate output feature maps, convolutional layer input maps are convoluted

with learnable kernels and the results are transformed by a nonlinear activation function.

Suppose l denotes the lth layer of CNNs and kl denotes the parameters of the kernel

and bl is the bias parameters at the lth layer. The input and output of the lth layer are

(a) angry emotion (b) happy emotion

Fig. 1 Spectrograms for happy and angry emotion. (Better viewed in color)
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defined by al−1 and al respectively. f (·) denotes an activation function. The convolutional

operation [3] can be formulated as

al
j = f (

∑

i∈Mj

al−1
i ∗ kl

ij + bl
j ), (3)

where Mj denotes a selection of input maps. The convolutional operation is not only widely

used in CNNs but also in sparse coding [36].

A pooling layer is usually placed after the convolutional layer to achieve invariant rep-

resentation and reduces the number of parameters [8]. The number of feature maps for

a pooling layer is the same as the number of feature maps in the previous convolutional

layer. There are two typical pooling operations: average pooling and max pooling [2]. The

computation of the pooling layer is formulated as follows

al
j = f (β l

jdown(al−1
j ) + bl

j ), (4)

where down(·) represents a sub-sampling function. and β is the multiplicative bias that is

given to one output map [3].

ResNets was the winning model of the ILSVRC 2015 ImageNet challenge and has been

proposed to ease the training of very deep CNNs [15]. Deep ResNets are composed of

several stacked residual blocks. Figure 3 illustrates a residual block where weight layers

denote convolutional layers and a shortcut connection is used for identifying mapping.

For a block of ResNets, let the input for the blocks be x,

y = F(x,W) + x, (5)

where y is the output of the building block, W indicates the weights of the residual block

and the function F(·) is the output of two convolutional layers.

The dimensionality of x and F(x,W) must be the same for (5) to be valid. To match

dimensions, the general solution is to use a linear projection weight matrix Ws as:

y = F(x, W) + Wsx. (6)

3.4 Gate mechanism

The limitation by using the deep neural networks is the gradient vanishing/exploding prob-

lem. The gate mechanism proposed in LSTM [16] can be viewed as the milestone for

solving the gradient problem. The input/output gates are used to control how much infor-

mation should be kept in the cell. The forget gate is used to control the values kept in the

Convolution

Inputs 

Feature maps 

Feature maps 

pooling pooling flattenConvolution

Convolution-pooling block 1 Convolution-pooling block N

Fig. 2 One illustrative of one CNN architecture
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Fig. 3 a residual block

weight layer

relu

relu

identity

weight layer

memory cells of LSTM which let LSTM capable to deal with continual learning tasks. The

side-effect of gradient problem can be reduced by these mechanism. Deeper network can be

trained in practice.The gates support a more flexible way to control error flow for handing

the gradient vanishing/exploding problem.

Figure 4 illustrates the gate mechanism intuitively. The gate mechanism can be formu-

lated as y = f1 · f2 where f1 and f2 denote the activation function and gate function,

respectively. · is the element-wise multiplication. If f2 = 0, the gate is fully closed and if

f2 = 1, the gate is fully opened.

4 The proposed model

We proposed a new CNN-based architecture to extract the shared feature of all tasks. The

details are described in this section. We begin by describing the fundamental block of

GResNets and then introduce our proposed multi-task model.

4.1 The gated residual networks blocks

The gradient vanishing/exploding problem is a known limitation for deep learning.

LSTM [16] first proposed to solve this problem by combining a gate mechanism with linear

Fig. 4 The illustration of a gate
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connections. ResNets were proposed to train very deep feedforward neural networks

by appending linear connections to solve the gradient vanishing/exploding problem, but

without a gate mechanism. [15].

Inspired by these two mechanisms, we propose GResNets, which is composed of the

basic blocks shown in Fig. 5. The weight layers F1(·), F2(·) indicate convolutional layers,

each of which is followed by a normalization method [17]. Let x be the input of a block. We

define ∗ as element-wise multiplication. Thus, the output y of one block can be formulated

as

y = F1(x,W1) ∗ F2(x,W2) + x, (7)

where W1 and W2 indicate the weights of the convolutional layers. Usually, the activation

functions in convolutional layers are the sigmoid function, the tanh function, or the ReLu

function. We compare different activation functions in Section 5.3. Like ResNets, we also

use a linear projection weight M to match the dimensions of F1(·) ∗ F2(·) and x:

y = F1(x,W1) ∗ F2(x,W2) + Mx. (8)

4.2 The proposed model for audio classification

The basic idea of MTL is to share parameters between related tasks. Our multi-task model is

a neural network with different number of the softmax classifiers. Let NT indicate the set of

tasks and T be the number of tasks. The classification layer of the multi-task model includes

T softmax classifiers. For task-specific model, T = 1. Figure 6 illustrates an example of

the MTL model which is used for two audio classification tasks. The first convolution and

pooling layers are used to reduce the dimension of the input spectrograms and the number

of parameters. The next several GResNets blocks and a full connected layer are stacked to

get the shared representation between the two tasks. Then, the extracted features are used in

the softmax layer to generate predictions for each task.

5 Experiments

To evaluate our GResNets and the MTL method could improve the accuracy of each tasks,

we designed experiments on tasks with different relationship. In the first part of experi-

ments, the GResNets model was used for two tasks of The Ryerson audio-visual database of

*weight layer weight layer
identity

Fig. 5 a block from our proposed Gated ResNets
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Conv. layer
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Fig. 6 The structure of our proposed model

emotional speech and song (RAVDESS) [23]. One task is to identify eight kinds of emo-

tions, another one is to discriminate song and speech. There is no direct connection between

those two tasks. We regard the first task as the main task and to find whether what the sec-

ond task learned would help the first task or not. We also compared the performance of

the GResNets model with different numbers of blocks, activation functions, and other CNN

structures.

The Voice Cloning Toolkit (VCTK)1 data set was used in the second part of experiments.

There also are two tasks, accent recognition and speaker identification. But those two tasks

have a kind of relationship like inclusion relation. In this part of experiments, we focus on

comparing the multi-task model and task-specific models and using an evaluation metric

(the confusion matrix) to represent the improvement of MTL.

5.1 Corpus

RAVDESS corpus RAVDESS consists of 24 actors (12 females and 12 males) speaking

and singing with various emotions. The speaking set contains eight emotional expressions:

neutral, calm, happy, sad, angry, fearful, disgust and surprised. The singing set includes six

emotions: neutral, calm, happy, sad, angry, and fearful. All emotions (except neutral) are

expressed at normal and strong levels of intensity. All audio files in this corpus are encoded

as 16 bits, 48 kHz wav files. We use the MIRtoolbox [19] to generate 257 × 399 pixel

spectrograms for each audio file. The RAVDESS dataset originally contains speech and

song as two separated categories, so we mixed all audio while the first experiment performs

to classify them. Figure 7 shows the spectrograms from the audio set for the eight categories

of emotion in speech.

1http://homepages.inf.ed.ac.uk/jyamagis/page3/page58/page58.html
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(a) neutral, speech (b) calm, speech

(c) sad, speech (d) happy, speech

(e) angry, speech (f) fearful, speech

(g) disgust, speech (h) surprised, speech

Fig. 7 Spectrograms of emotion in speech

VCTK corpus The Voice Cloning Toolkit (VCTK)2 includes speech data uttered by 109

native English speakers in different accents. It includes American, Australian, Canadian,

2http://homepages.inf.ed.ac.uk/jyamagis/page3/page58/page58.html
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(a) American accent (b) Canadian accent (c) English accent

(d) Irish accent (e) Northern Irish accent (f) Scottish accent

Fig. 8 Spectrograms features of American, Canadian, English, Irish, Northern Irish, and Scottish accents

English, Indian, Irish, NewZealand, Northern Irish, Scottish, South African and Welsh

accents. All speech data in the VCTK was recorded at a sampling of 96 kHz and at 24

bits. All recordings were converted into 16 bits, down-sampled to 48 kHz based on STPK,

and manually end-pointed. We generated 257 × 399 pixels spectrograms for each sentence.

Figure 8, spectrogram features of American, Canadian, English, Irish, Northern Irish, and

Scottish accents. Figure 9 illustrates the spectrograms for six speakers who have the same

accent.

5.2 Experimental settings

We extracted the spectrogram features with a 512-length hamming window with 50% over-

lap for each audio. The experiment was performed on an MXNet framework [6] with

NVIDIA Tesla K40m GPU. The parameters of our multi-task model are illustrated in Fig 10.

The underline parameters are changeable in different experiments. l denotes the number of

GResNets blocks. n, m, p, q, and num f ilters are the CNNs parameters. n×m, p × q are

the kernel sizes. num f ilters represents the number of feature maps and t is the number of

tasks. The learning rate is 0.001 during training and the cost function is cross-entropy loss.

To measure performance, we used two evaluation metrics. The first one was Unweighted

Average Recall (UAR) [13]. In the binary class case (‘Y’ and ‘NY’), it is defined as:

UAR =
Recall(Y ) + Recall(NY )

2
(9)

where Recall(·) is the recall result of the class. The second metric was accuracy (Acc).

k−fold cross-validation was used for estimating model. In k−fold cross-validation, the

data set is randomly divided into k equal folds. For the k subsets, a single subset is retained

for use in validation and the other subsets are used as training data. The average value of the

k results is the report accuracy in our paper.

3714



(a) speaker1 (b) speaker2 (c) speaker3

(d) speaker4 (e) speaker5 (f) speaker6

Fig. 9 Illustration spectrograms features of different speakers from American

5.3 Experiment 1: emotion recognition in speaking and singing

We used the model for emotion recognition in speaking and singing and compared it with

the results for the model in [29], which use the common sentence ‘Dogs are sitting by the

door’ from RAVDESS corpus at the strong intensity level. There are two tasks (1) emotion

recognition and (2) speech vs. song discrimination. The main task is to classify 8 categories

of emotion. The parameters were: t = 2, 5−fold cross-validation, l = 7 and num f ilters

was 32, 64, 64, 96, 96, 96 and 96 for each of the layers respectively.

First, we compared how well task-specific and our multi-task model recognize emotions.

Table 1 shows the emotion classification results of the task-specific models and our multi-

task model. SVM and Continuous Wavelet Transform (CWT) features [29] were used to

classify eight categories of emotion and reported a maximum accuracy of 60.1%. Moreover,

another baseline is provided based on a standard SVM classifier. In this experiment, n × m

is 1 × 1, p × q is 3 × 3, f1 is the tanh function and f2 is the tanh function because of the

functions used in [16]. The classification accuracy for song and speech was 97.31% using

the multi-task model and the UAR was 97.37.

Next, we compared the results of GResNets with different number layers l from our

multi-task model when n×m was 1×1, p ×q was 3×3, f1 was the sigmoid function and

Fig. 10 Parameter settings of our multi-task model. l, n, m, p, q, num f ilters, t and f1, f2 are changeable

under different situations
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Table 1 Emotion recognition

results of different models where

‘+S’ denotes task-specific model

and ‘+M’ denotes that model

uses for multi-task

Acc(%) UAR(%)

SVM+S 48.01 48.66

CWT+SVM+S [29] 60.1 –

ResNet+S 53.30 50.33

GResNet+S 60.35 59.70

GResNet+M 64.48 64.52

f2 was the (4× sigmoid −2) function. As shown in Fig. 11, the best performance occurred

when l = 7 in our multi-task model.

Then, we compared the GResNets model with ResNets and CNNs models. To replace

the GResNets blocks of our multi-task model, we used ResNets blocks and CNNs that

contained the same convolutional layers. Thus, for ResNets blocks Fig. 3, the first weight

layer is a convolutional layer with a 1 × 1 kernel when the second layer is with a 3 × 3

kernel. Table 2 shows the results for emotion recognition using different multi-task models.

Last, for a multi-task model based on GResNets, each GResNets block included two

convolutional layers as explained in Section 4.1. We compared the different activation func-

tions for two convolutional layers of a GResNet block. Tables 3 and 4 show the multi-task

results in different activation functions with different kernels in convolutional layers.

From the results, following observations are obtained:

• Table 1 shows that the multi-task model outperforms task-specific models when classifying

emotion from speech and song, indicating that emotion recognition benefits from MTL.

Spoken and Sung Emotion Recognition

Emotion, Acc(%) Emotion, UAR(%) SS, Acc(%) SS,UAR(%)

Fig. 11 Classification by using different number of feature abstract layer where ‘SS’ denotes speech-song

discrimination
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Table 2 Results of emotion recognition in our multi-task model based on CNNs, ResNets and gated ResNets

Emotion Speech and song

Acc(%) UAR(%) Acc(%) UAR(%)

SVM+M 54.63 56.02 91.04 91.25

CNNs+M 53.73 54.8 92.24 92.08

ResNets+M 57.21 58.58 94.62 94.36

GResNets+M 64.48 64.52 97.31 97.37

• Table 2 summarizes the results of the multi-task model with different CNNs structures.

The results indicate that under the same conditions, the model based on GResNets

performs better than other CNN structures for emotion recognition.
• Tables 3 and 4 show that the best recognition occurred for spoken and sung emotion when the

activation function in GResNets blocks of our multi-task model was the tanh function.

We think the reason is that the value range of the tanh function is from minus to positive.

5.4 Experiment 2: accent and speaker recognition

Although accent recognition and speaker identification are two related tasks, they are always

regarded as two individual tasks. Here, we aimed to determine whether our multi-task model

is better than using the task-specific for accent recognition and speaker identification. For

this experiment, we included data from the VCTK because of huge imbalance for each

accent. We trained three GResNets models: (1) a GResNets model to classify six cate-

gories of accents: American, Canadian, English, Irish, NorthernIrish, and Scottish

accents; (2) a GResNets model for identifying 37 speakers classification; (3) a multi-task

model with t = 2 and l = 4. In this experiment, n × m was 3 × 3, p × q was 3 × 3, f1

was the sigmoid function and f2 was the (4 × sigmoid − 2) function. Their results are

summarized in Table 5.

Table 3 Results for different activation functions f1, f2 (n × m is 1 × 1, p × q is 3 × 3)

Convolutional layers Emotion Speech and song

f1 f2 Acc(%) UAR(%) Acc(%) UAR(%)

sigmoid 4*sigmoid-2 62.39 62.76 93.13 93.38

Sigmoid tanh 60.60 60.66 94.03 94.09

Sigmoid sigmoid 55.22 56.72 91.04 91.50

Sigmoid relu 60.00 61.90 94.03 94.09

Relu sigmoid 60.00 59.99 91.94 92.34

Relu tanh 54.63 57.04 94.03 93.90

Tanh tanh 64.48 64.52 97.31 97.37

Tanh sigmoid 57.91 56.65 92.54 91.87

4*sigmoid-2 sigmoid 58.21 56.03 90.75 90.95
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Table 4 Results for different activation functions f1, f2 (n × m is 3 × 3, p × q is 3 × 3)

Convolutional layers Emotion Song and speech

f1 f2 Acc(%) UAR(%) Acc(%) UAR(%)

sigmoid 4*sigmoid-2 60.60 58.95 90.74 91.27

Sigmoid tanh 60.59 58.57 93.73 94.20

Sigmoid sigmoid 56.42 54.88 87.16 88.38

Relu sigmoid 61.79 61.42 91.94 92.05

Tanh tanh 65.97 66.90 94.33 94.37

Table 5 Speaker and accent recognition for task-specific and multi-tasks models

GResNets+S GResNets+M

Acc(%) UAR(%) Acc(%) UAR(%)

Speaker identification 83.05 83.33 88.52 87.36

Accent recognition 89.67 89.82 92.44 92.57

Table 6 Confusion matrix for accent recognition using a task-specific model

Accents American Canadian English Irish Northern Irish Scottish

American 217 7 4 10 9 0

Canadian 4 217 5 1 6 1

English 7 7 206 30 3 4

Irish 6 1 10 226 12 1

Northern Irish 2 7 3 2 241 3

Scottish 0 4 4 0 0 221

Table 7 Confusion matrix for accent recognition using our multi-task model

Accents American Canadian English Irish Northern Irish Scottish

American 222 13 2 6 4 0

Canadian 1 224 1 0 7 1

English 4 5 228 10 3 7

Irish 4 3 16 230 2 1

Northern Irish 0 6 4 5 241 2

Scottish 1 3 0 0 1 224
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For a clear comparison between multi-task and single-task learning, we report the con-

fusion matrixes for accents using the task-specific and multi-task models (Tables 6 and 7).

Accent and speaker recognition tasks have certain relationship that once the speaker

is fixed, his or her accent is also fixed. Our model takes advantage of this relationship

to learning accent and speaker recognition tasks simultaneously. The experimental results

also prove this. From tables, it’s obvious that the multi-task model improves accuracy from

83.05% to 88.52% in speaker identification and from 89.67% to 92.44% in accent recogni-

tion. Thus, speaker identification and accent recognition, as two individual but related audio

classification tasks can benefit from MTL.

6 Conclusions

In this paper, we proposed a multi-task model for audio classification that is based on GRes-

Nets and applied it to related audio classification tasks: (1) recognition emotion from speech

and song; and (2) accents and speakers recognition. We evaluate our model among tasks

with different relationship on multiple audio classification tasks. We found that related audio

tasks recognition is in the scope of MTL and the experimental results show that recogni-

tion accuracy is better when using a multi-task model than multiple task-specific models.

Thus, we perform efficient inference that different relationship audio classification tasks

can benefit from MTL methods.

The model developed in this study has led to advancements in some audio classifica-

tion tasks. While these algorithms have resulted in effective performance for recognizing

eight emotions and six accents, we cannot make further claims regarding other related audio

classification tasks. Thus, these findings should be confirmed in additional audio classifi-

cation tasks in the future, such tasks with conflicts. Moreover, we are trying to give some

mathematical justification about why our model works.
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